
MapReduce case study

CS 240: Computing Systems and Concurrency

Lecture 1.1

Marco Canini

• Google’s index was perhaps one
of the first “big data” problems
– Crawler fetched 100s of millions

of web pages
– Needed to create giant indices

from keywords

– Too much work for any individual machine
→ needed to be spread across many machines

• Soon they also needed to compute various statistics on
this data
– For instance, how many documents contained a given

keyword?

• This led to the development of the MapReduce framework

Why scalable analytics?

B
a

rr
o

s
s
o
 e

t
a
l.
,

“W
e
b

 S
e

a
rc

h
 f
o
r

a
 P

la
n
e

t:

T
h
e

 G
o

o
g

le
 C

lu
s
te

r
A

rc
h
it
e

c
tu

re
”,

 I
E

E
E

 M
IC

R
O

 2
3

(2
)

• Data is spread across (many) computers

– What do we do if related data is on different computers,
but we need all of it to perform some computation?

• Communication is expensive

– Need to be smart about where data is stored, and
when it is moved

• Coordination is key

– The computation needs to be carefully orchestrated to
get the correct result

– … especially if there are failures, heterogeneous
machines, etc.

Key challenges

Case Study: MapReduce

(Data-parallel programming at scale)

4

• MapReduce is a famous distributed programming
model
– Invented at Google; paper published in 2004
– At that time, it was used for the production indexing

system

• Closed source, but open-source reimplementations
exist
– Example: Apache Hadoop

• Originally ran on GFS (The Google FileSystem)
– GFS is designed for sequential reads and appends
– This is the workload that MapReduce would produce!

University of Pennsylvania 5

What is MapReduce?

Application: Word Count

SELECT count(word) FROM data

 GROUP BY word

cat data.txt

| tr -s '[[:punct:][:space:]]' '\n'

| sort | uniq -c

6

7

Using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

8

Using partial aggregation: data flow

1. In parallel, send to worker:

– Compute word counts from individual files

– Collect result, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

• Wouldn't it be nice if there were some system that

took care of all these details for you?
– But every task is different!

– Or is it? The detailed are different (what to compute, etc.),
but the data flow is often same!

– Maybe we can have a ‘generic’ solution?

• Ideally, just tell the system what needs to be done

• This is what frameworks like MapReduce (and Apache Spark

and Apache Flink) do!

I don’t want to deal with all this!

map(key, value) -> list(<k’, v’>)

– Apply function to (key, value) pair and produces

set of intermediate pairs

reduce(key, list<value>) -> <k’, v’>

– Applies aggregation function to values collected

by key

– Outputs result

10

MapReduce: Programming Interface

11

MapReduce example: Word Count

map(String key, String value):

// key: document name; value: document line

for each word w in value:

 EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 // key: a word; value: a list of counts

 int result = 0;

 for each v in values:

 result += ParseInt(v);

 Emit(key, AsString(result));

combine(list<key, value>) -> list<k,v>

– Perform partial aggregation on mapper node:

 <the, 1>, <the, 1>, <the, 1> → <the, 3>

– combine() should be commutative and associative

partition(key, int) -> int

– Need to aggregate intermediate vals with same key

– Given n partitions, map key to partition 0 ≤ i < n

– Typically via hash(key) mod n
12

MapReduce: Optimizations

13

Putting it together…

map combine partition reduce

14

Synchronization Barrier

15

Fault Tolerance in MapReduce

• Map worker writes intermediate output to

local disk, separated by partitioning. Once

completed, tells master node.

• Reduce worker told of location of map task

outputs, pulls their partition’s data from each

mapper, execute function across data

• Note:

– “All-to-all” shuffle b/w mappers and reducers

– Written to disk (“materialized”) b/w each stage

16

Fault Tolerance in MapReduce

• Master node monitors state of system

– If master failures, job aborts and client notified

• Map worker failure

– Both in-progress/completed tasks marked as idle

– Reduce workers notified when map task is re-executed

on another map worker

• Reducer worker failure

– In-progress tasks are reset to idle (and re-executed)

– Completed tasks had been written to global file system

17

Straggler Mitigation in MapReduce

• Tail latency means some workers finish late

• For slow map tasks, execute in parallel on second map

worker as “backup”, race to complete task

• MapReduce worked very well for Google’s initial use

cases, and lots of others besides
– No data dependencies within map/reduce phases → Good

scalability

• But it does have some important limitations:
– Complex operations have to be rewritten into ‘map’ and

‘reduce’ operations (possibly with several rounds of
mapping and reducing)

– Dataflows always read from and write to disk (why?) →
limited speed

MapReduce: Limitations

You’ll build (simplified) MapReduce!

• Assignment 1: Sequential MapReduce

– Learn to program in Go!

• Assignment 2: Distributed MapReduce

– Learn Go’s concurrency, network I/O, and RPCs

19

	Slide 1: MapReduce case study
	Slide 2: Why scalable analytics?
	Slide 3: Key challenges
	Slide 4: Case Study: MapReduce
	Slide 5: What is MapReduce?
	Slide 6: Application: Word Count
	Slide 7: Using partial aggregation
	Slide 8: Using partial aggregation: data flow
	Slide 9: I don’t want to deal with all this!
	Slide 10: MapReduce: Programming Interface
	Slide 11: MapReduce example: Word Count
	Slide 12: MapReduce: Optimizations
	Slide 13: Putting it together…
	Slide 14: Synchronization Barrier
	Slide 15: Fault Tolerance in MapReduce
	Slide 16: Fault Tolerance in MapReduce
	Slide 17: Straggler Mitigation in MapReduce
	Slide 18: MapReduce: Limitations
	Slide 19: You’ll build (simplified) MapReduce!

