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• Google’s index was perhaps one
of the first “big data” problems
– Crawler fetched 100s of millions

of web pages
– Needed to create giant indices

from keywords

– Too much work for any individual machine
→ needed to be spread across many machines

• Soon they also needed to compute various statistics on 
this data
– For instance, how many documents contained a given 

keyword? 

• This led to the development of the MapReduce framework

Why scalable analytics?
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• Data is spread across (many) computers

– What do we do if related data is on different computers, 
but we need all of it to perform some computation?

• Communication is expensive

– Need to be smart about where data is stored, and 
when it is moved

• Coordination is key

– The computation needs to be carefully orchestrated to 
get the correct result

– … especially if there are failures, heterogeneous 
machines, etc.

Key challenges



Case Study: MapReduce

(Data-parallel programming at scale)
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• MapReduce is a famous distributed programming 
model
– Invented at Google; paper published in 2004
– At that time, it was used for the production indexing 

system

• Closed source, but open-source reimplementations 
exist 
– Example: Apache Hadoop

• Originally ran on GFS (The Google FileSystem)
– GFS is designed for sequential reads and appends
– This is the workload that MapReduce would produce!
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What is MapReduce?



Application:  Word Count

SELECT count(word) FROM data 

 GROUP BY word

cat data.txt

|  tr -s '[[:punct:][:space:]]' '\n' 

|  sort  |  uniq -c
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Using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs
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Using partial aggregation: data flow

1. In parallel, send to worker:

– Compute word counts from individual files

– Collect result, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates



• Wouldn't it be nice if there were some system that 

took care of all these details for you?
– But every task is different!

– Or is it? The detailed are different (what to compute, etc.), 
but the data flow is often same!

– Maybe we can have a ‘generic’ solution?

• Ideally, just tell the system what needs to be done

• This is what frameworks like MapReduce (and Apache Spark 

and Apache Flink) do!

I don’t want to deal with all this!



map(key, value) -> list(<k’, v’>)

– Apply function to (key, value) pair and produces 

set of intermediate pairs 

reduce(key, list<value>) -> <k’, v’>

– Applies aggregation function to values collected 

by key

– Outputs result

10

MapReduce:  Programming Interface
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MapReduce example: Word Count

map(String key, String value):

// key: document name; value: document line

for each word w in value: 

 EmitIntermediate(w, "1");

reduce(String key, Iterator values): 

 // key: a word; value: a list of counts

 int result = 0;

 for each v in values: 

  result += ParseInt(v); 

 Emit(key, AsString(result));



combine(list<key, value>) -> list<k,v>

– Perform partial aggregation on mapper node:

  <the, 1>, <the, 1>, <the, 1> → <the, 3> 

– combine() should be commutative and associative

partition(key, int) -> int

– Need to aggregate intermediate vals with same key

– Given n partitions, map key to partition 0 ≤ i < n

– Typically via hash(key) mod n
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MapReduce:  Optimizations
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Putting it together…

map combine partition reduce
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Synchronization Barrier
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Fault Tolerance in MapReduce

• Map worker writes intermediate output to 

local disk, separated by partitioning. Once 

completed, tells master node.

• Reduce worker told of location of map task 

outputs, pulls their partition’s data from each 

mapper, execute function across data

• Note:

– “All-to-all” shuffle b/w mappers and reducers

– Written to disk (“materialized”) b/w each stage
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Fault Tolerance in MapReduce

• Master node monitors state of system

– If master failures, job aborts and client notified

• Map worker failure

– Both in-progress/completed tasks marked as idle

– Reduce workers notified when map task is re-executed 

on another map worker

• Reducer worker failure

– In-progress tasks are reset to idle (and re-executed)

– Completed tasks had been written to global file system
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Straggler Mitigation in MapReduce

• Tail latency means some workers finish late

• For slow map tasks, execute in parallel on second map 

worker as “backup”, race to complete task



• MapReduce worked very well for Google’s initial use 

cases, and lots of others besides
– No data dependencies within map/reduce phases → Good 

scalability

• But it does have some important limitations:
– Complex operations have to be rewritten into ‘map’ and 

‘reduce’ operations (possibly with several rounds of 
mapping and reducing)

– Dataflows always read from and write to disk (why?) → 
limited speed

MapReduce: Limitations



You’ll build (simplified) MapReduce!

• Assignment 1:  Sequential MapReduce

– Learn to program in Go!

• Assignment 2:  Distributed MapReduce

– Learn Go’s concurrency, network I/O, and RPCs
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