
Introduction + Course Overview,
MapReduce case study

CS 240: Computing Systems and Concurrency
Lecture 1

Marco Canini

2

Distributed Systems, What?

1)Multiple computers
2)Connected by a network
3)Doing something together

• Or, why not 1 computer to rule them all?

• Failure

• Limited computation/storage/…

• Physical location

3

Distributed Systems, Why?

4
Backrub (Google) 1997

5

Google 2012

“The Cloud” is not amorphous

6

7Microsoft

8

Google

9Facebook

10

11

100,000s of physical servers
10s MW energy consumption

Facebook Prineville:
$250M physical infra, $1B IT infra

12

13

GDH DC @ KAUST
~10,000 servers
14.4 MW IT load

8,000 m2 of DC space

• Service with higher-level abstractions/interface
– e.g., file system, database, key-value store,

programming model, RESTful web service, …

• Hide complexity
– Scalable (scale-out)
– Reliable (fault-tolerant)
– Well-defined semantics (consistent)

• Do “heavy lifting” so app developer doesn’t need to

14

The goal of “distributed systems”

• “A collection of independent computers that
appears to its users as a single coherent system”

• Features:
– No shared memory
– Message-based communication
– Each runs its own local OS
– Heterogeneity

• Ideal: to present a single-system image:
– The distributed system “looks like” a single

computer rather than a collection of separate
computers

15

What is a distributed system?

• To present a single-system image:
– Hide internal organization, communication details
– Provide uniform interface

• Easily expandable
– Adding new computers is hidden from users

• Continuous availability
– Failures in one component can be covered by

other components

16

Distributed system characteristics

• Assume a distributed storage
– Clients can read and write files

17

Client

Server1

S2
S3

Example

• N processes p1,…,pN in the system (no process
failures)
– Every process executes an algorithm

• An automation with set of states, set of inputs, set of outputs
and a state transition function S x I à S x O

• There are two first-in, first-out, unidirectional
channels between every process pair pi and pj
– Call them channel(pi, pj) and channel(pj, pi)

– All messages sent on channels arrive intact and in
order

– Channel cannot duplicate, create or modify messages
18

System model

• Message passing

• No failures (for now)

• Two possible timing assumptions
1. Synchronous System
2. Asynchronous System

• No upper bound on message delivery
• No bound on relative process speeds

19

System model

• Assume a distributed storage
– Clients can read and write files

20

Client

Server1

S2
S3

Example execution

• Processes execute sequences of events
– events can be of 3 types: local, send or receive

• An execution (or run) is a sequence of events that
respect the system-wide distributed algorithm
– each process is consistent with the local sequences
– a message is sent by a process only if its (local)

algorithm prescribes it to do it given the preceding
sequence of its inputs

– every received message was previously sent, and no
message is received twice

21

Execution of the system

• A graphic representation of distributed execution

22

Space-Time diagrams

Server1

S2

C

S1

S2

A B

FE

C D
Time →

C

H I

G

J

• Generally, a failure occurs when a process deviates from
the algorithm assigned to it

• A process is correct if it never fails

• crash failure: the faulty process prematurely stops taking
steps of its algorithm

• A typical assumption is that, in every possible execution
out of N processes, at most f < N can be faulty

• We call such a system f-resilient

23

Common failure assumption

• Scale computation across many machines
– MapReduce

• Scale storage across many machines
– Chord, Dynamo, COPS, Spanner

24

Scalable systems in this class

• Retry on another machine
– MapReduce

• Maintain replicas on multiple machines
– Primary-backup replication
– Paxos
– RAFT
– Bayou
– Dynamo, COPS, Spanner

25

Fault tolerant systems in this class

• Eventual Consistency
– Dynamo

• Causal Consistency
– Bayou, COPS

• Linearizability
– Paxos, RAFT, Primary-backup replication

• Strict Serializability
– 2PL, Spanner

26

Range of abstractions and guarantees

• Distributed Systems
– Multiple machines doing something together
– Pretty much everywhere and everything computing now

• “Systems”
– Hide complexity and do the heavy lifting (i.e., interesting!)
– Scalability, fault tolerance, guarantees

27

Summary

Course Overview

28

• Keep it real! This is the real world:
– Things break. Components fail.
– Latency matters. Can’t beat speed of light.
– Certain things are impossible. Need work arounds.

• How do we build systems that work at very large
scale and tolerate failures?

• Given systems span many nodes, how do we
enable different nodes to agree on “things” (e.g.,
time, order of operations, state of the system)?

29

Philosophy and Recurring Themes

• Reasoning about concurrency

• Reasoning about failure
• Reasoning about performance

• Building systems that correctly handle concurrency
and failure

• Knowing specific system designs and design
components

30

Learning Objectives

• Gain an understanding of the principles and
techniques behind the design of modern, reliable,
and high-performance systems

• In particular learn about distributed systems
– Learn general systems principles (modularity,

layering, naming, security, ...)
– Practice implementing real, larger systems that

must run in nasty environment
• One consequence: Must pass exams and

projects independently as well as in total
– Note, if you fail either you will not pass the class

31

Course Goals

• Course: many topics, grouped around key areas
• Might feel like lectures are disconnected…
• ... and first need to cover some background

• Big Picture:
– real systems have complex requirements that span

the concepts of multiple topics
– E.g., we want fault tolerance, consistency and

scalability

32

Keep the Big Picture in Mind

Course Organization

33

http://sands.kaust.edu.sa/classes/CS240/F22/

http://sands.kaust.edu.sa/classes/CS240/F22/

• Lecture
– Professor Marco Canini
– Slides available on course website
– Office hours: by appointment

• TAs
– Jihao Xin: W 16:30-18:00, 1-4409-WS26

• Main Q&A forum: www.campuswire.com
– No anonymous (to instructors) posts or questions
– Can send private messages to instructors

34

Learning the material: People

http://www.campuswire.com/

Learning the Material: Books

• Lecture notes!

• No required textbooks
• References on website available in the Library:

– Programming reference:
• The Go Programming Language. Alan Donovan and

Brian Kernighan
– Topic reference:

• Distributed Systems: Principles and Paradigms. Andrew
S. Tanenbaum and Maaten Van Steen

• Guide to Reliable Distributed Systems. Kenneth Birman
35

Grading

• Four programming assignments (50% total)
– 10% each for 1 & 2
– 15% each for 3 & 4

• Two exams (50% total)
– Midterm exam on October 24 (15%)
– Final exam during exam period (35%)

36

• Test learning objectives mostly using designs covered in lectures

• And test knowledge of specific design patterns and designs

• Open book (but if you don’t study it will create time pressure)

• Recipe for success:
– Attend lecture and actively think through problems
– Ask questions during lecture and afterwards in my office hours
– Actively work through problems
– Complete programming assignments
– Study lecture materials for specific design patterns and designs
– Run the system designs in your mind and see what happens

37

Exams

• Systems programming somewhat different from what
you might have done before
– Low-level (C / Go)
– Often designed to run indefinitely (error handling must

be rock solid)
– Must be secure - horrible environment
– Concurrency
– Interfaces specified by documented protocols

• TAs’ Office Hours
• Read: Dave Andersen’s “Software Engineering for

System Hackers”
– Practical techniques designed to save you time & pain

38

About Assignments

https://www.cs.cmu.edu/~dga/systems-se.pdf

• Easy concurrency w/ goroutines (lightweight
threads)

• Garbage collection and memory safety
• Libraries provide easy RPC
• Channels for communication between goroutines

39

Why use Go?

• Google, of course!
• Docker (container management)
• CloudFlare (Content delivery Network)
• Digital Ocean (Virtual Machine hosting)
• Dropbox (Cloud storage/file sharing)
• … and many more!

40

Where is Go used?

• Reinforce / demonstrate all learning objectives!

• 1: Sequential Map/Reduce (due September 14)
• 2: Distributed Map/Reduce (due September 21)
• 3-1: Raft Leader Election (due November 16)
• 3-2: Raft Log Consensus (due November 30)
• 4: Key-Value Storage Service (due December 8)

41

About Assignments

• Recipe for disaster
– Start day assignment is due
– Write code first, think later
– Test doesn’t pass => randomly flip some bits
– Assume you know what program is doing

42

Programming Assignments

• Recipe for success
– Start early (weeks early)
– Think through a complete design
– Progressively build out your design (using tests to

help)
– Checkpoint progress in git (and to gitlab) frequently
– Debug, debug, debug

• Verify program state is what you expect (print it out!)
• Write your own smaller test cases
• Reconsider your complete design

– Attend office hours

43

Programming Assignments

• Working together important
– Discuss course material
– Work on problem debugging

• Parts must be your own work
– Midterm, final, programming assignments

• What we hate to say: we run cheat checkers…
they work surprisingly well

• Please *do not* put code on *public* repositories

44

Policies: Collaboration

Policies: Write Your Own Code
Programming is an individual creative process. At first,

discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, README
description, or any part of submitted assignment. This
includes character-by-character transliteration but also
derivative works. Cannot use another’s code, etc. even
while “citing” them.

Writing code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on Github, during/after course!
45

• 72 late hours to use throughout the semester
– (but not beyond December 8)

• After that, each additional day late will incur a
10% lateness penalty
– (1 min late counts as 1 day late)

• Submissions late by 3 days or more will no longer
be accepted
– (Fri and Sat count as days)

• In case of illness or extraordinary circumstance
(e.g., emergency), talk to us early!

46

Policies: Late Work

• Attend lecture, attend labs, think actively!

• Start programming assignments early, use the right strategy!

47

Summary

Case Study: MapReduce

(Data-parallel programming at scale)

48

Application: Word Count

SELECT count(word) FROM data

GROUP BY word

cat data.txt

| tr -s '[[:punct:][:space:]]' '\n'

| sort | uniq -c

49

50

Using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

51

Using partial aggregation

1. In parallel, send to worker:

– Compute word counts from individual files

– Collect result, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

map(key, value) -> list(<k’, v’>)

– Apply function to (key, value) pair and produces
set of intermediate pairs

reduce(key, list<value>) -> <k’, v’>

– Applies aggregation function to values

– Outputs result

52

MapReduce: Programming Interface

53

MapReduce: Programming Interface

map(key, value):

for each word w in value:

EmitIntermediate(w, "1");

reduce(key, list(values):

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(key, AsString(result));

combine(list<key, value>) -> list<k,v>

– Perform partial aggregation on mapper node:
<the, 1>, <the, 1>, <the, 1> à <the, 3>

– combine() should be commutative and associative

partition(key, int) -> int

– Need to aggregate intermediate vals with same key
– Given n partitions, map key to partition 0 ≤ i < n
– Typically via hash(key) mod n

54

MapReduce: Optimizations

55

Putting it together…

map combine partition reduce

56

Synchronization Barrier

57

Fault Tolerance in MapReduce

• Map worker writes intermediate output to
local disk, separated by partitioning. Once
completed, tells master node.

• Reduce worker told of location of map task
outputs, pulls their partition’s data from each
mapper, execute function across data

• Note:
– “All-to-all” shuffle b/w mappers and reducers

– Written to disk (“materialized”) b/w each stage

58

Fault Tolerance in MapReduce
• Master node monitors state of system

– If master failures, job aborts and client notified

• Map worker failure
– Both in-progress/completed tasks marked as idle
– Reduce workers notified when map task is re-executed

on another map worker

• Reducer worker failure
– In-progress tasks are reset to idle (and re-executed)
– Completed tasks had been written to global file system

59

Straggler Mitigation in MapReduce

• Tail latency means some workers finish late

• For slow map tasks, execute in parallel on second map
worker as “backup”, race to complete task

You’ll build (simplified) MapReduce!

• Assignment 1: Sequential MapReduce
– Learn to program in Go!
– Due September 14

• Assignment 2: Distributed MapReduce
– Learn Go’s concurrency, network I/O, and RPCs
– Due September 21

60

• Attend lecture, attend labs, think actively!

• Start programming assignments early, use the right strategy!

• Super cool distributed systems stuff starts Monday!

61

Conclusion

