RPCs and Failure

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 4

Marco Canini

Last Time: RPCs and Net. Comm.

« Layers are our friends!
 RPCs are everywhere

* Necessary issues surrounding
machine heterogeneity

 Subtle issues around failures
— ... Next time!ll

Process

RPC layer
Socket

Transport layer

Host A

Process

RPC layer
Socket

o Transport layer

2. Packets may be dropped
— Some individual packet loss in the Internet
— Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow

All these may look the same to the client...

Failures, from client’s perspective

Client % L‘D Server

réqQuest

At-Least-Once scheme

« Simplest scheme for handling failures

1. Client stub waits for a response, for a while

— Response takes the form of an acknowledgement
message from the server stub

2. If no response arrives after a fixed fimeout time period,
then client stub re-sends the request

* Repeat the above a few times
— Still no response? Return an error to the application

At-Least-Once and side effects
e Client sends a “debit $10 from bank account” RPC

Client %

Deb/’t(aCCl‘, $70)

L‘g Server

ACK!

> (debit $10)

X<

Deb/t(aCCl‘, $70)

ACK!

1 (debit $10)

Time |

At-Least-Once and writes

* put(x, value), then get(x): expect answer to be value

put (x,10)
put (x,20)
Client

Idempotent operation is one that has no :
additional effect if it is called more than once !
with the same input parameters |

At-Least-Once and writes

* put(x, value), then get(x): expect answer to be value

put (x,10)
put (x,20)

\ﬂ Server

Pul(x, 10
_)
Put(x, 10
=
Pul(x, 20
=

Time |

At-Least-Once and writes

» Consider a client storing key-value pairs in a database
— put(x, value), then get(x): expect answer to be value

put (x,10)
put (x,20) ——
Client W Server

Put(x, 10)

o‘{’\{ Put(x, 10
<%
Pul(x, 20
x<10

Time |

So is At-Least-Once ever okay?

Yes: If they are read-only operations with no side effects
— e.g., read a key’s value in a database

Yes: If the application has its own functionality to cope with
duplication and reordering

— You will need this in Assignments 3 onwards

At-Most-Once scheme

 Ildea: server RPC stub detects duplicate requests
— Returns previous reply instead of re-running handler

* How to detect a duplicate request?
— Test: Server sees same function, same arguments twice

* No! Sometimes applications legitimately submit the
same function with same augments, twice in a row

At-Most-Once scheme

How to detect a duplicate request?

— Client stub includes unique (xid) with
each one of its RPC requests

— Client stub uses same xid for retransmitted requests

At-Most-Once Server
if seen[xid]:
retval = old[xid]
else:
retval = handler()
old[xid] = retval
seen[xid] = true
return retval l77

At Most Once: Providing unique XIDs

* How to ensure that the xid is unique?

1. Combine a unique client ID (e.g., IP address) with the
current time of day

2. Combine unique client ID with a sequence number

— Suppose the client crashes and restarts.
Can it reuse the same client ID?

3. Big random number (probabilistic, not certain guarantee)

At-Most-Once: Discarding server state

* Problem: seen and old arrays will grow without bound

* Observation: By construction, when the client gets a
response to a particular xid, it will never re-send it

 Client could tell server “I'm done with xid x — delete it”
— Have to tell the server about each and every retired xid
 Could piggyback on subsequent requests

Significant overhead if many RPCs
are in flight, in parallel

14

At-Most-Once: Discarding server state

Problem: seen and old arrays will grow without bound

Suppose xid = (unique client id, sequence no.)
— e.qg. (42, 1000), (42, 1001), (42, 1002)

Client includes “seen all replies < X" with every RPC
— Much like TCP sequence numbers, acks

How does the client know that the server received the
information about retired RPCs?

— ldea: Each one of these _is cumulative: later seen
messages subsume earlier ones

At-Most-Once: Concurrent requests

* Problem: How to handle a duplicate request while the
original is still executing?

— Server doesn’t know reply yet. Also, we don’t want to
run the procedure twice

 ldea: Add a pending flag per executing RPC
— Server waits for the procedure to finish, or ignores

At Most Once: Server crash and restart

* Problem: Server may crash and restart

* Does server need to write its state (seen, old) to disk?

* Yes! On server crash and restart:
— If old[], seen[] arrays are only in memory:
» Server will forget, accept duplicate requests

17

Exactly-once?

Need retransmission of at least once scheme

Plus the duplicate filtering of at most once scheme

— To survive client crashes, client needs to record pending
RPCs on disk

* So it can replay them with the same unique identifier

Plus story for making server reliable
— Even if server fails, it needs to continue with full state

— To survive server crashes, server should log to disk
results of completed RPCs (to suppress duplicates)

Exactly-once for external actions?

* Imagine that the remote operation triggers an external
physical thing
— e.g., dispense $100 from an ATM

* The ATM could crash immediately before or after
dispensing and lose its state

— Don’t know which one happened
» Can, however, make this window very small

* So can’t achieve exactly-once in general, in the
presence of external actions

Summary: RPCs and Net. Comm.

« Layers are our friends!
 RPCs are everywhere

* Necessary issues surrounding
machine heterogeneity

 Subtle issues around failures

Process " - Process

. . RPC layer RPC layer
— At-least-once w/ retransmission Socket Socket

Transport layer o Transport layer

— At-most-once w/ duplicate filtering
» Discard server state w/ cumulative acks

— Exactly-once with:
Host A Host B

« at-least-once + at-most-once \- S
+ fault tolerance + no external actions

20

Go’s net/rpc is at-most-once

Opens a TCP connection and writes the request

— TCP may retransmit but server’s TCP receiver will filter

out

duplicates internally, with sequence numbers

— No retry in Go RPC code (i.e., will not create a second
TCP connection)

— Per
— Per
— Per

However: Go RPC returns an error if it doesn’t get a reply

naps after a TCP timeout
naps server didn’t see request

naps server processed request but server/net failed

before reply came back

RPC and Assignments 1 and 2

* Go’s RPC isn’t enough for Assignments 1 and 2
— It only applies to a single RPC call

— If worker doesn'’t respond, master re-sends to another
* Go RPC can’t detect this kind of duplicate

— Breaks at-most-once semantics

* No problem in Assignments 1 and 2 (handles at
application level)

* In Assignment 3 you will explicitly detect duplicates
using something like what we've talked about

22

