
Scalable Causal Consistency

CS 240: Computing Systems and Concurrency
Lecture 16

Marco Canini

Consistency hierarchy

Linearizability (Strong/Strict Consistency)

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

2

Causal+ Consistency
• Partially orders all operations, does not totally order them

– Does not look like a single machine

• Guarantees
– For each process, ∃ an order of all writes + that process’s reads

– Order respects the happens-before (à) ordering of operations

– + replicas converge to the same state (conflict handling)
• Skip details, makes it stronger than eventual consistency

3

• Similar: respect partial order but there is no
convergent conflict handling requirement

• Concurrent operations are unordered by causal
consistency

• Thus, conflicts allow replicas to diverge forever

Causal Consistency

4

Causal Consistency: Relationships

• Can PC see x=4 and then x=1? Why?

PA:

PB:

PC:

w(x=1)

r(y)=2

r(x)=4 w(z=10)

w(x=3)

w(x=4)

w(y=2)

5

• Alice shares photo with Bob
1. Upload the photo
2. Add photo to album
3. Bob checks album

• Under causal consistency, if the album has a
reference to the photo, Bob must see the photo

• Under eventual consistency, album may have a
reference to a photo that has not been written yet
(the corresponding write has not propagated)

Causal+ Examples

6

• Carol and Dan concurrently update event time (9pm)
1. Carol sets 8pm

2. Dan sets 10pm

• Under causal consistency, two replicas may forever
return different times

• Under causal+ consistency, replicas must eventually
handle the conflict in a convergent manner

– If a last-writer-wins, either Carol’s or Dan’s write win

Causal+ Examples

7

Causal consistency within
replication systems

8

• Linearizability / sequential: Eager replication

• Trades off low-latency for consistency

Implications of laziness on consistency

add jmpmov shl
Log

Consensus
Module

State
Machine

add jmpmov shl
Log

Consensus
Module

State
Machine

add jmpmov shl
Log

Consensus
Module

State
Machine

shl

9

• Causal consistency: Lazy replication

• Trades off consistency for low-latency

• Maintain local ordering when replicating

• Operations may be lost if failure before replication

Implications of laziness on consistency

add jmpmov shl
Log

State
Machine

add jmpmov shl
Log

State
Machine

add jmpmov shl
Log

State
Machine

shl

10

Consistency vs Scalability

System Consistency Scalable?

Dynamo Eventual Yes

Bayou Causal No

Paxos/RAFT Linearizable No

Scalability: Adding more machines allows more data to
be stored and more operations to be handled!

It’s time to think
about scability!

11

Consistency vs Scalability

System Consistency Scalable?

Dynamo Eventual Yes

Bayou Causal No

COPS Causal Yes

Paxos/RAFT Linearizable No

Scalability: Adding more machines allows more data to
be stored and more operations to be handled!

12

COPS:
Scalable Causal Consistency
for Geo-Replicated Storage

13

Geo-Replicated Storage:
Serve User Requests Quickly

14

Inside the Datacenter

Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Remote DC

Replication

15

A-Z A-ZA-L

M-Z

A-L

M-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

Scalability through Sharding

16

Remove boss from
friends group

Post to friends:
“Time for a new job!”

Friend reads post

Causality By Example

Causality ()
Same process
Reads-From
(message receipt)

TransitivityNew Job!

Friends
Boss

17

Bayou’s Causal Consistency

• Log-exchange based

• Log is single serialization point within DC
Implicitly captures & enforces causal order

Local Datacenter
Remote DC

13 24

13 24

√

18

Sharded Log Exchange

• What happens if we use a separate log per
shard?

• What happens if we use a single log?

19

Scalability Key Idea

• Capture causality with explicit dependency metadata

• Enforce with distributed verifications
– Delay exposing replicated writes until all dependencies are

satisfied in the datacenter

Local Datacenter Remote DC
1

3

24

1
3

24

13 after

20

COPS Architecture

A-F

G-L

M-R

S-Z

A-F

G-
L

M-
R

S-Z

A-F

G-L

M-
R

S-Z

Client

All Ops Local
=

Available and
Low Latency

21

key-value store with
linearizable ops on keys

COPS Architecture

A-F

G-L

M-R

S-Z

A-F

G-
L

M-
R

S-Z

A-F

G-L

M-
R

S-Z

Client Library

22

ensures ops labeled
with dependencies

Read

A-F

G-L

M-R

S-Z

A-F

G-
L

M-
R

S-Z

A-F

G-L

M-
R

S-Zread

Client Library

read

23

Write

A-F

G-L

M-R

S-Z

A-F

G-
L

M-
R

S-Z

A-F

G-L

M-
R

S-Z

Client Library

write

Replication
write
after

write + ordering
metadata

write
after =

write_after

24

Replicated Write

A-F

G-L

M-R

S-Z
write_after(…,deps)

dep
check
(L337)

deps
L 337
A 195

dep_check(A195)

Exposing values after dep_checks
return ensures causal

Locator Key

Unique Timestamp

25

Basic Architecture Summary

• All ops local, replicate in background
– Availability and low latency

• Shard data across many nodes
– Scalability

• Control replication with dependencies
– Causal consistency

26

Scalability

• Shard data for scalable storage

• New distributed protocol for scalably applying
writes across shards

• Also need a new distributed protocol for
consistently reading data across shards…

27

Reads Aren’t Enough

A-F

G-L

M-R

S-Z

Boss

I <3 Job

Web Srv

Asynchronous requests + distributed data =
??

Progress

Progress

Progress

Turing’s
Operations

New Job!

BossBoss

I <3 Job

Boss

Boss New Job!

New Job!

1

from 1 4from 4

2

3
28

Read-Only Transactions

• Consistent up-to-date view of data
– Across many servers

Logical Time

Alan…Friends 1 11

Alan…Status 2 19

Boss Boss

New Job!I <3 Job

Alonzo…Friends 1 11
Alan Alan

More on transactions next time!
29

COPS Scaling Evaluation

 20

 40

 80

 160

 320

LOG
 1 2 4 8 16

COPS
 1 2 4 8 16

COPS-GT

Th
ro

ug
hp

ut
 (K

op
s)

More servers => More operations/sec
30

COPS Summary

• Scalable causal consistency
– Shard for scalable storage
– Distributed protocols for coordinating writes and reads

• Evaluation confirms scalability

• All operations handled in local datacenter
– Availability
– Low latency

• We’re thinking scalably now!
– Next time: scalable strong consistency

31

