
Impossibility Results:

CAP, PRAM & FLP

CS 240: Computing Systems and Concurrency
Lecture 17

Marco Canini

Network partitions divide systems

2

Network partitions divide systems

3

• Totally-ordered Multicast?

• Bayou?

• Dynamo?

• Chord?

• Paxos?

• RAFT?

• COPS?

How can we handle partitions?

4

How about this set of partitions?

5

• Replicas appear to be a single machine,
but lose availability during a network partition

OR

• All replicas remain available during a network
partition but do not appear to be a single machine

Fundamental trade-off?

6

• You cannot achieve all three of:
1. Consistency
2. Availability

3. Partition-Tolerance

• Partition Tolerance => Partitions Can Happen

• Availability => All Sides of Partition Continue

• Consistency => Replicas Act Like Single Machine
– Specifically, Linearizability

CAP theorem preview

7

Impossibility Results Useful!!!!
• Fundamental tradeoff in design space

–Mustmake a choice

• Avoids wasting effort trying to achieve the
impossible

• Tells us the best-possible systems we can build!

8

• From keynote lecture by Eric Brewer (2000)
– History: Eric started Inktomi, early Internet search site based

around “commodity” clusters of computers

– Using CAP to justify “BASE” model: Basically Available, Soft-
state services with Eventual consistency

• Popular interpretation: 2-out-of-3
– Consistency (Linearizability)

– Availability

– Partition Tolerance: Arbitrary crash/network failures

CAP conjecture [Brewer 00]

9

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1 Client 1

10

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Client 1 Client 1

11

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

12

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

r(x)

x=0

Read begins after write completes
Read eventually returns (from A)

13

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns
(from A)

Client 1
w(x=1)

ok
Client 1

r(x)

x=0

Read begins after write completes
Read eventually returns (from A)

Not consistent (C) => contradiction!

14

CAP Interpretation Part 1

• Cannot “choose” no partitions
– 2-out-of-3 interpretation doesn’t make sense
– Instead, availability OR consistency?

• i.e., fundamental trade-off between availability and
consistency
– When designing system must choose one or the

other, both are not possible

15

CAP Interpretation Part 2

• Cannot “beat” CAP theorem

• Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)

16

More trade-offs L vs. C

• Low-latency: Speak to fewer than quorum of nodes?
– 2PC: write N, read 1

– RAFT: write ⌊N/2⌋ + 1, read ⌊N/2⌋ + 1

– General: |W| + |R| > N

• L and C are fundamentally at odds
– “C” = linearizability, sequential, serializability (more later)

17

PACELC
• If there is a partition (P):

– How does system tradeoff A and C?

• Else (no partition)
– How does system tradeoff L and C?

• Is there a useful system that switches?
– Dynamo: PA/EL

– “ACID” dbs: PC/EC

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
18

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

PRAM [Lipton Sandberg 88] [Attiya Welch 94]

• d is the worst-case delay in the network over all pairs of
processes [datacenters]

• Sequentially consistent system

• read time + write time ≥ d

• Fundamental tradeoff between consistency and latency!

• (Skipping proof, see presenter notes or papers)
19

PRAM Theorem:
Impossible for sequentially consistent
system to always provide low latency

20

• No deterministic
1-crash-robust
consensus algorithm
exists with
asynchronous
communication

“FLP” result

21

• Useful interpretation: no consensus algorithm can
always reach consensus with an asynchronous
network
– Do not believe such claims!

• Led to lots and lots of theoretical work
– (Consensus is possible when the network is

reasonably well-behaved)

FLP is the original impossibility
result for distributed systems!

22

• Only 1 failure
– Also impossible for more failures

• For “weak” consensus (only some process needs to decide)
– Also impossible for real consensus

• For reliable communication
– Also impossible for unreliable communication

• For only two states: 0 and 1
– Also impossible for more failures

• For crash failures
– Also impossible for Byzantine failures

FLP’s weak assumptions

23

• Deterministic actions at each node

• Asynchronous network communication

• All “runs” must eventually achieve consensus

FLP’s strong assumptions

24

• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state
[1,1,1,1,1] → 1
[1,1,1,1,0] → ?
[1,1,1,0,0] → ?
[1,1,0,0,0] → ?
[1,0,0,0,0] → 0

Main technical approach

Must exist two
configurations

here which differ
in decision

25

• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state
[1,1,1,1,1] → 1
[1,1,1,1,0] → 1
[1,1,1,0,0] → 1
[1,1,0,0,0] → 0
[1,0,0,0,0] → 0

Main technical approach

Assume decision differs
between these two processes

26

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →
[1,1,1,0,0] →

Main technical approach

One of these configurations must be “bi-valent”
(i.e., undecided):

Both futures possible

1 | 0
0

27

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →
[1,1,1,0,0] →

• Inherent non-determinism from asynchronous network

• Key result: All bi-valent states can remain in bi-valent
states after performing some work

Main technical approach

1
0 | 1

One of these configurations must be “bi-valent”
(i.e., undecided):

Both futures possible

28

1. System thinks process p failed, adapts to it…

2. But no, p was merely slow, not failed…
(Can’t tell the difference between slow and failed.)

3. System think process q failed, adapts to it…

4. But no, q was merely slow, not failed…

5. Repeat ad infinitum …

Staying bi-valent forever

29

Consensus is
impossible

But, we achieve consensus all the time…

30

• Deterministic actions at each node
– Randomized algorithms can achieve consensus

• Asynchronous network communication
– Synchronous or even partial synchrony is sufficient

• All “runs” must eventually achieve consensus
– In practice, many “runs” achieve consensus quickly
– In practice, “runs” that never achieve consensus happen

vanishingly rarely
• Both are true with good system designs

FLP’s strong assumptions

31

