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• Efficient read-only transactions in strictly 
serializable systems
– Strict serializability is desirable but costly!
– Reads are prevalent! (340x more than write txns)

– Efficient ro-txns à good overall performance

Recap: Spanner is Strictly Serializable
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• Timestamping writes must enforce the invariant
– If T2 starts after T1 commits (finishes), then T2 must have a 

larger timestamp

• TrueTime: partially-synchronized clock abstraction
– Bounded clock skew (uncertainty)
– TT.now() à [earliest, latest]; earliest <= Tabs <= latest
– Uncertainty (ε) is kept short

• TrueTime enforces the invariant by
– Use at least TT.now().latest for timestamps
– Commit wait

Recap: TrueTime
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Enforcing the Invariant with TT

Tabs
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TrueTime

T1.now()
= [3, 15]

T1.commit
(ts = 15)
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wait

TT.after(15) 
== true
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b < x

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Enforcing the Invariant with TT
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T2.now()
= [18, 22]

T2.commit
(ts = 22)
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wait

wait

If T2 starts after T1 commits (finishes), then T2 must 
have a larger timestamp
Let T1 write SB and T2 write SA
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Strictly Serializable Multi-Shard 
Transactions

• How are clocks made “nearly perfect”?
– TrueTime

• How does Spanner leverage these clocks?
– How are writes done and tagged?

– How read-only transactions are made efficient?
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Scale-out vs. fault tolerance
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Spanner mechanisms

• 2PL for concurrency control of read-write transactions

• 2PC for distributed transactions over tables

• (Multi)Paxos for replicating every tablet
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• How write transactions are done
– 2PL + 2PC (sometimes 2PL for short)
– How they are timestamped

• How read-only transactions are done
– How read timestamps are chosen

– How reads are executed

This Lecture
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• Three phases

Execute  à Prepare  à Commit

Read-Write Transactions (2PL)

2PC: atomicity
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Client: 2PL w/ 2PC

1. Issues reads to leader of each shard group,                     
which acquires read locks and returns most recent data

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,                         
include identity of coordinator and buffered writes

5. Waits for commit from coordinator

Client-driven transactions (multi-shard)
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Read-Write Transactions (2PL)

A
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C

T

R(A)

A=a
Execute

Client

Txn T = {R(A=?), W(A=?+1), W(B=?+1), W(C=?+1)}
Execute: 
• Does reads: grab read locks and return the most recent data, e.g., R(A=a)
• Client computes and buffers writes locally, e.g., A = a+1, B = a+1, C = a+1
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Read-Write Transactions (2PL)

A
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ok
Recv W(a+1)

Recv W(a+1)

Recv W(a+1)

Log Prepare

Log Prepare

Execute Prepare

Client

Prepare: 
• Choose a coordinator, e.g., A, others are participants
• Send buffered writes and the identity of the coordinator; grab write locks
• Each participant prepares T by logging a prepare record via Paxos with its 

replicas. Coord skips prepare (Paxos Logging) 
• Participants send OK to the coord if lock grabbed and after Paxos logging is done
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Read-Write Transactions (2PL)
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Apply W(a+1)

Apply W(a+1)

Commit
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ack

Client

Commit: 
• After hearing from all participants, coord commits T if all OK; otherwise, abort T 
• Coord logs a commit/abort record via Paxos, applies writes if commit, release all locks
• Coord sends commit/abort messages to participants
• Participants log commit/abort via Paxos, apply writes if commit, release locks
• Coord sends result to client either after its “log commit” or after ack 
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Timestamping Read-Write Transactions

Client
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ack
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tsA

Commit
Wait

T.ts = tsA

T.ts = tsA

T.ts = tsA

Timestamping: 
• Participant: choose a timestamp, e.g., tsB and tsC, larger than any writes it has applied
• Coordinator: choose a timestamp, e.g., tsA, larger than

– Any writes it has applied
– Any timestamps proposed by the participants, e.g., tsB and tsC
– Its current TT.now().latest

• Coord commit-waits: TT.after(tsA) == true. Commit-wait overlaps with Paxos logging
• tsA is T’s commit timestamp
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• Tag writes with physical timestamps upon commit
– Write txns are strictly serializable, e.g., 2PL

• Read-only txns return the writes, whose commit 
timestamps precede the reads’ current time
– Ro-txns are one-round, lock-free, and never abort

Ideas Behind Read-Only Txns
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Read-Only Transactions (shards part)
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15
Wait

• Client chooses a read timestamp ts = TT.now().latest
• If no prepared write, return the preceding write, e.g., on A
• If write prepared with ts’ > ts, no need to wait, proceed with read, e.g., 

on B
• If write prepared with ts’ < ts, wait until write commits, e.g., on C
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Read-Only Transactions (Paxos part)
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T’

ts=10
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W1cmtW0
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W2

W2Paxos W3Paxos

• Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied 
earlier, W2 is applied before W3

• T’ needs to wait until there exits a Paxos write with ts>10, e.g., W3, so all writes before 
10 are finalized

• Put it together: a shard can process a read at ts if ts <= tsafe

• tsafe = min(𝑡!"#$%"&'!, 𝑡!"#$() ) : before tsafe, all system states (writes) have finalized
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• What if no replication, only shards
– Not in the paper, not realistic

A Puzzle to Help With Understanding
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T’ sees partial effect of T, e.g., sees WC but not WA, and violates atomicity 
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Txn T = {WA, WC}, T’ = R (A, C)
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• Solution: uncertainty-wait

A Puzzle to Help With Understanding
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Uncertainty-wait ensures that tscmt must > readTS because
• W1 starts after T’ “commits,” and
• T’ waits out uncertainty before “commit”, e.g., TT.after(10) == true
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• Client specifies a read timestamp way in the past
– E.g., one hour ago

• Read shards at the stale timestamp

• Serializable
– Old timestamp cannot ensure real-time order

• Better performance
– No waiting in any cases 
– E.g., non-blocking, not just lock-free

Serializable Snapshot Reads
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• Strictly serializable (externally consistent)
– Make it easy for developers to build apps!

• Reads dominant, make them efficient
– One-round, lock-free

• TrueTime exposes clock uncertainty
– Commit wait and at least TT.now.latest() for 

timestamps ensure real-time ordering

• Globally-distributed database
– 2PL w/ 2PC over Paxos!

Takeaway
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