
Atomic Commit and
Concurrency Control

CS 240: Computing Systems and Concurrency
Lecture 18

Marco Canini

Let’s Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

2

Atomic Commit
• Atomic: All or nothing

• Either all participants do something (commit) or no
participant does anything (abort)

• Common use: commit a transaction that updates data
on different shards

3

• Definition: A unit of work:
– May consist of multiple data accesses or updates
– Must commit or abort as a single atomic unit

• Transactions can either commit, or abort
– When commit, all updates performed on data are

made permanent, visible to other transactions

– When abort, data restored to a state such that the
aborting transaction never executed

4

The transaction

Transaction examples
• Bank account transfer

– A -= $100
– B += $100

• Maintaining symmetric relationships
– A FriendOf B
– B FriendOf A

• Order product
– Charge customer card
– Decrement stock
– Ship stock

5

6

Defining properties of transactions
• Atomicity: Either all constituent operations of the

transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure
of volatile (memory) or non-volatile (disk) storage

Relationship with replication
• Replication (e.g., RAFT) is about doing the same thing

multiple places to provide fault tolerance

• Sharding is about doing different things multiple places
for scalability

• Atomic commit is about doing different things in
different places together

7

Relationship with replication

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

8

Focus on sharding for today

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

Sharding
Dimension

9

send_money(A, B, amount) {
Begin_Transaction();
if (A.balance - amount >= 0) {
A.balance = A.balance - amount;
B.balance = B.balance + amount;
Commit_Transaction();

} else {
Abort_Transaction();

}
}

10

Motivation: sending money

Atomic Commit
• Atomic: All or nothing

• Either all participants do something (commit) or no
participant does anything (abort)

11

• For each distributed transaction T:
– one transaction coordinator (TC)
– a set of participants

• Coordinator knows participants; participants don’t
necessarily know each other

• Each process has access to a Distributed Transaction
Log (DT-Log) on stable storage

12

Model

• Each process pi has an input value votei:
– votei ∈ {Yes, No}

• Each process pi has output value decisioni:
– decisioni ∈ {Commit, Abort}

13

The setup

• AC-1: All processes that reach a decision reach the
same one

• AC-2: A process cannot reverse its decision after it has
reached one

• AC-3: The Commit decision can only be reached if all
processes vote Yes

• AC-4: If there are no failures and all processes vote
Yes, then the decision will be Commit

• AC-5: If all failures are repaired and there are no more
failures, then all processes will eventually decide

14

Atomic Commit (AC) specification

• AC-1: All processes that reach a decision reach the
same one

• AC-2: A process cannot reverse its decision after it has
reached one

• AC-3: The Commit decision can only be reached if all
processes vote Yes

• AC-4: If there are no failures and all processes vote
Yes, then the decision will be Commit

• AC-5: If all failures are repaired and there are no more
failures, then all processes will eventually decide

15

Atomic Commit (AC) specification

• We do not require all processes to reach a decision
• We do not even require all correct processes to reach

a decision (impossible to accomplish if links fail)

• AC-1: All processes that reach a decision reach the
same one

• AC-2: A process cannot reverse its decision after it has
reached one

• AC-3: The Commit decision can only be reached if all
processes vote Yes

• AC-4: If there are no failures and all processes vote
Yes, then the decision will be Commit

• AC-5: If all failures are repaired and there are no more
failures, then all processes will eventually decide

16

Atomic Commit (AC) specification

• Avoids triviality
• Allows Abort even if all processes have voted yes

• AC-1: All processes that reach a decision reach the
same one

• AC-2: A process cannot reverse its decision after it has
reached one

• AC-3: The Commit decision can only be reached if all
processes vote Yes

• AC-4: If there are no failures and all processes vote
Yes, then the decision will be Commit

• AC-5: If all failures are repaired and there are no more
failures, then all processes will eventually decide

17

Atomic Commit (AC) specification

Note: A process that does not vote Yes
can unilaterally abort

Atomic Commit
• Atomic: All or nothing

• Either all participants do something (commit) or no
participant does anything (abort)

• Atomic commit is accomplished with the
Two-phase commit protocol (2PC)

18

Let’s Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

19

II. Sends votei to TC
if votei is NO then
decidei := ABORT
halt

IV. if received COMMIT then
decidei := COMMIT
else
decidei := ABORT
halt

Two-Phase Commit (almost)
Transaction Coordinator (TC) Participant pi

I. Sends Prepare-Req to all participants

III. TC votes
if all votes are YES then
decideTC := COMMIT
send COMMIT to all
else
decideTC := ABORT
send ABORT to all who voted YES
halt

20

1. C à TC: “go!”

Two-Phase Commit illustrated

Client C

Transaction
Coordinator TC

Bank

go!

A B

21

1. C à TC: “go!”

2. TC à A, B: “prepare!”

Two-Phase Commit illustrated

Client C

Transaction
Coordinator TC

Bank

prepare! prepare!

A B

22

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

Two-Phase Commit illustrated

Client C

Transaction
Coordinator TC

Bank A B

ye
s yes

23

commit! commit!

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

Two-Phase Commit illustrated

Client C

Transaction
Coordinator TC

Bank A B

24

1. C à TC: “go!”

2. TC à A, B: “prepare!”

3. A, B à TC: vote “yes” or “no”

4. TC àA, B: “commit!” or “abort!”
– TC sends commit if both say yes
– TC sends abort if either say no

5. TC àC: “okay” or “failed”

• A, B commit on receipt of commit
message

Two-Phase Commit illustrated

Client C

Transaction
Coordinator TC

Bank A B

okay

25

• Satisfies AC-1 to AC-4

• But not AC-5 (at least “as is”)
– A process may be waiting for a message that may

never arrive
• Use Timeout Actions

– No guarantee that a recovered process will reach a
decision consistent with that of other processes

• Processes save protocol state in DT-Log

26

Reasoning about two-phase commit

Where do hosts wait for messages?

II. pi is waiting for Prepare-Req from TC

III. TC waits for “yes” or “no” from participants

IV. pi (who voted YES) waits for “commit” or “abort”
from TC

27

Timeout actions

II. pi is waiting for Prepare-Req from TC
– Since it is has not cast its vote yet, can decide

ABORT and halt

28

Timeout actions

III. TC waits for “yes” or “no” from participants
– TC hasn’t yet sent any commit messages, so can

safely ABORT after a timeout
– Send ABORT to all participants which voted YES,

and halt

29

Timeout actions

IV. pi (who voted YES) waits for “commit” or “abort”
from TC

– Can it unilaterally abort?
– Can it unilaterally commit?
– pi cannot decide: must run a termination protocol

30

Timeout actions

• Consider B (A case is symmetric) waiting for commit or abort from TC
– Assume B voted yes (else, unilateral abort possible)

• Bà A: “status?” A then replies back to B. Then:
1. (No reply from A): no decision, B waits for TC
2. A received commit or abort from TC: B agrees with TC’s decision
3. A hasn’t voted yet or voted no: both abort

• TC can’t have decided to commit

4. A voted yes: both must wait for the TC
• TC decided to commit if both replies received

• TC decided to abort if it timed out

31

Termination protocol

• What are the liveness and safety properties?
– Safety: if servers don’t crash and network between A and B is

reliable, all processes reach the same decision (in a finite number
of steps)

– Liveness: if failures are eventually repaired, then every
participant will eventually reach a decision

• Can resolve some timeout situations with guaranteed correctness

• Sometimes however A and B must block
– Due to failure of the TC or network to the TC

• But what will happen if TC, A, or B crash and reboot?

32

Reasoning about the
termination protocol

• Can’t back out of commit if already decided
– TC crashes just after sending “commit!”
– A or B crash just after sending “yes”

• If all nodes knew their state before crash, we
could use the termination protocol…
– Use write-ahead DT-Log to record “commit!” and

“yes” to stable storage

33

How to handle crash and reboot?

• If everyone rebooted and is reachable, TC can just check
for commit record on DT-Log and resend action

• TC: If no commit record on disk, abort
– You didn’t send any “commit!” messages

• A, B: If no yes record on disk, abort
– You didn’t vote “yes” so TC couldn’t have committed

• A, B: If yes record on disk, execute termination protocol
– This might block

34

Recovery protocol with non-volatile state

• This recovery protocol with non-volatile logging is
called Two-Phase Commit (2PC)

• Safety: All hosts that decide reach the same decision
– No commit unless everyone says “yes”

• Liveness: If no failures and all say “yes” then commit
– But if failures then 2PC might block
– TC must be up to decide

• Doesn’t tolerate faults well: must wait for repair

35

Two-Phase Commit

Let’s Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

36

37

Two concurrent transactions

transaction sum(A, B):
begin_tx
a ß read(A)
b ß read(B)
print a + b
commit_tx

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

• Isolation: sum appears to happen either
completely before or completely after transfer
– i.e., it appears that all operations of a transaction

happened together
– sometimes called before-after atomicity

• Schedule for transactions is an ordering of the
operations performed by those transactions

38

Isolation between transactions

• Serial execution of transactions—transfer then sum:

transfer: rA wA rB wB ©
sum: rA rB ©

• Concurrent execution resulting in inconsistent
retrieval, result differing from any serial execution:

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

39

Problem for concurrent execution:
Inconsistent retrieval

debit credit

debit credit

• Isolation: sum appears to happen either
completely before or completely after transfer
– i.e., it appears that all operations of a transaction

happened together
– sometimes called before-after atomicity

• Given a schedule of operations:
– Is that schedule in some way “equivalent” to a

serial execution of transactions?

40

Isolation between transactions

• Two operations from different transactions are
conflicting if:

1. They read and write to the same data item
2. The write and write to the same data item

• Two schedules are equivalent if:
1. They contain the same transactions and operations
2. They order all conflicting operations of non-aborting

transactions in the same way

41

Equivalence of schedules

• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

42

Serializability

• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

43

A serializable schedule

Conflict-free!
Serial schedule

rA

• Ideal isolation semantics: serializability

• A schedule is serializable if it is equivalent to some
serial schedule
– i.e., non-conflicting operations can be reordered

to get a serial schedule

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

44

A non-serializable schedule

Conflicting opsConflicting ops

But in a serial schedule, sum’s reads
either both before wA or both after wB

• Linearizability: a guarantee
about single operations on
single objects
– Once write completes, all

later reads (by wall clock)
should reflect that write

• Serializability is a
guarantee about
transactions over
one or more objects
– Doesn’t impose

real-time constraints

45

Serializability versus linearizability

• Strict serializability = Serializability + real-time ordering
– Intuitively Serializability + Linearizability
– Transaction behavior equivalent to some serial execution

• And that serial execution agrees with real-time

Consistency Hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Strict Serializability e.g., Spanner

46

• Each node t in the precedence graph represents a
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

47

Testing for serializability

• Each node t in the precedence graph represents a
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

48

Serializable schedule, acyclic graph

transfer sum

Serializable

• Each node t in the precedence graph represents a
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

49

Non-serializable schedule, cyclic graph

transfer sum

Non-serializable

• Each node t in the precedence graph represents a
transaction t
– Edge from s to t if some action of s precedes and

conflicts with some action of t

50

Testing for serializability

In general, a schedule is serializable if and only
if its precedence graph is acyclic

Let’s Scale Strong Consistency!
1. Transactions and Atomic Commit review

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

51

Concurrency Control
• Concurrent execution can violate serializability

• We need to control that concurrent execution so we
do things a single machine executing transactions one
at a time would
– Concurrency control

52

• Big Global Lock
– Acquire the lock when transaction starts
– Release the lock when transaction ends

• Provides strict serializability
– Just like executing transaction one by one because

we are doing exactly that

• No concurrency at all
– Terrible for performance: one transaction at a time

53

Concurrency Control Strawman #1

• Locks maintained on each shard
– Transaction requests lock for a data item
– Shard grants or denies lock

• Lock types
– Shared: Need to have before read object
– Exclusive: Need to have before write object

54

Locking

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No

• Grab locks independently, for each data item (e.g.,
bank accounts A and B)

transfer: ◢A rA wA ◣A ◢B rB wB ◣B ©
sum: ◿A rA◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = eXclusive- / Shared-lock; ◣ / ◺ = X- / S-unlock
55

Concurrency Control Strawman #2

Permits this non-serializable interleaving

• 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

– Growing phase when transaction acquires locks
– Shrinking phase when transaction releases locks

• In practice:
– Growing phase is the entire transaction
– Shrinking phase is during commit

56

Two-phase locking (2PL)

• 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: ◢A rA wA ◣A ◢B rB wB ◣B ©
sum: ◿A rA◺A ◿B rB ◺B ©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock
57

2PL provides strict serializability

2PL precludes this non-serializable interleaving

• 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: ◿A rA ◢A wA◿B rB ◢B wB✻©
sum: ◿A rA ◿B rB✻©

Time à
© = commit

◢ /◿ = X- / S-lock; ◣ / ◺ = X- / S-unlock; ✻ = release all locks

58

2PL and transaction concurrency

2PL permits this serializable, interleaved schedule

• 2PL rule: Once a transaction has released a lock it is
not allowed to obtain any other locks

transfer: rA wA rB wB ©
sum: rA rB ©

Time à
© = commit

(locking not shown)

59

2PL doesn’t exploit all opportunities
for concurrency

2PL precludes this serializable, interleaved schedule

• What do we do if a lock is unavailable?
– Give up immediately?
– Wait forever?

• Waiting for a lock can result in deadlock
– Transfer has A locked, waiting on B
– Sum has B locked, waiting on A

• Many ways to detect and deal with deadlocks
– e.g., centrally detect deadlock cycles and abort

involved transactions

60

Issues with 2PL

Lets Scale Strong Consistency!
1. Atomic Commit

– Two-phase commit (2PC)

2. Serializability
– Strict serializability

3. Concurrency Control:
– Two-phase locking (2PL)
– Optimistic concurrency control (OCC)

61

• Acquire locks to prevent all possible violations of
serializability

• But leaves a lot of concurrency on the table that
is okay and available

• More Concurrency Control Algorithms
– Optimistic Concurrency Control (OCC)
– Multi-Version Concurrency Control (MVCC)

62

2PL is pessimistic

