
Network Communication and
Remote Procedure Calls

CS 240: Computing Systems and Concurrency
Lecture 3

Marco Canini

2

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

• How can processes on different cooperating computers
communicate with each other over the network?

1. Network Communication

2. Remote Procedure Call (RPC)

3

Today’s outline

• Process on Host A wants to talk to process on Host B

– A and B must agree on the meaning of the bits being
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?

4

The problem of communication

The problem of communication

• Re-implement every application for every new underlying
transmission medium?

• Change every application on any change to an
underlying transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Solution: Layering

• Intermediate layers provide a set of abstractions for
applications and media

• New applications or media need only implement for
intermediate layer’s interface

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

• Transport: Provide end-to-end
communication between processes
on different hosts

• Network: Deliver packets to
destinations on other
(heterogeneous) networks

• Link: Enables end hosts to
exchange atomic messages with
each other

• Physical: Moves bits between two
hosts connected by a physical link

7

Layering in the Internet

Applications

Transport layer
Network layer

Link layer
Physical layer

Host

Logical communication between layers
• How to forge agreement on the meaning of the bits

exchanged between two hosts?

• Protocol: Rules that governs the format, contents, and
meaning of messages
– Each layer on a host interacts with its peer host’s

corresponding layer via the protocol interface

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter
8

Physical communication
• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application
Transport
Network

Link
Physical

Network
Link

Physical

Application
Transport
Network

Link
Physical

Host A Host BRouter
9

Communication between peers
• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate with peer
– Higher layers’ headers, data encapsulated inside

message
• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body

10

• Socket: The interface the OS provides to the network
– Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), recv()
– e.g.: put(key,value) à message

11

Network socket-based communication

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Socket

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,

sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

12

• Principle of transparency: Hide that resource is
physically distributed across multiple computers
– Access resource same way as locally
– Users can’t tell where resource is physically located

13

Network sockets: not great

Network sockets provide apps with point-to-point
communication between processes

Sockets don’t provide transparency
Also, lots to deal with, have to worry a lot about the network
• How to separate different requests on the same connection?
• How to write bytes to the network / read bytes from the network?

• What if Host A’s process is in Go and Host B’s process is in C++?
• What to do with those bytes?

14

Solution: Another layer!

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Socket

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

RPC layer RPC layer

1. Network Communication

2. Remote Procedure Call (RPC)

15

Today’s outline

• The typical programmer is trained to write single-threaded
code that runs in one place

• Goal: Easy-to-program network communication that makes
client-server communication transparent

– Retains the “feel” of writing centralized code
• Programmer needn’t think about the network

16

Why RPC?

• Course programming assignments use RPC

• Google gRPC
• Facebook/Apache Thrift
• Twitter Finagle
• …

17

Everyone uses RPCs

What’s the goal of RPC?
• Within a single program, running in a single process, recall

the well-known notion of a procedure call:
– Caller pushes arguments onto stack,

• jumps to address of callee function

– Callee reads arguments from stack,
• executes, puts return value in register,
• returns to next instruction in caller

18

RPC’s Goal: To make communication appear like a
local procedure call: transparency for procedure calls

• Seems obvious in retrospect, but RPC was only invented in
the ’80s

• See Birrell & Nelson, “Implementing Remote Procedure
Call” ... or

• Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University:
Remote Procedure Call., 1981

19

Historical note

1. Heterogeneity
– Client needs to rendezvous with the server
– Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
– What if messages get dropped?
– What if client, server, or network fails?

3. Performance
– Procedure call takes ≈ 10 cycles ≈ 3 ns
– RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower

20

RPC issues

• Not an issue for local procedure call

• For a remote procedure call, a remote machine may:
– Run process written in a different language
– Represent data types using different sizes
– Use a different byte ordering (endianness)
– Represent floating point numbers differently
– Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary

21

Problem: Differences in data
representation

• Mechanism to pass procedure parameters and return values in a
machine-independent way

• Programmer may write an interface description in the IDL
– Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:
– Code to marshal (convert) native data types into machine-

independent byte streams
• And vice-versa, called unmarshaling

– Client stub: Forwards local procedure call as a request to server

– Server stub: Dispatches RPC to its implementation
22

Solution: Interface Description Language

1. Client calls stub function (pushes params onto stack)

23

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message

24

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5

2. Stub marshals parameters to a network message

3. OS sends a network message to the server

25

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server OS
proc: add | int: 3 | int: 5

3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

26

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS
proc: add | int: 3 | int: 5

4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

27

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5

5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

28

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg

29

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network

30

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

31

A day in the life of an RPC

Client machine

Client process
k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8

9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

32

A day in the life of an RPC

Client machine

Client process
k ß 8

Client stub (RPC library)

Client OS

Server machine

Server process
8 ß add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8

• Dispatcher
– Receives a client’s RPC request

• Identifies appropriate server-side method to invoke

• Skeleton
– Unmarshals parameters to server-native types
– Calls the local server procedure
– Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
– Dispatcher and skeleton may be integrated

• Depends on implementation

33

The server stub is really two parts

1. Network Communication

2. Remote Procedure Call (RPC)
– Heterogeneity – use IDL w/ compiler
– Failure

34

Today’s outline

1. Client may crash and reboot

2. Packets may be dropped
– Some individual packet loss in the Internet
– Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow

35

What could possibly go wrong?

All these may look the same to the client…

• Layers are our friends!
• RPCs are everywhere
• Necessary issues surrounding

machine heterogeneity
• Subtle issues around failures

– … Next time!!!

36

Summary: RPCs and Net. Comm.

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host A

Socket

Process

Application layer

Transport layer
Network layer

Link layer
Physical layer

Host B

Socket

Process

RPC layer RPC layer

