Introduction + Course Overview,
MapReduce case study

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 1

Marco Canini

Distributed Systems, What?

1)Multiple computers
2)Connected by a network
3)Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?

 Failure

 Limited computation/storage/...

* Physical location

Backrub (Google) 1997

~ Google 2012

N 7l
ta
- . s : ," -
-— —= ces Teeas " s : ' : - :
T R AN e .

'Iv, TS

“The Cloud” is not amorphous

o
O
2,
O
S

2

Facebook

-

T i, -" —_—

6L

S >]

_‘—&-—r]

S i ——

|BEE EGsn -

-

\

;

e 17 -

r/(

INM‘; I;

10

100 000s of physmal servers ‘Q\:j

m
Q
D
. O
O
O
x
1
q
;f\\'\ﬂ(

e‘ i:
N phyS|caI infra, $1

i e sae s f-rQ?? Y

-
= ¥/l
b -
,._—————' y 4
p— =
— ’

12

_\.'

O’éﬂ‘r’u“w\;\ /

'ALDREES »

The goal of “distributed systems”

« Service with higher-level abstractions/interface

— e.g., file system, database, key-value store,
programming model, RESTful web service, ...

* Hide complexity
— Scalable (scale-out)

— Reliable (fault-tolerant)
— Well-defined semantics (consistent)

* Do “heavy lifting” so app developer doesn’t need to

What is a distributed system?

“A collection of independent computers that
appears to its users as a single coherent system”

» Features:
— No shared memory
— Message-based communication
— Each runs its own local OS
— Heterogenelty

* |deal: to present a single-system image:

— The distributed system “looks like” a single
computer rather than a collection of separate
computers

Distributed system characteristics

* To present a single-system image:
— Hide internal organization, communication details
— Provide uniform interface

« Easily expandable
— Adding new computers is hidden from users

» Continuous availability

— Failures in one component can be covered by
other components

Example

« Assume a distributed storage
— Clients can read and write files

Server1

O

Client

17

System model

e N P4,-..,PN IN the system (no process
failures)

— Every process executes an algorithm

* An automation wijth set of states, set of inputs, set of outputs
and a state transition funcﬁon Sxl 5 S xpa P

* There are two first-in, first-out, unidirectional
between every process pair p; and p;

— Call them channel(p;, p;) and channel(p;, p;)

— Alldmessages sent on channels arrive intact and in
order

— Channel cannot duplicate, create or modify messages

System model

* Message passing

* No failures (for now)

* Two possible timing assumptions
1. Synchronous System

2. Asynchronous System
* No upper bound on message delivery
* No bound on relative process speeds

19

Example execution

« Assume a distributed storage
— Clients can read and write files

Server1

Client

20

Execution of the system

Processes execute sequences of events
— events can be of 3 types: local, send or receive

An execution (or run) is a sequence of events that
respect the system-wide distributed algorithm

— each process is consistent with the local sequences

— amessage is sent by a process only if its (local)
algorithm prescribes it to do it given the preceding
sequence of its inputs

— every received message was previously sent, and no
message Is received twice

Space-Time diagrams

A graphic representation of distributed execution

Seyveri

C

J

S1

S2

A B
—O-
\ EFG
CD H I

»
»
>

Time —

22

Common failure assumption

« Generally, a failure occurs when a process deviates from
the algorithm assigned to it

« Aprocess is correct if it never fails

 crash failure: the faulty process prematurely stops taking
steps of its algorithm

« Atypical assumption is that, in every possible execution
out of N processes, at most f < N can be faulty

« We call such a system f-resilient

Scalable systems in this class

» Scale computation across many machines
— MapReduce

» Scale storage across many machines
— Chord, Dynamo, COPS, Spanner

Fault tolerant systems in this class

* Retry on another machine
— MapReduce

* Maintain replicas on multiple machines
— Primary-backup replication
— Paxos
— RAFT
— Bayou
— Dynamo, COPS, Spanner

Range of abstractions and guarantees

« Eventual Consistency
— Dynamo

» Causal Consistency
— Bayou, COPS

Linearizability
— Paxos, RAFT, Primary-backup replication

Strict Serializability
— 2PL, Spanner

Summary

 Distributed Systems
— Multiple machines doing something together
— Pretty much everywhere and everything computing now

¢ "Systems”
— Hide complexity and do the heavy lifting (i.e., interesting!)
— Scalability, fault tolerance, guarantees

Course Overview

Philosophy and Recurring Themes

Keep it real! This is the real world:

— Things break. Components fail.
— Latency matters. Can't beat speed of light.
— Certain things are impossible. Need work arounds.

* How do we build systems that work at very large
scale and tolerate failures?

« Given systems span many nodes, how do we
enable different nodes to agree on “things” (e.g.,
time, order of operations, state of the system)?

Learning Objectives

» Reasoning about concurrency
* Reasoning about failure

* Reasoning about performance

 Building systems that correctly handle concurrency
and failure

* Knowing specific system designs and design
components

Course Goals

Gain an understanding of the principles and

techniques behind the design of modern, reliable,
and high-performance systems

In

particular learn about distributed systems

_earn general systems principles (modularity,
ayering, naming, security, ...)

Practice implementing real, larger systems that
must run in nasty environment

One consequence: Must pass exams and

projects independently as well as in total

Note, if you fail either you will not pass the class

Keep the Big Picture in Mind

« Course: many topics, grouped around key areas
« Might feel like lectures are disconnected...

+ ... and first need to cover some background

* Big Picture:

— real systems have complex requirements that span
the concepts of multiple topics

— E.g., we want fault tolerance, consistency and
scalability

32

Course Organization

http://sands.kaust.edu.sa/classes/CS240/F22/

Learning the material: People

* Lecture
— Professor Marco Canini
— Slides available on course website
— Office hours: by appointment

e TAS
— Jihao Xin: W 16:30-18:00, 1-4409-WS26

* Main Q&A forum: www.campuswire.com
— No anonymous (to instructors) posts or questions
— Can send private messages to instructors

34

http://www.campuswire.com/

Learning the Material: Books

 Lecture notes!
* No required textbooks

» References on website available in the Library:

— Programming reference:

« The Go Programming Language. Alan Donovan and
Brian Kernighan

— Topic reference:

* Distributed Systems: Principles and Paradigms. Andrew
S. Tanenbaum and Maaten Van Steen

» Guide to Reliable Distributed Systems. Kenneth Birman

Grading

* Four programming assignments (50% total)
—10% each for 1 & 2
— 15% each for 3 & 4

« Two exams (50% total)
— Midterm exam on October 24 (15%)

— Final exam during exam period (35%)

Exams

Test learning objectives mostly using designs covered in lectures
And test knowledge of specific design patterns and designs
Open book (but if you don’t study it will create time pressure)

Recipe for success:

— Attend lecture and actively think through problems

— Ask questions during lecture and afterwards in my office hours
— Actively work through problems

— Complete programming assignments

— Study lecture materials for specific design patterns and designs
— Run the system designs in your mind and see what happens

About Assignments

« Systems programming somewhat different from what
you might have done before
— Low-level (C / Go)

— Often designed to run indefinitely (error handling must
be rock solid)

— Must be secure - horrible environment
— Concurrency
— Interfaces specified by documented protocols

 TAS’ Office Hours

« Read: Dave Andersen’s “Software Engineering for
System Hackers”
— Practical techniques designed to save you time & pain

https://www.cs.cmu.edu/~dga/systems-se.pdf

Why use Go?

« Easy concurrency w/ goroutines (lightweight
threads)

« Garbage collection and memory safety
* Libraries provide easy RPC

« Channels for communication between goroutines

Where is Go used?

* Google, of course!

* Docker (container management)

* CloudFlare (Content delivery Network)
 Digital Ocean (Virtual Machine hosting)
* Dropbox (Cloud storage/file sharing)

... and many more!

About Assignments

Reinforce / demonstrate all learning objectives!

1. Sequential Map/Reduce (due September 14)
2: Distributed Map/Reduce (due September 21)
3-1: Raft Leader Election (due November 16)
3-2: Raft Log Consensus (due November 30)

4: Key-Value Storage Service (due December 8)

Programming Assignments

» Recipe for disaster
— Start day assignment is due
— Write code first, think later
— Test doesn’t pass => randomly flip some bits
— Assume you know what program is doing

Programming Assignments

» Recipe for success
— Start early (weeks early)
— Think through a complete design

— Progressively build out your design (using tests to
help)

— Checkpoint progress in git (and to gitlab) frequently
— Debug, debug, debug
« Verify program state is what you expect (print it out!)

» Write your own smaller test cases
« Reconsider your complete design

— Attend office hours

Policies: Collaboration

» Working together important
— Discuss course material
— Work on problem debugging

» Parts must be your own work
— Midterm, final, programming assignments

* \What we hate to say: we run cheat checkers...
they work surprisingly well

* Please *do not™ put code on *public* repositories

44

Policies: Write Your Own Code

Programming is an individual creative process. At first,
discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, README
description, or any part of submitted assignment. This
Includes character-by-character transliteration but also
derivative works. Cannot use another’s code, etc. even
while “citing” them.

Writing code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on Github, during/after course!

Policies: Late Work

« /2 late hours to use throughout the semester
— (but not beyond December 8)

 After that, each additional day late will incur a

10% lateness penalty
— (1 min late counts as 1 day late)

« Submissions late by 3 days or more will no longer
be accepted
— (Fri and Sat count as days)

 |n case of illness or extraordinary circumstance
(e.g., emergency), talk to us early!

Summary

» Attend lecture, attend labs, think actively!

« Start programming assignments early, use the right strategy!

Case Study: MapReduce

(Data-parallel programming at scale)

Application: Word Count

SELECT count(word) FROM data
GROUP BY word

cat data.txt

tr -s '[[:punct:][:space:]]' \n'

sort | uniq-c

Using partial aggregation

1. Compute word counts from individual files
2. Then merge intermediate output

3. Compute word count on merged outputs

Using partial aggregation

1. In parallel, send to worker:
— Compute word counts from individual files

— Collect result, wait until all finished
2. Then merge intermediate output

3. Compute word count on merged intermediates

MapReduce: Programming Interface

map (key, wvalue) -> list(<k’, v’'>)

— Apply function to (key, value) pair and produces
set of intermediate pairs

reduce (key, list<value>) -> <k’', v’'>
— Applies aggregation function to values

— Outputs result

MapReduce: Programming Interface

map (key, wvalue) :
for each word w 1n wvalue:

EmitIntermediate (w, "1");

reduce (key, list (values):
int result = 0;
for each v in wvalues:
result += ParselInt (v);

Fmit (key, AsString(result));

MapReduce: Optimizations

combine (list<key, value>) -> list<k,v>
— Perform partial aggregation on mapper node:
<the, 1>, <the, 1>, <the, 1> - <the, 3>

— combine() should be commutative and associative

partition(key, 1nt) -> int
— Need to aggregate intermediate vals with same key
— Given n partitions, map key to partition 0 <i<n
— Typically via hash(key) mod n

Putting it together...

How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

(how, 1), (much, 1),
(wood, 1), (would, 1),
(a, 1), (woodchuck, 1),

(chuck, 1), (if, 1), (a, 1),
(woodchuck, 1), (could, 1),
(chuck, 1), (wood, 1)

map

(a, 1), (woodchuck, 1),
(would, 1), (chuck, 1),
(a, 1), (lot, 1), (of, 1),

(wood, 1), (if, 1), (a, 1),
(woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)

how

much

wood

would
a
woodchuck
chuck
if

could

combine

a
woodchuck
would
chuck
lot

partition

a

woodchuck

reduce

55

Synchronization Barrier

How much wood
would a woodchuck
chuck if a woodchuck
could chuck wood?

A woodchuck would
chuck a lot of wood
if a woodchuck
could chuck wood.

how
(how, 1), (much, 1), L)
(wood, 1), (would, 1), wood
(a, 1), (woodchuck, 1),

would

a

(chuck, 1), (if, 1), (a, 1),
(woodchuck, 1), (could, 1),
(chuck, 1), (wood, 1)

woodchuck
chuck
if

could

(a, 1), (woodchuck, 1),
(would, 1), (chuck, 1),
(a, 1), (lot, 1), (of, 1),

(wood, 1), (if, 1), (a, 1),
(woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)

- NN N =N - -

a

woodchuck

56

Fault Tolerance in MapReduce

« Map worker writes intermediate output to

local disk, separated by partitioning. Once
I I completed, tells master node.

* Reduce worker told of location of map task
outputs, pulls their partition’s data from each
mapper, execute function across data

I Note:

— “All-to-all” shuffle b/w mappers and reducers

— Written to disk (“materialized”) b/w each stage

Fault Tolerance in MapReduce

« Master node monitors state of system
— If master failures, job aborts and client notified

« Map worker failure
— Both in-progress/completed tasks marked as idle

— Reduce workers notified when map task is re-executed
on another map worker

« Reducer worker failure
— In-progress tasks are reset to idle (and re-executed)
— Completed tasks had been written to global file system

Straggler Mitigation in MapReduce

)
§ | Map.Read ——
0 o B | Map.Move
X< Map - ~~=-
wn >
© = VA " Reduce
- ©
o E
£ >
c O
=
28
S 1yl R R |
Z
s 0.1 0.2 0.3 0.4 0.5

Time (Normalized by Job Lifetime)

 Tail latency means some workers finish late

* For slow map tasks, execute in parallel on second map

worker as “backup”, race to complete task
59

You’ll build (simplified) MapReduce!

* Assignment 1: Sequential MapReduce
— Learn to program in Go!
— Due September 14

* Assignment 2: Distributed MapReduce
— Learn Go’s concurrency, network 1/0O, and RPCs
— Due September 21

Conclusion

» Attend lecture, attend labs, think actively!

« Start programming assignments early, use the right strategy!

* Super cool distributed systems stuff starts Monday!

61

