Scalable Causal Consistency

alllauc Ellal) deals

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 16

Marco Canini

Consistency hierarchy

Linearizability (Strong/Strict Consistency) e.g., RAFT

Sequential Consistency

1

Causal+ Consistency e.g., Bayou

i

Eventual Consistency e.g., Dynamo

Causal+ Consistency

 Partially orders all operations, does not totally order them

— Does not look like a single machine

* (Guarantees
— For each process, 3 an order of all writes + that process’s reads
— Order respects the happens-before (=) ordering of operations

— + replicas converge to the same state (conflict handling)

 Skip details, makes it stronger than eventual consistency

Causal Consistency

« Similar: respect partial order but there is no
convergent conflict handling requirement

« Concurrent operations are unordered by causal
consistency

* Thus, conflicts allow replicas to diverge forever

Causal Consistency: Relationships

Pa: w(x=1) = w(y=2) — w(x=3)

*
Py rly)=2 ——> w(x=4)

P.: r(x;=4 —> w(z=10)

« Can P see x=4 and then x=1? Why?

Causal+ Examples

Alice shares photo with Bob
1. Upload the photo
2. Add photo to album

3. Bob checks album

Under causal consistency, if the alboum has a
reference to the photo, Bob must see the photo

Under eventual consistency, aloum may have a
reference to a photo that has not been written yet
(the corresponding write has not propagated)

Causal+ Examples

« Carol and Dan concurrently update event time (9pm)
1. Carol sets 8pm

2. Dan sets 10pm

* Under causal consistency, two replicas may forever
return different times

* Under causal+ consistency, replicas must eventually
handle the conflict in a convergent manner

— If a last-writer-wins, either Carol’'s or Dan’s write win

Causal consistency within
replication systems

Implications of laziness on consistency

shl
& ConsenM%n:S\te)
Module achine Module achine oViule Madhine
/Yy S| 9y ay
& & &

add mov add mov add mov| s

_ 2adiimp)\ \nadlimp)\ \nadlimp Y

 Linearizability / sequential: Eager replication

« Trades off low-latency for consistency

Implications of laziness on consistency

Q< i‘@%:o

= | =Y

add |j mov add|j mov

g jmp L jmp

)\ \nadlimp s Y

« Causal consistency: Lazy replication
 Trades off consistency for low-latency
« Maintain local ordering when replicating

« QOperations may be lost if failure before replication i,

Consistency vs Scalability

Scalability: Adding more machines allows more data to
be stored and more operations to be handled!

Dynamo Eventual Yes
Bayou Causal
Paxos/RAFT Linearizable

It’s time to think
about scability!

11

Consistency vs Scalability

Scalability: Adding more machines allows more data to
be stored and more operations to be handled!

Dynamo Eventual Yes
Bayou Causal No
COPS Causal Yes

Paxos/RAFT Linearizable No

12

COPS:

Scalable Causal Consistency
for Geo-Replicated Storage

Geo-Replicated Storage:
Serve User Requests Quickly

14

Storage Tier

Scalability through Sharding

16

Causality By Example

Remove boss from Causality (—)

Same process

% friends group
- Reads-From

Post to friends: (message receipt)
BN

m Friend reads post

17

Bayou’s Causal Consistency

* Log-exchange based

Remote DC
Local Datacenter
/—DD D

* Log is single serialization point within DC

J Implicitly captures & enforces causal order

Sharded Log Exchange

« What happens if we use a separate log per
shard?

* What happens if we use a single log?

Scalability Key Idea

« Capture causality with explicit dependency metadata
Wafterld

* Enforce with distributed verifications

— Delay exposing replicated writes until all dependencies are
satisfied in the datacenter

Local Datacenter Remote DC
1 p— —
o - P
| #
—

20

COPS Architecture
key-value store with
linearizable ops on keys

All Ops Local

Available and

Low Latency

il

21

COPS Architecture

ensures ops labeled
with dependencies

Client Library

_m—

22

Read

Cllent L|brary

(936

/_\

23

Write

write__write + ordering
after~ ~ mMmetadata

Client Library
~ AF

Replication

24

Replicated Write

Unique Timestamp

Locator Key

Exposing values after dep _checks

return ensures causal

dep_check(A4g5)

Basic Architecture Summary

 All ops local, replicate in background
— Avallability and low latency

« Shard data across many nodes
— Scalability

« Control replication with dependencies
— Causal consistency

Scalability
« Shard data for scalable storage

* New distributed protocol for scalably applying
writes across shards

» Also need a new distributed protocol for
consistently reading data across shards...

Reads Aren’t Enough

Asynchronous requests + distributed data =

from1 from 4 4

27

\a;)\
P

\ e oo)

Turing’s
Operations

Progress

28

Read-Only Transactions

» Consistent up-to-date view of data

— Across many servers

Alan...Friends

Alan...Status

Logical Time

More on transactions next time! ‘

29

COPS Scaling Evaluation

320

Throughput (Kops)
oo
o

1 2 4 8 16 1 2 4 8
LOG COPS COPS-GT

More servers => More operations/sec

30

COPS Summary

« Scalable causal consistency

— Shard for scalable storage

— Distributed protocols for coordinating writes and reads
 Evaluation confirms scalability

 All operations handled in local datacenter
— Avallability
— Low latency

* We're thinking scalably now!
— Next time: scalable strong consistency

