
Big Data Processing

CS 240: Computing Systems and Concurrency
Lecture 23

Marco Canini



Data-Parallel Computation

2



3

Ex: Word count using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs



4

Putting it together…

map combine partition
(“shuffle”)

reduce



5

Synchronization 
Barrier



6

Fault Tolerance in MapReduce

• Map worker writes intermediate output to local disk, 
separated by partitioning. Once completed, tells 
master node

• Reduce worker told of location of map task outputs, 
pulls their partition’s data from each mapper, execute 
function across data

• Note:
– “All-to-all” shuffle b/w mappers and reducers
– Written to disk (“materialized”) b/w each stage



Generality vs Specialization

7



General Systems

• Can be used for many different applications

• Jack of all trades, master of none

– Pay a generality penalty

• Once a specific application, or class of 

applications becomes sufficiently important, 

time to build specialized systems

8



9

MapReduce is a General System

• Can express large computations on large data; 
enables fault tolerant, parallel computation

• Fault tolerance is an inefficient fit for many 
applications

• Parallel programming model (map, reduce) within 
synchronous rounds is an inefficient fit for many 
applications



MapReduce for Google’s Index
• Flagship application in original MapReduce paper

• Q: What is inefficient about MapReduce for computing 
web indexes?
– “MapReduce and other batch-processing systems cannot 

process small updates individually as they rely on creating 
large batches for efficiency.”

• Index moved to Percolator in ~2010 [OSDI ‘10]

– Incrementally process updates to index
– Uses OCC to apply updates
– 50% reduction in average age of documents

10



MapReduce for Iterative Computations

• Iterative computations: compute on the same data as 
we update it
– e.g., PageRank
– e.g., Logistic regression

• Q: What is inefficient about MapReduce for these?
– Writing data to disk between all iterations is slow

• Many systems designed for iterative computations, 
most notable is Apache Spark
– Key idea 1: Keep data in memory once loaded
– Key idea 2: Provide fault tolerance via lineage (record ops)

11



MapReduce for Stream Processing

• Stream processing: Continuously process an 
infinite stream of incoming events
– e.g., estimating traffic conditions from GPS data
– e.g., identify trending hashtags on twitter
– e.g., detect fraudulent ad-clicks

• Q: What is inefficient about MapReduce for 
these?

12



Stream Processing Systems

• Many stream processing systems as well, typical structure:
– Definite computation ahead of time
– Setup machines to run specific parts of computation and pass data around 

(topology)
– Stream data into topology
– Repeat forever
– Trickiest part: fault tolerance!

• Notably systems and their fault tolerance
– Apache/Twitter Storm: Record acknowledgment 
– Spark Streaming: Micro-batches
– Google Cloud dataflow: transactional updates
– Apache Flink: Distributed snapshot

• Specialization is much faster, e.g., click-fraud detection at Microsoft
– Batch-processing system: 6 hours
– w/ StreamScope[NSDI ‘16]: 20 minute average

13



In-Memory Data-Parallel 
Computation

14



Spark: Resilient Distributed Datasets

• Let’s think of just having a big block of RAM, 
partitioned across machines…
– And a series of operators that can be executed in 

parallel across the different partitions

• That’s basically Spark
– A distributed memory abstraction that is both 

fault-tolerant and efficient

15



• Restricted form of distributed shared memory
– Immutable, partitioned collections of records
– Can only be built through coarse-grained

deterministic transformations (map, filter, join, …)
– They are called Resilient Distributed Datasets (RDDs)

• Efficient fault recovery using lineage
– Log one operation to apply to many elements
– Recompute lost partitions on failure
– No cost if nothing fails

Spark: Resilient Distributed Datasets

16



Spark Programming Interface

• Language-integrated API in Scala (+ Python)
• Usable interactively via Spark shell
• Provides:

– Resilient distributed datasets (RDDs)
– Operations on RDDs: deterministic 
transformations (build new RDDs), actions
(compute and output results)

– Control of each RDD’s partitioning (layout across 
nodes) and persistence (storage in RAM, on disk, 
etc)

17



Example: Log Mining

• Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

messages.persist()
Block 1

Block 2

Block 3

Worker

Worker

Worker

Master

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

tasks
results

Msgs. 1

Msgs. 2

Msgs. 3

Base RDDTransformed RDD

Action

18



In-Memory Data Sharing

Input

query 1

query 2

query 3

.  .  .

one-time
processing

iter. 1 iter. 2 .  .  .

Input

19



Efficient Fault Recovery via Lineage

Input

query 1

query 2

query 3

.  .  .

one-time
processing

iter. 1 iter. 2 .  .  .

Input

Maintain a reliable log of applied operations

Recompute lost partitions on failure

20



Generality of RDDs

• Despite their restrictions, RDDs can express many 
parallel algorithms
– These naturally apply the same operation to many 

items
• Unify many programming models

– Data flow models: MapReduce, Dryad, SQL, …
– Specialized models for iterative apps: BSP (Pregel), 

iterative MapReduce (Haloop), bulk incremental, …
• Support new apps that these models don’t
• Enables apps to efficiently intermix these models

21



Spark Operations

Transformations
(define a new RDD)

map
filter

sample
groupByKey
reduceByKey

sortByKey

flatMap
union
join

cogroup
cross

mapValues

Actions
(return a result to 
driver program)

collect
reduce
count
save

lookupKey
take

22



Spark Summary

• Global aggregate computations that produce 
program state
– compute the count() of an RDD, compute the max diff, 

etc.
• Loops!

– Spark makes it much easier to do multi-stage 
MapReduce

• Built-in abstractions for some other common 
operations like joins

• See also Apache Flink for a flexible big data 
platform

23



Stream Processing

24



• Single node/process
– Read data from input source (e.g., network socket)
– Process

– Write output

25

Simple stream processing



• Convert Celsius temperature to Fahrenheit
– Stateless operation:   emit (input * 9 / 5) + 32

26

Examples:  Stateless conversion

CtoF



• Function can filter inputs
– if (input > threshold)  {  emit input }

27

Examples:  Stateless filtering

Filter



• Compute EWMA of Fahrenheit temperature
– new_temp = ⍺ * ( CtoF(input) ) + (1- ⍺) * last_temp
– last_temp = new_temp
– emit new_temp

28

Examples:  Stateful conversion

EWMA



• E.g., Average value per window 
– Window can be # elements (10) or time (1s)

– Windows can be fixed (every 5s)

– Windows can be “sliding” (5s window every 1s)

29

Examples:  Aggregation (stateful)

Avg



30

Stream processing as chain

AvgCtoF Filter



31

Stream processing as directed graph

AvgCtoF Filter

KtoF
sensor
type 2

sensor 
type 1 alerts

storage



• Large amounts of data to process in real time

• Examples
– Social network trends (#trending)

– Intrusion detection systems (networks, datacenters)

– Sensors:  Detect earthquakes by correlating 
vibrations of millions of smartphones

– Fraud detection 
• Visa:  2000 txn / sec on average, peak ~47,000 / sec

32

The challenge of stream processing



Tuple-by-Tuple
input ← read
if (input > threshold)  {  

emit input 
}

Micro-batch
inputs ← read
out = []
for input in inputs {

if (input > threshold) {
out.append(input)

}
}
emit out

33

Scale “up”: batching



Tuple-by-Tuple
Lower Latency

Lower Throughput

Micro-batch
Higher Latency

Higher Throughput

34

Scale “up”

Why?  Each read/write is an system call into kernel.  
More cycles performing kernel/application transitions 

(context switches), less actually spent processing data.



35

Scale “out”



36

Stateless operations: trivially parallelized

C F

C F

C F



• Aggregations:
– Need to join results across parallel computations

37

State complicates parallelization

AvgCtoF Filter



• Aggregations:
– Need to join results across parallel computations

38

State complicates parallelization

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter



• Aggregations:
– Need to join results across parallel computations

39

Parallelization complicates fault-tolerance

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

- blocks -



• Compute trending keywords
– E.g., 

40

Can parallelize joins

Sum
/ key

Sum
/ key

Sum
/ key

Sum
/ key

Sort top-k

- blocks -

portion tweets

portion tweets

portion tweets



41

Can parallelize joins

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

1. merge
2. sort
3. top-k



42

Parallelization complicates fault-tolerance

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

1. merge
2. sort
3. top-k



Various fault tolerance mechanisms:

1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

43

Popular Streaming Frameworks



1. Record acknowledgement (Storm)
– At least once semantics
– Ensure each input “fully processed”
– Track every processed tuple over the DAG, propagate ACKs 

upwards to the input source of data
– Cons: Apps need to deal with duplicate or out-of-order tuples

2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

44

Popular Streaming Frameworks



1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)

– Each micro-batch may succeed or fail
– On failure, recompute the micro-batch
– Use lineage to track dependencies
– Checkpoint state to support failure recovery

3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

45

Popular Streaming Frameworks



1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)

– Treat every processed record as a transaction, committed upon 
processing

– On failure, replay the log to restore a consistent state and replay
lost records

4. Distributed snapshots (Flink)

46

Popular Streaming Frameworks



1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

– Take system-wide consistent snapshot (algo is a variation of 
Chandy-Lamport)

– Snapshot periodically
– On failure, recover the latest snapshot and rewind the stream 

source to snapshot point, then replay inputs

47

Popular Streaming Frameworks



Graph-Parallel Computation

48



Properties of Graph Parallel Algorithms

Dependency
Graph

Iterative
Computation

What I Like

What My 
Friends Like

Factored 
Computation 



ML Tasks Beyond Data-Parallelism 

Data-Parallel                     Graph-Parallel

Cross
Validation

Feature 
Extraction

Map Reduce

Computing Sufficient
Statistics 

Graphical Models
Gibbs Sampling

Belief Propagation
Variational Opt.

Semi-Supervised 
Learning

Label Propagation
CoEM

Graph Analysis
PageRank

Triangle Counting

Collaborative 
Filtering

Tensor Factorization

50

?



Pregel: Bulk Synchronous Parallel

Let’s slightly rethink the MapReduce model for processing graphs
– Vertices
– “Edges” are really messages

Compare to MapReduce keys à values?

“Think like a vertex”
vertex

ID

vertex value

vertex
ID

51



The Basic Pregel Execution Model

A sequence of supersteps, for each vertex V
At superstep S:
• Compute in parallel at each V

– Read messages sent to V in superstep S-1
– Update value / state
– Optionally change topology

• Send messages
• Synchronization

– Wait till all communication is finished vertex
ID

vertex valuevertex value

Université catholique de Louvain 52



Termination Test

• Based on every vertex voting to halt
– Once a vertex deactivates itself it does no further work unless 

triggered externally by receiving a message
• Algorithm terminates when all vertices are simultaneously 

inactive

Active Inactive

Vote to halt

Message received

53



Distributed Machine Learning

54



Machine learning (ML)
ML algorithms can improve automatically through experience (data)

• Most common approaches
– Supervised learning:                    train the model first, then use it
– Unsupervised learning:               the model learns by itself
– Reinforcement learning (RL):    model learns while doing

Training
Feed the ML model data, so that it 
can learn how to make decisions

Inference (or model serving)
ML model in use, to process live data



Loss 
function

ML training

Training 
datasetDOG

CAT
DOG

CAT DOG

100% WRONG

Δ



WORKER 2

Distributed ML training
Data parallel

Training 
dataset

DOG
CAT

Training 
dataset

CAT
DOG

WORKER 1

Mini-batch
Amount of data 
processed by a single 
worker during 1 iteration
Global batch
Amount of data 
processed by all workers 
during 1 iteration

Δ1
Δ

Δ2

Δ

+

Stochastic gradient 
descent (SGD)

𝜔 ≔ 𝜔 −
𝜂
𝑛&
!"#

$

𝛻 𝑄!(𝜔)



WORKER 2

Distributed ML training
Model parallel or hybrid

Training 
dataset

Training 
dataset

WORKER 1
DOG

CAT
DOG

CAT

DOG

CAT
DOG

CAT

WORKER 2

Training 
dataset

Training 
dataset

WORKER 1
DOG CAT

DOG CAT

WORKER 4

Training 
dataset

Training 
dataset

WORKER 3

CAT
DOG

CAT
DOG

Model parallel Hybrid model-data parallel



Weak scaling
• Fixed local batch size per-

worker fixed
• More workers can process a 

larger global batch in one 
iteration

• Same iteration time, fewer 
iterations

• Same data transfers at each 
iteration

• Time to accuracy does not 
scale linearly with the number 
of workers

Strong scaling
• Fixed global batch size
• With more workers, the local 

batch size per-worker 
decreases

• Reduced iteration time (for 
computation)

• Same data transfers at each 
iteration

• More frequent 
synchronizations among 
workers (more network 
traffic)

Weak scaling and strong scaling



When the network is the bottleneck

• Compute accelerators performance improvements 
have so far outpaced network bandwidth increases

• Newer, larger DNN models spend more time on 
communication

0%
20%
40%
60%
80%
100%

SS
D

Re
sN
et-
50

UG
AT
IT

VG
G1
9

BE
RT NC

F
LS
TM

De
ep
Lig
ht

Profile of benchmark DNNs
(10Gbps network)

Communication Overlapping communication

0%
20%
40%
60%
80%
100%

SS
D

Re
sN
et-
50

UG
AT
IT

VG
G1
9

BE
RT NC

F
LS
TM

De
ep
Lig
ht

Profile of benchmark DNNs
(100Gbps network)

Communication Overlapping communication


