Byzantine Fault Tolerance

alllauc Ellal) deals

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 14

Marco Canini

So far: Fail-stop failures

Traditional state machine replication tolerates
fail-stop failures:

—Node crashes
— Network breaks or partitions

State machine replication with N = 2f+1 replicas
can tolerate f simultaneous fail-stop failures

— Two algorithms: Paxos, RAFT

Byzantine faults

Byzantine fault: Node/component fails arbitrarily
— Might perform incorrect computation

—Might give conflicting information to
different parts of the system

—Might collude with other failed nodes

Why might nodes or components fail arbitrarily?
— Software bug present in code

—Hardware failure occurs

—Hack attack on system

Today: Byzantine fault tolerance

« Can we provide state machine replication for a
service in the presence of Byzantine faults?

* Such a service is called a Byzantine Fault
Tolerant (BFT) service

» Why might we care about this level of reliability?

4

Mini-case-study: Boeing 777 fly-by-wire
primary flight control system

* Triple-redundant, dissimilar
processor hardware:

1. Intel 80486

2. Motorola .)
> Key techniques:

. Eaci Hardware and software diversity
from Voting between components

Simplified design: A
» Pilot inputs = three processors >
* Processors vote - control surface | | _—

LEFT ELEVATOR

Today

1. Traditional state-machine replication for BFT?
2. Practical BFT replication algorithm

3. Performance and Discussion

Review: Tolerating one fail-stop failure

Traditional state machine replication (Paxos)
requires, e.q., 2f+ 1 = three replicas, if f= 1

Operations are totally ordered - correctness
— A two-phase protocol

Each operation uses =2+ 1 = 2 of them
—Overlapping quorums
* SO at least one replica “remembers’

Use Paxos for BFT?

1. Can’t rely on the primary to assign proposal #
— Could assign same proposal # to different requests

2. Can’t use Paxos for view change

— Under Byzantine faults, the intersection of two
majority (f+ 1 node) quorums may be bad node

— Bad node tells different quorums different things!
* e.g. tells NO accept val1, but N1 accept val2

Paxos under Byzantine faults (F=1)

Paxos under Byzantine faults

(F=1)

— g

Va

N0<L Decide]
n,=1.N0 | Xyz

n,=1.NO

10

Paxos under Byzantine faults

(F=1)

Va

N0<L Decide
n,=1.NO XyzZ

11

Paxos under Byzantine faults (F=1)

NO<<"Decide [Decide% N1 /’
n,=1.N0 (__ Xyz abc n,=1.N2

Conflicting decisions!

12

Theoretical fundamentals:
Byzantine Generals

Result: Using messengers, problem
solvable iff > % of the generals are loyal

13

Put burden on client instead?

 Clients sign input data before storing it, then verify
signatures on data retrieved from service

« Example: Store signed file f1="aaa” with server
— Verify that returned 1 is correctly signed

<cryptography in 6 slides>

KpUuTrTo + ypan (Cryptography)

Greek for “secret writing”

Confidentiality

— Obscure a message from eavesdroppers
Integrity

— Assure recipient that the message was not altered

Authentication
— Verify the identity of the source of a message

Non-repudiation
— Convince a 3" party that what was said is accurate

Terminology

Alice _ =
intext ciphertext \
mnd ENCryption ﬁ > (sl

« Encryption algorithm

— Transforms a plaintext into a ciphertext that is unintelligible for
non-authorized parties

— Usually parametrized with a cryptographic key
« Asymmetric (Public) key cryptography

— Crypto system: encryption + decryption algorithms + key
generation

« Symmetric (Shared) key cryptography
— Cipher/decipher: symmetric-key encryption/decryption algorithms

_ Bob _
ciphertext plaintext

plain
a 4 Decryption gud

[

17

Symmetric key encryption

nonce
Alice

Bob
e\
m, n E(k,m,r)=cﬁ 7SS cn D(k,c,n)=m
T
=
| |
K K

E, D: cipher k: secret key (e.g. 128 bits)

m, c. plaintext, ciphertext N. nonce (akalv)

Encryption algorithm is publicly known

* Never use a proprietary cipher
18

Public key encryption

Gen

PKBOb drsssonsssssssnsnsasnnnnnny > SKBOb

PK: public key , SK: secret key (e.g., 1024 bits)
Example: Bob generates (PKg,,, SKg,,) and gives PKg,, to Alice

19

Applications

* Public-key encryption
— Alice public key for encryption

— Anyone can send encrypted message
— Only Alice can decrypt messages (with secret key)

 Digital signature scheme

— Alice public key for verifying signatures
— Anyone can check a message signed by Alice
— Only Alice can sign messages (with secret key)

Establishing a shared secret

Alice Bob
(Pk, sk) < G()
“Alice”, pk

>
choose random

X

“Bob”, c—E(pk,x)

D(sk,c) — X

X shared secret

21

</cryptography in 6 slides>

Put burden on client instead?

Clients sign input data before storing it, then verify
signatures on data retrieved from service

Example: Store signed file f1="aaa” with server
— Verify that returned 1 is correctly signed

But a Byzantine node can
signed In its response

Clients have to perform
computations and sign data

23

Today

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm
[Liskov & Castro, 2001]

3. Performance and Discussion

24

Practical BFT: Overview

Uses 31+1 replicas to survive ffailures
— Shown to be minimal (Lamport)

Requires three phases (not two)

Provides state machine replication

— Arbitrary service accessed by operations
 E.g., file system ops read and write files and directories

— Tolerates Byzantine-faulty clients

25

Correctness argument

* Assume operations are deterministic
« Assume replicas start in same state

* |f replicas execute same requests in same order:
— Correct replicas will produce identical results

Replicas
26

Non-problem: Client failures

» Clients can’t cause replica inconsistencies

« Clients can write bogus data to the system

— Sol’n: Authenticate clients and separate their data
 This is a separate problem

C"enﬁ‘iiﬁ.\\\
D W \
e RNyl

gL L L

Replicas

What clients do

1. Send requests to the primary replica

2. Wait for f+1 identical replies

— Note: The replies may be deceptive
* j.e. replica returns “correct” answer, but locally does otherwise!

« But 2 one reply is actually from a non-faulty replica

prd 02 ‘
D U U \
Client G/:& (O} 3f+1 replicas

| S ,ﬁ ______________

28

What replicas do

 Carry out a protocol that ensures that
— Replies from honest replicas are correct

— Enough replicas process each request to ensure that
* The non-faulty replicas process the same requests
* In the same order

« Non-faulty replicas obey the protocol

Primary-Backup protocol

* Primary-Backup protocol: Group runs in a view
— View number designates the primary replica

Client

-

View

* Primary is the node whose id (modulo view #) = 1

Ordering requests

* Primary picks the ordering of requests
— But the primary might be a liar!

Client

-

View

» Backups ensure primary behaves correctly
— Check and certify correct ordering

— Trigger view changes to replace faulty primary

Byzantine quorums (F=1)

A Byzantine quorum contains 2 2f+1 replicas

NN EEN NN BN EEN EEN BN BN BEN BEN BN BEE EEN BN BEE EEE N BN B

—————————————————————

* One op’s quorum overlaps with next op’s quorum
— There are 3f+1 replicas, in total

* So overlap is 2 f+1 replicas

* 1 replicas must contain = 1 non-faulty replica

32

Quorum certificates

A Byzantine quorum contains 2 2f+1 replicas

* Quorum certificate: a collection of 2f + 1 signed
identical messages from a Byzantine quorum

— All messages agree on the same statement

J

33

Keys

« Each client and replica has a private-public
keypair

« Secret keys: symmetric cryptography
— Key is known only to the two communicating parties
— Bootstrapped using the public keys

« Each client, replica has the following secret keys:
— One key per node for sending messages
— One key per node for receiving messages

Ordering requests

m=(request,op,t)signed, client

N

Primary k (Let Seq(m)=n)8igned, Primary

Backup 1 \\

Backup 2 \
%

Backup 3

* Client requests operation op with timestamp t

* Primary chooses the request’s sequence number (n)
— Sequence number determines order of execution

35

Checking the primary’s message

Msigned, Client
Let Seq(m)=n3igned, Primary

Primary k

| accept Seq(m)=nSigned, Backup 1

| accept Seq(m)=nSigned, Backup 2

Backup 1 \\

Backup 2 \
%

Backup 3 ﬁ

» Backups locally verify they've seen < one client
request for sequence number n

— If local check passes, replica broadcasts accepf message
« Each replica makes this decision independently

36

Collecting a prepared certificate (=1

Msigned, Client
Let Seq(m)=n3igned, Primary

Primary k‘
Backup 1 \\

Backup 2 \
Backup 3 “ ﬁ

0
I @CCGPt SeCI('“):nSigned, Backup 1
. >

I c‘thCGPt SeCI(W'):nSigned, Backup 2

Each correct node has a prepared certificate locally, |
. but does not know whether the other correct |
i nodes do too! So, we can’t commit yet!

Collecting a committed certificate (r=1)

mSigned, Client Have cert for

Let SeCI(m)—n Seﬂ(m)=n3igned, Primary
Pri =
rimary ?
k; — ~_Signed, Backup 1
- >
Backup 1 \\ & —!
— Signed, Backup 2
>
Backup 2 \
%]
Backup 3

N TN M M N N N R NN R M R N R N M N RN N M N RN N M N M N M N RN N RN N RN N M N M N M N M N M N M N R N M N M N M N M N M N M N M N M M M N N M N S

Once the request is committed, replicas
. execute the operation and send areply |
i directly back to the client. 5

Byzantine primary: replaying old requests

* The client assigns each request a unique,
monotonically increasing t

« Servers track greatest t executed for each client c,
and their corresponding reply

— On receiving request to execute with timestamp t:
* |[ft <T(c), skip the request execution
* Ift=T(c), resend the reply but skip execution
* [ft>T(c), execute request, set T(c) < t, remember reply

Malicious primary can invoke t = T(c)
case but cannot compromise safety

Byzantine primary: Splitting replicas (F=1)

Msigned, Client Replayed request,
S|gned by client

Primary kl Let seq(m f /
Backup 1 \\‘ Let seq(m)=n //\

Backup 2
\l Let seq(m)=n

Backup 3 acceptm

———————————————

\4

B ——

v

.

—————————————

* Recall: To prepare, need primary message and 2f accepts
— Backup 1: Won’t prepare m’
— Backups 2, 3: Will prepare m

40

Splitting replicas

* In general, backups won’t prepare two different
requests with the same seqgno if primary lies

* Suppose they did: two distinct requests m and m’
for the same sequence number n

— Then prepared quorum certificates (each of size
2f+1) would intersect at an honest replica

— So that honest replica would have sent an accept
message for both m and m’ which can’t happen

eSom=m’

41

View change

Client

o

Backups View

ANn BN BN BN NN BN BN EEN BN BN EEN BN NN BEN BN NN BEN BN NN BEN BN NN EEN BN BN BN BN BN BN B

« If a replica suspects the primary is faulty, it requests a
view change

— Sends a view change request to all replicas
» Everyone acks the view change request

* New primary collects a quorum (2+1) of responses
— Sends a new-view message with this certificate

42

Considerations for view change

Need committed operations to survive into next view
— Client may have gotten answer

Need to preserve liveness

— If replicas are too fast to do view change, but really
primary is okay — then performance problem

— Or malicious replica tries to subvert the system by
proposing a bogus view change

43

Garbage collection

Storing all messages and certificates into a log
— Can't let log grow without bound

Protocol to shrink the log when it gets too big

— Discard messages, certificates on commit?
* No! Need them for view change

— Replicas have to agree to shrink the log

Proactive recovery

What we've done so far: good service provided there
are no more than ffailures over system lifetime

— But cannot recognize faulty replicas!

Therefore proactive recovery:

— Recover the replica to a known good state
whether faulty or not

Correct service provided no more than ffailures in
a small time window — e.g., 10 minutes

45

Recovery protocol sketch

« Watchdog timer

e Secure co-processor
— Stores node’s private key (of private-public keypair)

« Read-only memory

» Restart node periodically:
— Saves its state (timed operation)
— Reboot, reload code from read-only memory
— Discard all secret keys (prevent impersonation)
— Establishes new secret keys and state

Today

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm
[Liskov & Castro, 2001]

3. Performance and Discussion

47

File system benchmarks

» BFS filesystem runs atop BFT
— Four replicas tolerating one Byzantine failure
— Modified Andrew filesystem benchmark

* What's performance relative to NFS?
— Compare BFS versus Linux NFSv2 (unsafe!)
* BFS 15% slower: claim can be used in practice

48

Practical limitations of BFT

Protection is achieved only when at most f nodes fail
— |Is one node more or less secure than four?

* Need independent implementations of the
service

Needs more messages, rounds than
conventional state machine replication

Does not prevent many classes of attacks:
— Turn a machine into a botnet node
— Steal data from servers

49

Large impact

Inspired much follow-on work to address its
limitations

* The ideas surrounding Byzantine fault
tolerance have found numerous applications:

— Boeing 777 and 787 flight control computer systems
— Digital currency systems

« Being picked up again in developments of
permissioned blockchain systems

50

