
Distributed Transactions in

Spanner 1

CS 240: Computing Systems and Concurrency
Lecture 20

Marco Canini
Credits: Michael Freedman and Kyle Jamieson developed much of the original material.

Contents adapted from Haonan Lu, Wyatt Lloyd.

• Concurrency control
– Order transactions across shards

• State machine replication
– Replicas of a shard apply transactions in the same

order decided by concurrency control

2

Recap: Distributed Storage Systems

• Dozens of zones (datacenters)

• Per zone, 100-1000s of servers

• Per server, 100-1000 partitions (tablets)

• Every tablet replicated for fault-tolerance (e.g., 5x)

3

Google’s Setting

2005 – BigTable [OSDI 2006]

– Eventually consistent across datacenters
– Lesson: “don’t need distributed transactions”

2008? – MegaStore [CIDR 2011]

– Strongly consistent across datacenters
– Option for distributed transactions

• Performance was not great…

2011 – Spanner [OSDI 2012]

– Strictly Serializable Distributed Transactions
– “We wanted to make it easy for developers to build their

applications”

4

Why Google built Spanner

A Deeper Look at Motivation
-- Performance-consistency tradeoff

• Strict serializability
– Serializability + linearizability

– As if coding on a single-threaded, transactionally isolated
machine

– Spanner calls it external consistency

• Strict serializability makes building correct application
easier

• Strict serializability is expensive
– Performance penalty in concurrency control + Replication

• OCC/2PL: multiple round trips, locking, etc.

A Deeper Look at Motivation
-- Read-Only Transactions

• Transactions that only read data
– Predeclared, i.e., developer uses READ_ONLY flag /

interface

• Reads dominate real-world workloads
– FB’s TAO had 500 reads : 1 write [ATC 2013]

– Google Ads (F1) on Spanner from 1? DC in 24h:
• 31.2 M single-shard read-write transactions
• 32.1 M multi-shard read-write transactions
• 21.5 B read-only (~340 times more)

• Determines system overall performance

7

Can we design a strictly serializable,
geo-replicated, sharded system with
very fast (efficient) read-only
transactions?

• How would you design SS read-only transactions?
• OCC or 2PL

– Multiple round trips and locking
• Can always read in local datacenters like COPS?

– Maybe involved in Paxos agreement
– Or must contact the leader

• Performance penalties
– Round trips increase latency, especially in wide area
– Distributed lock management is costly, e.g., deadlocks

8

Before we get to Spanner …

Goal is to …
• Make read-only transactions efficient

– One round trip
• Could be wide-area

– Lock-free
• No deadlocks
• Processing reads do not block writes, e.g., long-lived

reads
– Always succeed

• Do not abort

• And strictly serializable

Leveraging the Notion of Time

• Strict serializability: a matter of real-time ordering
– If txn T2 starts after T1 finishes, then T2 must be

ordered after T1
• If T2 is a ro-txn, then T2 should see the effects of all

writes that finished before T2 started

Leveraging the Notion of Time

• Task 1: when committing a write, tag it with the
current physical time

• Task 2: when reading the system, check which
writes were committed before the time this read
started

• How about the serializable requirement?
– Physical time naturally gives a total order

12

Invariant:
If T2 starts after T1 commits (finishes),
then T2 must have a larger timestamp

Trivially provided by perfect clocks

Challenges

• Clocks are not perfect
– Clock skew: some clocks are faster/slower
– Clock skew may not be bounded

– Clock skew may not be known a priori

• T2 may be tagged with a smaller timestamp than
T1 due to T2’s slower clock

• Seems impossible to have perfect clocks in
distributed systems. What can we do?

Nearly perfect clocks

• Partially synchronized
– Clock skew is bounded and known a priori
– My clock shows 1:30PM, then I know the absolute

(real) time is in the range of 1:30 PM +/- X
• e.g., between 1:20PM and 1:40PM if X = 10 mins

• Clock skew is short
– E.g., X = a few milliseconds

• Enable something special, e.g., Spanner!

Spanner: Google’s Globally-
Distributed Database

OSDI 2012

15

16

Scale-out vs. fault tolerance

O

P

QQQ

PP

OO

• Every tablet replicated via MultiPaxos

• So every “operation” within transactions across tablets
actually is a replicated operation within Paxos RSM

• Paxos groups can stretch across datacenters!

Strictly Serializable Multi-Shard
Transactions

• How are clocks made “nearly perfect”?

• How does Spanner leverage these clocks?
– How are writes done and tagged?
– How read-only transactions are made efficient?

• “Global wall-clock time” with bounded uncertainty
– ε is worst-case clock divergence
– Spanner’s time notion becomes intervals, not single values
– ε is 4ms on average, 2 ε is about 10ms

time

earliest latest

TT.now()

2*ε

18

TrueTime (TT)

Consider event enow which invoked tt = TT.now():
Guarantee: tt.earliest <= tabs(enow) <= tt.latest

19

TrueTime (TT)
• Interface

– TT.now() = [earliest, latest] # latest – earliest = 2*ε
– TT.after(t) = true if t has passed

• TT.now().earliest > t (b/c tabs >= TT.now().earliest)
– TT.before(t) = true if t has not arrived

• TT.now().latest < t (b/c tabs <= TT.now().latest)

• Implementation
– Relies on specialized hardware, e.g., GPS satellite and

atomic clocks

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

20

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset

ε = reference ε + worst-case local-clock drift
= 1ms + 200 μs/sec

21

TrueTime implementation

• What about faulty clocks?
– Bad CPUs 6x more likely in 1 year of empirical data

22

Enforcing the Invariant

Tabs

SA

SB
T1.now()

= 5

5

Perfect Clocks

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

23

Enforcing the Invariant

Tabs

SA

SB

Perfect Clocks

T1.now()
= 5

5

T1.commit
(ts = 5)

8

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

24

Enforcing the Invariant

Tabs

SA

SB

Perfect Clocks

T1.now()
= 5

5

T1.commit
(ts = 5)

8
10

T2.now()
= 10

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

25

Enforcing the Invariant

Tabs

SA

SB

Perfect Clocks

T1.now()
= 5

5

T1.commit
(ts = 5)

8
10

T2.now()
= 10

T2.commit
(ts = 10)

15

T2.ts > T1.ts

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

26

Enforcing the Invariant

Tabs

SA

SB

Imperfect Clocks

T1.now()
= 12

5

T1.commit
(ts = 12)

8
10

T2.now()
= 6

T2.commit
(ts = 6)

15

T2.ts < T1.ts

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

27

Enforcing the Invariant

Tabs

SA

SB

TrueTime

T1.now()
= [3, 6]

T1.commit
(ts = 6)

8 10

T2.now()
= [8, 12]

T2.commit
(ts = 12)

15

T2.ts > T1.ts
Seems working?

3 6
125

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

28

Enforcing the Invariant

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 10

T2.now()
= [1, 12]

T2.commit
(ts = 12)

15

T2.ts < T1.ts
Not working!

3
121

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

29

A brain teaser puzzle

We know:
1. x < y, b/c T2 in real-time after T1 (the assumption)
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that b < d, how?

1

A brain teaser puzzle

We know:
1. x < y, b/c T2 in real-time after T1
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that d > b, how?

Tabs

SA

SB
T1.now()
= [a, b]

T1.commit
(ts = b)

x

T2.now()
= [c, d]

T2.commit
(ts = d)

b
a

dc y

30

A brain teaser puzzle

We know:
1. x < y, b/c T2 in real-time after T1 (the assumption)
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that b < d, how?
1 and 2 à x < d; we need to ensure b < x; then b < x < d, done

1

A brain teaser puzzle

We know:
1. x < y, b/c T2 in real-time after T1
2. c <= y <= d, b/c TrueTime
3. T1.ts = b, T2.ts = d, b/c how ts is assigned
We want: it is always true that d > b, how?

Tabs

SA

SB
T1.now()
= [a, b]

T1.commit
(ts = b)

x

T2.now()
= [c, d]

T2.commit
(ts = d)

b
a

dc y

31

Enforcing the Invariant with TT

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

8 153

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

32

Enforcing the Invariant with TT

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 20153 16

wait

TT.after(15)
== true

b

x

b < x

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

33

Enforcing the Invariant with TT

Tabs

SA

SB

TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)

8 20

T2.now()
= [18, 22]

T2.commit
(ts = 22)

15

T2.ts > T1.ts

3
22

16
18

wait

wait

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write SB and T2 write SA

Takeaways
• The invariant is always enforced: If T2 starts after T1

commits (finishes), then T2 must have a larger
timestamp

• How big/small ε is does not matter for correctness
• Only need to make sure:

– TT.now().latest is used for ts (in this example)
– Commit wait, i.e., TT.after(ts) == true

• ε must be known a priori and small so commit wait is
doable!

After-class Puzzles

• Can we use TT.now().earliest for ts?

• Can we use TT.now().latest – 1 for ts?

• Can we use TT.now().latest + 1 for ts?

• Then what’s the rule of thumb for choosing ts?

