Impossibility Results:
CAP, PRAM & FLP

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 17

Marco Canini

Network partitions divide systems

b
\ ¢
¢

~

Network partitions divide systems

°E

How can we handle partitions?

 Totally-ordered Multicast?
« Bayou?

 Dynamo?

e Chord?

* Paxos?

 RAFT?

« COPS?

How about this set of partitions?

Fundamental trade-off?

* Replicas appear to be a

but during a network partltlon
OR
 All replicas during a network

partition but

CAP theorem preview

* You cannot achieve all three of:

1. Consistency
2. Availability

3. Partition-Tolerance
 Partition Tolerance => Partitions Can Happen

* Availability => All Sides of Partition Continue

» Consistency => Replicas Act Like Single Machine
— Specifically,

Impossibility Results Useful!!!!

« Fundamental tradeoff in design space
— Must make a choice

 Avoids wasting effort trying to achieve the
Impossible

 Tells us the best-possible systems we can build!

CAP conjectu '€ [Brewer00]

* From keynote lecture by Eric Brewer (2000)

— History: Eric started Inktomi, early Internet search site based
around “commodity” clusters of computers

— Using CAP to justify “BASE” model: Basically Available, Soft-
state services with Eventual consistency

* Popular interpretation: 2-out-of-3
— Consistency (Linearizability)
— Availability

— Partition Tolerance: Arbitrary crash/network failures

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

] E

=

10

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

-] o (o]

Partition Possible (from P)

1

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Write eventually returns
(from A)

Partition Possible (from P)

12

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

[Client 1]W_()(_<_:((__=1D; E Hg%[Client 1]

Write eventually returns
(from A)

) Read begins after write completes
T Read eventually returns (from A)

Partition Possible (from P)

13

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Not consistent (C) => contradiction! il
wix=1) —
[Client 1]:H:)
ok -

qu)((_x:)::[Client 1]

Read begins after write completes

Write eventually returns Read eventually returns (from A)
(from A)

Partition Possible (from P)

14

CAP Interpretation Part 1

Cannot “choose” no partitions

— 2-out-of-3 interpretation doesn’t make sense

— Instead, availability OR consistency?

..e., fundamental trade-off between availability and
consistency

— When designing system must choose one or the
other, both are not possible

CAP Interpretation Part 2

 Cannot “beat” CAP theorem

« Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)

More trade-offs L vs. C

» Low-latency: Speak to fewer than quorum of nodes?
— 2PC: write N, read 1
— RAFT: write |[N/2| + 1, read |[N/2| + 1
— General: |W|+|R|>N

« L and C are fundamentally at odds

— “C” = linearizability, sequential, serializability (more later)

PACELC

* If there is a partition (P):
— How does system tradeoff Aand C?
 Else (no partition)

— How does system tradeoff L and C?

* |s there a useful system that switches?
— Dynamo: PA/EL
— “ACID” dbs: PC/EC

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

P RAM [Lipton Sandberg 88] [Attiya Welch 94]

« dis the worst-case delay in the network over all pairs of
processes [datacenters]

* Sequentially consistent system
* read time + write time =2 d
« Fundamental tradeoff between consistency and latency!

 (Skipping proof, see presenter notes or papers)

PRAM Theorem:

Impossible for sequentially consistent
system to always provide low latency

“FLP” result

No deterministic
1-crash-robust
consensus algorithm
exists with
asynchronous
communication

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND
MICHAEL S. PATERSON

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be
unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”
problem.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols-
protocol architecture, C.2.4 [Computer-Communication Networks]: Distributed Systems-distributed
applications; distributed databases; network operating systems; C.4 [Performance of Systems]: Reliabil-
ity, Availability, and Serviceability; F.1.2 [Computation by Abstract Devices]: Modes of Computation-
parallelism; H.2.4 [Database Management): Systems-distributed systems; transaction processing

General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability

21

FLP is the original impossibility
result for distributed systems!

» Useful interpretation: no consensus algorithm can
always reach consensus with an asynchronous
network

— Do not believe such claims!

 Led to lots and lots of theoretical work

— (Consensus is possible when the network is
reasonably well-behaved)

FLP’s weak assumptions

* Only 1 failure
— Also impossible for more failures
For “weak” consensus (only some process needs to decide)
— Also impossible for real consensus
For reliable communication
— Also impossible for unreliable communication
For only two states: 0 and 1
— Also impossible for more failures
For crash failures
— Also impossible for Byzantine failures

FLP’s strong assumptions

 Deterministic actions at each node
» Asynchronous network communication

 All “runs” must eventually achieve consensus

Main technical approach

* |nitial state of system can end in decision “0” or “1

* Consider 5 processes, each in some initial state

(1,1,1,11] — 1

' 1,1,1,10] — ? Must exist two
'111001 — ? configurations
R, ' here which differ
L 505050 1 ? in decision
11,0,000] — 0

Main technical approach
* |nitial state of system can end in decision “0” or “1”

* Consider 5 processes, each in some initial state

1,1,1,1,1] —

1,1,1,10] —

- ’1'0’0] — Assume decision differs
1,1,0/0,0] — 0 between these two processes
1,0,0,00] —- O

Main technical approach

 Goal: Consensus holds in face of 1 failure

One of these configurations must be “bi-valent”

(i.e., undecided):
Both futures possible

[1,1
[1,1

0,0] — 1]0
00] — 0

27

Main technical approach

Goal: Consensus holds in face of 1 failure

One of these configurations must be “bi-valent”

(i.e., undecided):
Both futures possible

[1,1
[1,1

00] — 1
00] — 01

Inherent non-determinism from asynchronous network

Key result: All bi-valent states can remain in bi-valent
states after performing some work

Staying bi-valent forever

1.

2.

System thinks process p failed, adapts to it...

But no, p was merely slow, not failed...
(Can't tell the difference between slow and failed.)

System think process q failed, adapts to it...
But no, g was merely slow, not failed...

Repeat ad infinitum ...

Consensus is
Impossible

But, we achieve consensus all the time...

FLP’s strong assumptions

 Deterministic actions at each node

— Randomized algorithms can achieve consensus

» Asynchronous network communication

— Synchronous or even partial synchrony is sufficient

 All “runs” must eventually achieve consensus

— In practice, many “runs” achieve consensus quickly

— In practice, “runs” that never achieve consensus happen
vanishingly rarely

» Both are true with good system designs

