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• Concurrency control
– Order transactions across shards

• State machine replication
– Replicas of a shard apply transactions in the same 

order decided by concurrency control
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Recap: Distributed Storage Systems



• Dozens of zones (datacenters)

• Per zone, 100-1000s of servers

• Per server, 100-1000 partitions (tablets)

• Every tablet replicated for fault-tolerance (e.g., 5x)
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Google’s Setting



2005  – BigTable [OSDI 2006]

– Eventually consistent across datacenters
– Lesson: “don’t need distributed transactions”

2008? – MegaStore [CIDR 2011]

– Strongly consistent across datacenters
– Option for distributed transactions

• Performance was not great…

2011  – Spanner [OSDI 2012]

– Strictly Serializable Distributed Transactions
– “We wanted to make it easy for developers to build their 

applications”
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Why Google built Spanner



A Deeper Look at Motivation
-- Performance-consistency tradeoff

• Strict serializability
– Serializability + linearizability

– As if coding on a single-threaded,  transactionally isolated 
machine

– Spanner calls it external consistency

• Strict serializability makes building correct application 
easier

• Strict serializability is expensive
– Performance penalty in concurrency control + Replication

• OCC/2PL: multiple round trips, locking, etc.



A Deeper Look at Motivation
-- Read-Only Transactions

• Transactions that only read data
– Predeclared, i.e., developer uses READ_ONLY flag / 

interface

• Reads dominate real-world workloads
– FB’s TAO had 500 reads : 1 write [ATC 2013]

– Google Ads (F1) on Spanner from 1? DC in 24h:
• 31.2 M single-shard read-write transactions
• 32.1 M multi-shard read-write transactions
• 21.5 B read-only (~340 times more)

• Determines system overall performance
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Can we design a strictly serializable, 
geo-replicated, sharded system with 
very fast (efficient) read-only 
transactions?



• How would you design SS read-only transactions?
• OCC or 2PL

– Multiple round trips and locking
• Can always read in local datacenters like COPS?

– Maybe involved in Paxos agreement 
– Or must contact the leader

• Performance penalties
– Round trips increase latency, especially in wide area
– Distributed lock management is costly, e.g., deadlocks
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Before we get to Spanner …



Goal is to …
• Make read-only transactions efficient

– One round trip
• Could be wide-area

– Lock-free
• No deadlocks
• Processing reads do not block writes, e.g., long-lived 

reads
– Always succeed

• Do not abort

• And strictly serializable



Leveraging the Notion of Time

• Strict serializability: a matter of real-time ordering
– If txn T2 starts after T1 finishes, then T2 must be 

ordered after T1 
• If T2 is a ro-txn, then T2 should see the effects of all 

writes that finished before T2 started



Leveraging the Notion of Time

• Task 1: when committing a write, tag it with the 
current physical time

• Task 2: when reading the system, check which 
writes were committed before the time this read 
started

• How about the serializable requirement?
– Physical time naturally gives a total order
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Invariant:
If T2 starts after T1 commits (finishes), 
then T2 must have a larger timestamp

Trivially provided by perfect clocks



Challenges

• Clocks are not perfect
– Clock skew: some clocks are faster/slower
– Clock skew may not be bounded

– Clock skew may not be known a priori

• T2 may be tagged with a smaller timestamp than 
T1 due to T2’s slower clock

• Seems impossible to have perfect clocks in 
distributed systems. What can we do?



Nearly perfect clocks

• Partially synchronized
– Clock skew is bounded and known a priori
– My clock shows 1:30PM, then I know the absolute 

(real) time is in the range of 1:30 PM +/- X
• e.g., between 1:20PM and 1:40PM if X = 10 mins

• Clock skew is short
– E.g., X = a few milliseconds

• Enable something special, e.g., Spanner!



Spanner: Google’s Globally-
Distributed Database

OSDI 2012
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Scale-out vs. fault tolerance
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• Every tablet replicated via MultiPaxos

• So every “operation” within transactions across tablets 
actually is a replicated  operation within Paxos RSM

• Paxos groups can stretch across datacenters!



Strictly Serializable Multi-Shard 
Transactions

• How are clocks made “nearly perfect”?

• How does Spanner leverage these clocks?
– How are writes done and tagged?
– How read-only transactions are made efficient?



• “Global wall-clock time” with bounded uncertainty
– ε is worst-case clock divergence
– Spanner’s time notion becomes intervals, not single values
– ε is 4ms on average,  2 ε is about 10ms

time

earliest latest

TT.now()

2*ε
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TrueTime (TT)

Consider event enow which invoked tt = TT.now():
Guarantee:  tt.earliest <= tabs(enow) <= tt.latest
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TrueTime (TT) 
• Interface

– TT.now() = [earliest, latest]  # latest – earliest = 2*ε
– TT.after(t) = true if t has passed

• TT.now().earliest > t (b/c tabs >= TT.now().earliest)
– TT.before(t) = true if t has not arrived

• TT.now().latest < t (b/c tabs <= TT.now().latest)

• Implementation
– Relies on specialized hardware, e.g., GPS satellite and 

atomic clocks



TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS 
timemaster

GPS 
timemaster

GPS 
timemaster

Atomic-clock 
timemaster

GPS 
timemaster

Client
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GPS 
timemaster

Compute reference [earliest, latest]   =   now  ± ε



time

ε

0sec 30sec 60sec 90sec

+6ms

now =  reference now + local-clock offset

ε =  reference ε + worst-case local-clock drift
=  1ms +  200 μs/sec
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TrueTime implementation

• What about faulty clocks?  
– Bad CPUs 6x more likely in 1 year of empirical data
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Enforcing the Invariant

Tabs

SA

SB
T1.now()

= 5

5

Perfect Clocks

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Enforcing the Invariant

Tabs

SA

SB

Perfect Clocks

T1.now()
= 5

5

T1.commit
(ts = 5)

8

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Enforcing the Invariant

Tabs

SA

SB

Perfect Clocks

T1.now()
= 5

5

T1.commit
(ts = 5)

8
10

T2.now()
= 10

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA



25

Enforcing the Invariant

Tabs

SA

SB

Perfect Clocks

T1.now()
= 5

5

T1.commit
(ts = 5)

8
10

T2.now()
= 10

T2.commit
(ts = 10)

15

T2.ts > T1.ts

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Enforcing the Invariant

Tabs

SA

SB

Imperfect Clocks

T1.now()
= 12

5

T1.commit
(ts = 12)

8
10

T2.now()
= 6

T2.commit
(ts = 6)

15

T2.ts < T1.ts

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Enforcing the Invariant

Tabs

SA

SB

TrueTime

T1.now()
= [3, 6]

T1.commit
(ts = 6)

8 10

T2.now()
= [8, 12]

T2.commit
(ts = 12)

15

T2.ts > T1.ts
Seems working?

3 6
125

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Enforcing the Invariant

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 10

T2.now()
= [1, 12]

T2.commit
(ts = 12)

15

T2.ts < T1.ts
Not working!

3
121

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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A brain teaser puzzle

We know: 
1. x < y, b/c T2 in real-time after T1 (the assumption)
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that b < d, how?

1

A brain teaser puzzle

We know: 
1. x < y, b/c T2 in real-time after T1
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that d > b, how?

Tabs

SA

SB
T1.now()
= [a, b]

T1.commit
(ts = b)

x

T2.now()
= [c, d]

T2.commit
(ts = d)

b
a

dc y
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A brain teaser puzzle

We know: 
1. x < y, b/c T2 in real-time after T1 (the assumption)
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that b < d, how? 
1 and 2 à x < d; we need to ensure b < x; then b < x < d, done

1

A brain teaser puzzle

We know: 
1. x < y, b/c T2 in real-time after T1
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that d > b, how?

Tabs

SA

SB
T1.now()
= [a, b]

T1.commit
(ts = b)

x

T2.now()
= [c, d]

T2.commit
(ts = d)

b
a

dc y
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Enforcing the Invariant with TT

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

8 153

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Enforcing the Invariant with TT

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 20153 16

wait

TT.after(15) 
== true

b

x

b < x

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Enforcing the Invariant with TT

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 20

T2.now()
= [18, 22]

T2.commit
(ts = 22)

15

T2.ts > T1.ts

3
22

16
18

wait

wait

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA



Takeaways
• The invariant is always enforced: If T2 starts after T1 

commits (finishes), then T2 must have a larger 
timestamp

• How big/small ε is does not matter for correctness
• Only need to make sure:

– TT.now().latest is used for ts (in this example)
– Commit wait, i.e., TT.after(ts) == true

• ε must be known a priori and small so commit wait is 
doable!



After-class Puzzles

• Can we use TT.now().earliest for ts?

• Can we use TT.now().latest – 1 for ts?

• Can we use TT.now().latest + 1 for ts?

• Then what’s the rule of thumb for choosing ts?


