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Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together



• How can processes on different cooperating computers 
communicate with each other over the network?

1. Network Communication

2. Remote Procedure Call (RPC)
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Today’s outline



• Process on Host A wants to talk to process on Host B

– A and B must agree on the meaning of the bits being 
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?
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The problem of communication



The problem of communication

• Re-implement every application for every new underlying 
transmission medium?

• Change every application on any change to an 
underlying transmission medium?

• No! But how does the Internet design avoid this?
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Solution: Layering

• Intermediate layers provide a set of abstractions for 
applications and media

• New applications or media need only implement for 
intermediate layer’s interface
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Intermediate layers



• Transport: Provide end-to-end 
communication between processes 
on different hosts

• Network: Deliver packets to 
destinations on other 
(heterogeneous) networks

• Link: Enables end hosts to 
exchange atomic messages with 
each other

• Physical: Moves bits between two 
hosts connected by a physical link
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Layering in the Internet

Applications

Transport layer
Network layer

Link layer
Physical layer

Host



Logical communication between layers
• How to forge agreement on the meaning of the bits 

exchanged between two hosts?

• Protocol: Rules that governs the format, contents, and 
meaning of messages
– Each layer on a host interacts with its peer host’s 

corresponding layer via the protocol interface
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Physical communication
• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application
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Communication between peers
• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate with peer
– Higher layers’ headers, data encapsulated inside 

message 
• Lower layers don’t generally inspect higher layers’ headers

Application
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Network

Application message
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H

Transport-layer message body

Network-layer datagram body
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• Socket: The interface the OS provides to the network
– Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), recv()
– e.g.: put(key,value) à message
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Network socket-based communication

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Socket

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process



// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);
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• Principle of transparency: Hide that resource is 
physically distributed across multiple computers
– Access resource same way as locally
– Users can’t tell where resource is physically located
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Network sockets: not great

Network sockets provide apps with point-to-point 
communication between processes

Sockets don’t provide transparency
Also, lots to deal with, have to worry a lot about the network
• How to separate different requests on the same connection?
• How to write bytes to the network / read bytes from the network?

• What if Host A’s process is in Go and Host B’s process is in C++?
• What to do with those bytes?
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Solution: Another layer!
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1. Network Communication

2. Remote Procedure Call (RPC)

15

Today’s outline



• The typical programmer is trained to write single-threaded 
code that runs in one place

• Goal: Easy-to-program network communication that makes 
client-server communication transparent

– Retains the “feel” of writing centralized code
• Programmer needn’t think about the network
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Why RPC?



• Course programming assignments use RPC

• Google gRPC
• Facebook/Apache Thrift
• Twitter Finagle
• …
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Everyone uses RPCs



What’s the goal of RPC?
• Within a single program, running in a single process, recall 

the well-known notion of a procedure call:
– Caller pushes arguments onto stack,

• jumps to address of callee function

– Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller
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RPC’s Goal: To make communication appear like a 
local procedure call: transparency for procedure calls



• Seems obvious in retrospect, but RPC was only invented in 
the ’80s

• See Birrell & Nelson, “Implementing Remote Procedure 
Call” ... or

• Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University:  
Remote Procedure Call., 1981
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Historical note



1. Heterogeneity
– Client needs to rendezvous with the server
– Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
– What if messages get dropped?
– What if client, server, or network fails?

3. Performance
– Procedure call takes ≈ 10 cycles ≈ 3 ns
– RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower
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RPC issues



• Not an issue for local procedure call

• For a remote procedure call, a remote machine may:
– Run process written in a different language 
– Represent data types using different sizes
– Use a different byte ordering (endianness)
– Represent floating point numbers differently
– Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary
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Problem: Differences in data 
representation



• Mechanism to pass procedure parameters and return values in a 
machine-independent way

• Programmer may write an interface description in the IDL
– Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
– Code to marshal (convert) native data types into machine-

independent byte streams
• And vice-versa, called unmarshaling

– Client stub: Forwards local procedure call as a request to server

– Server stub: Dispatches RPC to its implementation
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Solution: Interface Description Language



1. Client calls stub function (pushes params onto stack)
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)



1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message
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A day in the life of an RPC

Client machine

Client process
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proc: add | int: 3 | int: 5



2. Stub marshals parameters to a network message

3. OS sends a network message to the server
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3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub
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A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS
proc: add | int: 3 | int: 5



4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function
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A day in the life of an RPC
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5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value
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6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg
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7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network
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8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub
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9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client
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• Dispatcher
– Receives a client’s RPC request

• Identifies appropriate server-side method to invoke

• Skeleton
– Unmarshals parameters to server-native types
– Calls the local server procedure
– Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
– Dispatcher and skeleton may be integrated

• Depends on implementation 
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The server stub is really two parts



1. Network Communication

2. Remote Procedure Call (RPC)
– Heterogeneity – use IDL w/ compiler
– Failure
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Today’s outline



1. Client may crash and reboot

2. Packets may be dropped
– Some individual packet loss in the Internet
– Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow
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What could possibly go wrong?

All these may look the same to the client…



• Layers are our friends!
• RPCs are everywhere
• Necessary issues surrounding 

machine heterogeneity
• Subtle issues around failures

– … Next time!!!
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Summary: RPCs and Net. Comm.
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