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Let’s Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)
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Atomic Commit
• Atomic: All or nothing

• Either all participants do something (commit) or no 
participant does anything (abort)

• Common use: commit a transaction that updates data 
on different shards
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• Definition: A unit of work:
– May consist of multiple data accesses or updates
– Must commit or abort as a single atomic unit

• Transactions can either commit, or abort
– When commit, all updates performed on data are 

made permanent, visible to other transactions

– When abort, data restored to a state such that the 
aborting transaction never executed
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The transaction



Transaction examples
• Bank account transfer

– A -= $100
– B += $100

• Maintaining symmetric relationships
– A FriendOf B
– B FriendOf A

• Order product
– Charge customer card
– Decrement stock
– Ship stock
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Defining properties of transactions
• Atomicity: Either all constituent operations of the 

transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves 
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by 
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure 
of volatile (memory) or non-volatile (disk) storage



Relationship with replication
• Replication (e.g., RAFT) is about doing the same thing 

multiple places to provide fault tolerance

• Sharding is about doing different things multiple places 
for scalability

• Atomic commit is about doing different things in 
different places together
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Focus on sharding for today
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send_money(A, B, amount) {
Begin_Transaction();
if (A.balance - amount >= 0) {
A.balance = A.balance - amount;
B.balance = B.balance + amount;
Commit_Transaction(); 

} else {
Abort_Transaction(); 

}
} 
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Motivation: sending money



Atomic Commit
• Atomic: All or nothing

• Either all participants do something (commit) or no 
participant does anything (abort)
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• For each distributed transaction T:
– one transaction coordinator (TC)
– a set of participants

• Coordinator knows participants; participants don’t 
necessarily know each other

• Each process has access to a Distributed Transaction 
Log (DT-Log) on stable storage
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Model



• Each process pi has an input value votei:
– votei ∈ {Yes, No}

• Each process pi has output value decisioni:
– decisioni ∈ {Commit, Abort}
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The setup



• AC-1: All processes that reach a decision reach the 
same one

• AC-2: A process cannot reverse its decision after it has 
reached one

• AC-3: The Commit decision can only be reached if all 
processes vote Yes

• AC-4: If there are no failures and all processes vote 
Yes, then the decision will be Commit

• AC-5: If all failures are repaired and there are no more 
failures, then all processes will eventually decide
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Atomic Commit (AC) specification



• AC-1: All processes that reach a decision reach the 
same one

• AC-2: A process cannot reverse its decision after it has 
reached one

• AC-3: The Commit decision can only be reached if all 
processes vote Yes

• AC-4: If there are no failures and all processes vote 
Yes, then the decision will be Commit

• AC-5: If all failures are repaired and there are no more 
failures, then all processes will eventually decide
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Atomic Commit (AC) specification

• We do not require all processes to reach a decision
• We do not even require all correct processes to reach 

a decision (impossible to accomplish if links fail)



• AC-1: All processes that reach a decision reach the 
same one

• AC-2: A process cannot reverse its decision after it has 
reached one

• AC-3: The Commit decision can only be reached if all 
processes vote Yes

• AC-4: If there are no failures and all processes vote 
Yes, then the decision will be Commit

• AC-5: If all failures are repaired and there are no more 
failures, then all processes will eventually decide
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Atomic Commit (AC) specification

• Avoids triviality
• Allows Abort even if all processes have voted yes



• AC-1: All processes that reach a decision reach the 
same one

• AC-2: A process cannot reverse its decision after it has 
reached one

• AC-3: The Commit decision can only be reached if all 
processes vote Yes

• AC-4: If there are no failures and all processes vote 
Yes, then the decision will be Commit

• AC-5: If all failures are repaired and there are no more 
failures, then all processes will eventually decide
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Atomic Commit (AC) specification

Note: A process that does not vote Yes
can unilaterally abort



Atomic Commit
• Atomic: All or nothing

• Either all participants do something (commit) or no 
participant does anything (abort)

• Atomic commit is accomplished with the 
Two-phase commit protocol (2PC)

18



Let’s Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)
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II. Sends votei to TC
if votei is NO then
decidei := ABORT
halt

IV. if received COMMIT then
decidei := COMMIT
else
decidei := ABORT
halt

Two-Phase Commit (almost)
Transaction Coordinator (TC) Participant pi

I. Sends Prepare-Req to all participants

III. TC votes
if all votes are YES then
decideTC := COMMIT
send COMMIT to all
else
decideTC := ABORT
send ABORT to all who voted YES
halt
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1. C à TC: “go!”

Two-Phase Commit illustrated

Client C

Transaction 
Coordinator TC

Bank

go!

A B
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1. C à TC: “go!”

2. TC à A, B: “prepare!”

Two-Phase Commit illustrated

Client C

Transaction 
Coordinator TC

Bank

prepare! prepare!

A B
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1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

Two-Phase Commit illustrated

Client C

Transaction 
Coordinator TC

Bank A B

ye
s yes
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commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

Two-Phase Commit illustrated

Client C

Transaction 
Coordinator TC

Bank A B
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1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

5. TC àC: “okay” or “failed”

• A, B commit on receipt of commit 
message

Two-Phase Commit illustrated

Client C

Transaction 
Coordinator TC

Bank A B

okay
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• Satisfies AC-1 to AC-4

• But not AC-5 (at least “as is”)
– A process may be waiting for a message that may 

never arrive
• Use Timeout Actions

– No guarantee that a recovered process will reach a 
decision consistent with that of other processes

• Processes save protocol state in DT-Log

26

Reasoning about two-phase commit



Where do hosts wait for messages?

II. pi is waiting for Prepare-Req from TC

III. TC waits for “yes” or “no” from participants

IV. pi (who voted YES) waits for “commit” or “abort” 
from TC
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Timeout actions



II. pi is waiting for Prepare-Req from TC
– Since it is has not cast its vote yet, can decide 

ABORT and halt
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Timeout actions



III. TC waits for “yes” or “no” from participants
– TC hasn’t yet sent any commit messages, so can 

safely ABORT after a timeout
– Send ABORT to all participants which voted YES, 

and halt
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Timeout actions



IV. pi (who voted YES) waits for “commit” or “abort” 
from TC

– Can it unilaterally abort?
– Can it unilaterally commit?
– pi cannot decide: must run a termination protocol
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Timeout actions



• Consider B (A case is symmetric) waiting for commit or abort from TC
– Assume B voted yes (else, unilateral abort possible)

• Bà A: “status?” A then replies back to B. Then:
1. (No reply from A): no decision, B waits for TC
2. A received commit or abort from TC: B agrees with TC’s decision
3. A hasn’t voted yet or voted no: both abort

• TC can’t have decided to commit

4. A voted yes: both must wait for the TC
• TC decided to commit if both replies received

• TC decided to abort if it timed out
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Termination protocol



• What are the liveness and safety properties?
– Safety: if servers don’t crash and network between A and B is 

reliable, all processes reach the same decision (in a finite number 
of steps)

– Liveness: if failures are eventually repaired, then every 
participant will eventually reach a decision

• Can resolve some timeout situations with guaranteed correctness

• Sometimes however A and B must block
– Due to failure of the TC or network to the TC

• But what will happen if TC, A, or B crash and reboot?
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Reasoning about the
termination protocol



• Can’t back out of commit if already decided
– TC crashes just after sending “commit!”
– A or B crash just after sending “yes”

• If all nodes knew their state before crash, we 
could use the termination protocol…
– Use write-ahead DT-Log to record “commit!” and 

“yes” to stable storage
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How to handle crash and reboot?



• If everyone rebooted and is reachable, TC can just check 
for commit record on DT-Log and resend action

• TC: If no commit record on disk, abort
– You didn’t send any “commit!” messages

• A, B: If no yes record on disk, abort
– You didn’t vote “yes” so TC couldn’t have committed

• A, B: If yes record on disk, execute termination protocol
– This might block

34

Recovery protocol with non-volatile state



• This recovery protocol with non-volatile logging is 
called Two-Phase Commit (2PC)

• Safety: All hosts that decide reach the same decision
– No commit unless everyone says “yes”

• Liveness: If no failures and all say “yes” then commit
– But if failures then 2PC might block
– TC must be up to decide

• Doesn’t tolerate faults well: must wait for repair
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Two-Phase Commit



Let’s Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)
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Two concurrent transactions

transaction sum(A, B):
begin_tx
a ß read(A)
b ß read(B)
print a + b
commit_tx

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx



• Isolation: sum appears to happen either 
completely before or completely after transfer
– i.e., it appears that all operations of a transaction 

happened together
– sometimes called before-after atomicity

• Schedule for transactions is an ordering of the 
operations performed by those transactions
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Isolation between transactions



• Serial execution of transactions—transfer then sum:

transfer: rA wA rB wB ©
sum: rA rB ©

• Concurrent execution resulting in inconsistent 
retrieval, result differing from any serial execution:

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

39

Problem for concurrent execution: 
Inconsistent retrieval

debit credit

debit credit



• Isolation: sum appears to happen either 
completely before or completely after transfer
– i.e., it appears that all operations of a transaction 

happened together
– sometimes called before-after atomicity

• Given a schedule of operations:
– Is that schedule in some way “equivalent” to a 

serial execution of transactions?
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Isolation between transactions



• Two operations from different transactions are 
conflicting if:

1. They read and write to the same data item
2. The write and write to the same data item

• Two schedules are equivalent if:
1. They contain the same transactions and operations
2. They order all conflicting operations of non-aborting 

transactions in the same way
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Equivalence of schedules



• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some 
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule
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Serializability



• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some 
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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A serializable schedule

Conflict-free!
Serial schedule

rA



• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some 
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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A non-serializable schedule

Conflicting opsConflicting ops

But in a serial schedule, sum’s reads 
either both before wA or both after wB



• Linearizability: a guarantee 
about single operations on 
single objects
– Once write completes, all 

later reads (by wall clock) 
should reflect that write

• Serializability is a 
guarantee about 
transactions over
one or more objects
– Doesn’t impose 

real-time constraints
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Serializability versus linearizability

• Strict serializability = Serializability + real-time ordering
– Intuitively Serializability + Linearizability
– Transaction behavior equivalent to some serial execution

• And that serial execution agrees with real-time



Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Strict Serializability e.g., Spanner
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• Each node t in the precedence graph represents a 
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

47

Testing for serializability



• Each node t in the precedence graph represents a 
transaction t
– Edge from s to t if some action of s precedes and 

conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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Serializable schedule, acyclic graph

transfer sum

Serializable



• Each node t in the precedence graph represents a 
transaction t
– Edge from s to t if some action of s precedes and 

conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit
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Non-serializable schedule, cyclic graph

transfer sum

Non-serializable



• Each node t in the precedence graph represents a 
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t
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Testing for serializability

In general, a schedule is serializable if and only 
if its precedence graph is acyclic



Let’s Scale Strong Consistency!
1. Transactions and Atomic Commit review

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)
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Concurrency Control
• Concurrent execution can violate serializability

• We need to control that concurrent execution so we 
do things a single machine executing transactions one 
at a time would
– Concurrency control
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• Big Global Lock
– Acquire the lock when transaction starts
– Release the lock when transaction ends

• Provides strict serializability
– Just like executing transaction one by one because 

we are doing exactly that

• No concurrency at all
– Terrible for performance: one transaction at a time

53

Concurrency Control Strawman #1



• Locks maintained on each shard
– Transaction requests lock for a data item
– Shard grants or denies lock

• Lock types
– Shared: Need to have before read object
– Exclusive: Need to have before write object
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Locking

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No



• Grab locks independently, for each data item (e.g., 
bank accounts A and B)

transfer: ◢A rA wA ◣A ◢B rB wB ◣B  © 
sum: ◿A rA◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = eXclusive- / Shared-lock; ◣ / ◺ = X- / S-unlock
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Concurrency Control Strawman #2

Permits this non-serializable interleaving



• 2PL rule: Once a transaction has released a lock it is 
not allowed to obtain any other locks

– Growing phase when transaction acquires locks
– Shrinking phase when transaction releases locks

• In practice:
– Growing phase is the entire transaction
– Shrinking phase is during commit

56

Two-phase locking (2PL)



• 2PL rule: Once a transaction has released a lock it is 
not allowed to obtain any other locks

transfer: ◢A rA wA ◣A ◢B rB wB ◣B  © 
sum: ◿A rA◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock
57

2PL provides strict serializability

2PL precludes this non-serializable interleaving



• 2PL rule: Once a transaction has released a lock it is 
not allowed to obtain any other locks

transfer: ◿A rA ◢A wA◿B rB ◢B wB✻© 
sum: ◿A rA ◿B rB✻©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock; ✻ = release all locks
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2PL and transaction concurrency

2PL permits this serializable, interleaved schedule



• 2PL rule: Once a transaction has released a lock it is 
not allowed to obtain any other locks

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

(locking not shown)
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2PL doesn’t exploit all opportunities
for concurrency

2PL precludes this serializable, interleaved schedule



• What do we do if a lock is unavailable?
– Give up immediately?
– Wait forever?

• Waiting for a lock can result in deadlock
– Transfer has A locked, waiting on B
– Sum has B locked, waiting on A

• Many ways to detect and deal with deadlocks
– e.g., centrally detect deadlock cycles and abort 

involved transactions
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Issues with 2PL



Lets Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)
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• Acquire locks to prevent all possible violations of 
serializability

• But leaves a lot of concurrency on the table that 
is okay and available

• More Concurrency Control Algorithms
– Optimistic Concurrency Control (OCC)
– Multi-Version Concurrency Control (MVCC)
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2PL is pessimistic


