Time and Logical Clocks 2

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 4

Marco Canini

Lamport Clocks Review

* Happens-Before relationship
— Event a happens before event b (a > b)
— ¢, d not related by = so concurrent, writtenas c || d

» Lamport clocks is a logical clock construction to capture the
order of events in a distributed systems
(disregarding the precise clock time)

— Tag every event a by C(a)
—Ifa-> b, then ?

— If C(a) < C(b), then ?
—Ifal| b, then ?

Lamport Clocks Review

* Happens-Before relationship
— Event a happens before event b (a > b)
— ¢, d not related by = so concurrent, writtenas c || d

» Lamport clocks is a logical clock construction to capture the
order of events in a distributed systems
(disregarding the precise clock time)

— Tag every event a by C(a)

fa—-> b, then C(a) < C(b)
fC(a) < C(b),thenNOTb->a(a—>boral|b)
fa || b, then nothing

Lamport Clocks and causality

« Lamport clock timestamps don’t capture causality

» Given two timestamps C(a) and C(z), want to know
whether there’s a chain of events linking them:

a>b—>.2y—>z

Take-away points: Lamport clocks

 Can totally-order events in a distributed system: that's useful!

— We saw an application of Lamport clocks for totally-
ordered multicast

« But: while by construction, a 2 b implies C(a) < C(b),
— The converse is not necessarily true:
* C(a) < C(b) does not imply a - b (possibly, a || b)

r Can’t use Lamport clock timestamps to infer
| between events |

Today

1. Logical Time: Vector clocks

Vector clock: Introduction

* One integer can’t order events in more than one process

* S0, a Vector Clock (VC) is a vector of integers, one entry
for each process in the entire distributed system

— Label event e with VC(e) =[cq, C5 ..., C/]

« Each entry ¢, is a count of events in process k
that causally precede e

Vector clock: Update rules

* Initially, all vectors are [0, O, ..., 0]

* Two update rules:

1. For each local event on process /, increment local entry ¢;
2. If process j receives message with vector [dy, d,, ..., d.]:

— Set each local entry ¢, = max{c,, d}, fork=1...n
— Increment local entry ¢;

Vector clock: Example

* All processes’ VCs start at

[0, O, O] P1| (P2| |P3
ao[1,0,0
J)[] e 0[0,0,1]
* Applying local update rule L 412001
5120
2
0qc>ﬁ1m
* Applying message rule 44220
— Local vector clock piggybacks)f2,2\0>(> [2,2,2]
on inter-process messages T

Physical time |

Comparing vector timestamps

* Rule for comparing vector timestamps:
—V(a) =V(b) when a, = b, for all k
—V(a) <V(b)when a, < b, forall kand V(a) # V(b)

 Concurrency:.
—al|bifa,<b;anda;>b, some/,j

Vector clocks capture causality

* V(w) < V(z) then there is a chain of events linked by
Happens-Before (=) between w and z

It V(a) || V(w) then there is no such chain of events
between aand w

P1 P2 P3
[1,0,0] w
2.0.0] X a0 [0,1,0]
2.1.0
y []
z0[2,2,0]

11

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion:

Vector clocks: V(a) < V(z)
Conclusion: a 2 z

Vector clock timestamps precisely
capture Happens-Before relationship

(potential causality)

Disadvantage of vector timestamps

» Compared to Lamport timestamps,
vector timestamps O(n) overhead for storage and
communication, n = no. of processes

Take-away points

* Vector Clocks
— Precisely capture happens-before relationship

VC Quiz

« Suppose these processes maintain vector clocks. Write the
vector clock of each event starting from clock time 0.

b h Kk
P1 o—
¢ g
P2 ® >
e
P3 o P
a d f I J

15

Safety and liveness properties

Reasoning about fault tolerance

* This is hard!
— How do we design fault-tolerant systems?
— How do we know if we're successful?

« Often use “properties” that hold true for every
possible execution

« We focus on and properties

Properties

. a predicate that is evaluated over a
run of the system

— “every message that is received was previously
sent”

Not everything you may want to say about a
system is a property:

— "the program sends an average of 50
messages in a run”

Safety properties

“Bad things” don't happen, ever

— No more than k processes are simultaneously in
the critical section

— Messages that are delivered are delivered in
causal order

A safety property is “prefix closed™:
—if it holds in a run, it holds in every prefix

Liveness properties

“Good things” eventually happen

— A process that wishes to enter the critical section
eventually does so

— Some message is eventually delivered

— Eventual consistency: if a value doesn’t change,
two servers will eventually agree on its value

Every run can be extended to satisfy a liveness

property
— If it does not hold in a prefix of a run, it does not
mean it may not hold eventually

Often a trade-off

“Good” and “bad” are application-specific

Safety is very important in banking transactions
— May take some time to confirm a transaction

Liveness is very important in social networking
sites
— See updates right away

