
Concurrency
CS 240

What is Concurrency?

It’s like parallel that’s not in parallel

What is Parallelism?

f(X)

f(Y) f(Y) = B

f(X) = A

f(X)
f(Y) f(Y) = B

f(X) = A
Sequential

Parallel

Time

What is Concurrency?

f(X)
f(Y) f(Y) = B

f(X) = A
Concurrent

Time

f(X)
f(Y) f(Y) = B

f(X) = A
Sequential

Concurrency Could be Parallel but not Always

f(X)
f(Y) f(Y) = B

f(X) = A
Concurrent but not Parallel

Concurrent and Parallel

Time

f(X)
f(Y) f(Y) = B

f(X) = A

f(Z)
f(W) f(W) = B

f(Z) = A

Parallel is Always Concurrent

f(X)

f(Y) f(Y) = B

f(X) = A

TimeParallel but not Concurrent?

Nope … still concurrent

Parallel → Concurrent
Concurrent ↛ Parallel

Why Care about Concurrency

If something concurrent but not parallel takes as much
time as something sequential, why make it concurrent?

f(X)
f(Y) f(Y) = B

f(X) = A
Concurrent

Time
f(X)
f(Y) f(Y) = B

f(X) = ASequential

Concurrency is a Design Pattern

”Concurrency is not Parallelism” by Rob Pike : https://talks.golang.org/2012/waza.slide#1

“Concurrency is about dealing with lots of things at once.
Parallelism is about doing lots of things at once.”

- Rob Pike

Distributed Systems are Unpredictable

Servers need to react to:
• Others servers
• Crashes
• Users
• …

Making Bank Deposits Concurrent (1/5)

Server Database

0

Add($10)

Add($10)

Time

Making Bank Deposits Concurrent (2/5)

Server

Read
x = 0

Database

0

Add($10)

Add($10)

$0
read

Time

Making Bank Deposits Concurrent (3/5)

Server

Read
x = 0

x += 10
Write x

Database

10

Add($10)

Add($10)

$0
read

$10

Time

Making Bank Deposits Concurrent (4/5)

Server

Read
x = 0

x += 10
Write x

Read
x = 10

Database

10

Add($10)

Add($10)

$0
read

$10

$10
read

Time

Making Bank Deposits Concurrent (5/5)

Server

Read
x = 0

x += 10
Write x

Read
x = 10

x += 10
Write x

Database

20

Add($10)

Add($10)

$0
read

$10

$10
read

$20Time

Concurrent Bank Deposits! Yay? (1/5)

Server Database

0

Add($10)

Add($10)

Time

Concurrent Bank Deposits! Yay? (2/5)

Server

Read
x = 0

Database

0

Add($10)

Add($10)

$0
read

Time

Concurrent Bank Deposits! Yay? (3/5)

Server

Read
x = 0
Read
x = 0

Database

0

Add($10)

Add($10)

$0
read

$0
read

Time

Concurrent Bank Deposits! Yay? (4/5)

Server

Read
x = 0
Read
x = 0

x += 10
Write x

Database

10

Add($10)

Add($10)

$0
read

$10

$0
read

Time

Concurrent Bank Deposits! Yay? (5/5)

Server

Read
x = 0
Read
x = 0

x += 10
Write x
x += 10
Write x

Database

10

Add($10)

Add($10)

$0
read

$10

$0
read

$10
Time

Concurrency Needs to be Synchronized

Locks – limit access using shared memory
Channels – pass information using a queue

Visualize Everything We’ve Learned

And also see many different methods of
achieving synchronization:

http://divan.github.io/posts/go_concurrency_visualize/

http://divan.github.io/posts/go_concurrency_visualize/

RPCs in Go
Networked battleship game

CS 240

What is a RPC (Remote Procedure Call)?

RPC means a client will execute some function on a remote server

• Client make a local requests with some parameters
• RPC library encodes the request and parameters, send them to server
• Server decodes the request and parameters
• Procedure is executed on the server
• Server sends back the reply to the client

RPC exercise

We will use the net/rpc package to implement a client and server
https://golang.org/pkg/net/rpc/

Server side:
• Create the server instance
• Define the procedure
• Listen for incoming requests

Client side:
• Create the client instance and connect to the server
• Make the RPC

https://golang.org/pkg/net/rpc/

Battleship

• A grid map on which you place your ships

“Deploy attack on (N, 19)!”

Goal: Find and sink all enemy ships

Today’s task: Implement a Battleship client

• Project files available on the Campuswire
• We will run a central server

• Implement the client (client.go) and test it against other students

Task 1 and 2

• Establish connection to the server
• See https://golang.org/pkg/net/rpc/ example “rpc.DialHTTP”
• Must return a rpc.Client object

• Make the JoinGame request
• You want to call the remote BattleshipsService.JoinGame function
• Parameters PublicPlayer and JoinGameRequest are defined in common.go
• See https://golang.org/pkg/net/rpc/ example “client.Call”

https://golang.org/pkg/net/rpc/
https://golang.org/pkg/net/rpc/

Task 3

• Implement the attack server
• Tasks 1 and 2 were making requests as a client, now must accept requests
• See https://golang.org/pkg/net/rpc/

• Examples “rpc.Register” and “rpc.HandleHTTP”
• Create a listener to serve requests on a separate goroutine

https://golang.org/pkg/net/rpc/

Task 4

• Implement the turn logic
• Hint: The turn logic can be achieved with Channels, Locks or WaitGroups
• Hint 2: When the other player attacks, you get a “token” to make one attack

After implementation is complete, you can run against other players

