
Reasoning about
System Performance

CS 240: Computing Systems and Concurrency
Lecture 21

Marco Canini



• We cared a lot about:
– Are the results correct?

• But in practice we also need to consider 
quantitatively:
– Are the results obtained in a reasonable time?
– Is a system faster than another one?

• Today— How to analyze the performance of a 
system?

2

Context and today’s outline



• The study of an entire system, including all 
physical components and the full software stack

• Include anything that can affect performance
– Anything in the data path, software or hardware
– For distributed systems, this means multiple servers

3

What’s systems performance?

System
Under
Test

Input

(Workload)

Resulting Performance

Perturbations



• Workload
– The input to the system or load applied

• Utilization
– A measure of how busy a resource is
– The capacity consumed (for a capacity-based 

resource)
• Saturation

– The degree to which a resource has queued work it 
cannot service

• Bottleneck
– A resource that limits the system performance

4

Some terms



• Response time (also latency at times)
– The time for an operation to complete
– Includes any time spent waiting (queuing time) and 

time spent being serviced (service time), and time to 
transfer the result

5

More terms

Input

Response
Time

Output

Queue Server



• Many roles:
– Sys admins / capacity planners
– Support staff
– Application developers
– DB / Web admins
– Researchers
– Performance engineers (primary activity)

6

Who in interested?



• Like a work of art, a successful 
evaluation cannot be produced 
mechanically

• Every evaluation requires an 
intimate knowledge of the system 
and a careful selection of 
methodology, workloads and tools

• Performance is challenging

7

Performance evaluation is an art



• Is there an issue to begin with? If so, when is it considered fixed?

• Consider:
– The average disk I/O response time is 1 ms

• Is this good or bad?

• Response time is one of the best metrics to quantify 
performance; the difficulty is interpreting its information

• Performance objectives and goals need to be clear
– Orient expectations as well as choice of techniques, tools, 

metrics and workloads
8

Performance is subjective



• Many components and sources of root causes
• Issues may arise from complex interactions between 

subsystems that operate well in isolation
– Cascading failures: when one failed component causes 

performance issues in others
• Bottlenecks may be complex and related in unexpected ways

– Fixing one may simply move the bottleneck elsewhere
• Issue may be caused by characteristics of workload that are 

hard to reproduce in isolation
• Solving complex issues often require a holistic approach

– The whole system needs to be investigated

9

Systems are complex



10

Example of cascading failure

Upstream 
service

August 2014 outage
• One request type was accessing a single slow database

and exhausted an upstream service’s thread pool
• This starved other unrelated requests… causing 

widespread application unavailability

Front end 
service
Front end 

service
Front end 

service
Database
service
Database
service
Database
service

App 1

App 2

WorkflowWorkflowApp 3

x10



• You can’t optimize what you don’t know
• Must quantify the magnitude of issues
• Measuring an existing system helps to see its 

performance and perhaps the room for possible 
improvements

• Need to define metrics

• Know your tools!
• Be systematic!
• Don’t reinvent the wheel!

11

Measurement is crucial



Measuring Distributed Systems

Client 1

Client 2

Client N

Distributed System

12



Measuring Distributed Systems

Client Distributed System

13



• The time spent waiting
– E.g., setup a network connection

OR (broadly)
• The time for a request/operation to complete

– E.g., an RPC, data transfer over the network,
a DB query, a file system write

• Measured externally from time request is sent until 
time response is received

• Can allow to estimate maximum speedup
– E.g., assume the network had infinite capacity and 

transfer were instantaneous, how fast would the 
system go?

14

Latency



Latency, Measure Externally

Client Distributed System

15



Latency, Reason Internally

Client

Single Machine

Server

16



Latency, Reason Internally

Client

Single Machine

Server

1

2

3

Latency = 1 + 2 + 3

17



Throughput
• The rate of work performed: how many operations 

per unit time (ops/s) a system can handle
– In communication:

• Data rate: bytes per second, bits per second
• (Goodput useful throughput: rate for the payload only)

– Systems:
• Operation rate: ops per second, txns, per second

– IOPS
• Input/output operations per second

– E.g., reads and writes to disk per second

• Measured externally as the rate that responses come 
out of the system

18



Max Throughput Example (Not Ideal)

Client

Single Machine

Server

Throughput = Number of (valid) responses received by all clients
End time – start time

19



Queuing Delay & Overload

Client

Single Machine

Server

• Queuing delay: extra latency spent in queue(s)
• Higher load à increase in latency

• Overload: offered load > max system throughput
• Queues get really long
• Other weird/bad things happen
• àObserved throughput < max system throughput 20



21

Utilization, Saturation

U
til

iz
at

io
n

Load

Saturation

100%

0%

Utilization (time-based) = B/T
B is amount of time the resource was busy during T
Intuitively, how busy a component is



22

Performance degradation

Load

R
es

po
ns

e
Ti

m
e

Linear

Actual



Measuring Throughput Method

1. Starting with low load

2. Increase load

3. Repeat until measured throughput stops 
increasing

23



Throughput, Reason Internally

Client

Single Machine

Server

24



Throughput, Reason Internally

Client

Single Machine

Server

1

2

3

Throughput = min(1, 2, 3)

25



Throughput Bottlenecks (simplified)

Client

Single Machine

Server

1

2

3

Max throughput limited by some bottleneck resource:
1) Incoming bandwidth
2) Server CPU
3) Outgoing bandwidth

26



Load Generation
• Closed-loop

– Each “client” sends one request, waits for the response 
to come back, and then sends another request

– More “clients” => more load

• Open-loop
– Load is generated independently of the response rate 

of the system, typically from a probability distribution
– More directly control the load on the system

• Which one is more realistic?
• We’ll reason using closed-loop clients

27



Mental Experimental Setup

• Start with 1 closed-loop client
– Expected latency?
– Expected throughput?

• Double number of closed-loop clients
– Expected increase in latency?
– Expected increase in throughput?

• Repeat

28



Throughput-Latency Graph
Simple Setting: Single Server; Client-Server RTT 90ms;
Server Processing latency 10ms; Single-Threaded Server (100 ops/s)

La
te

nc
y

(m
s)

100

10 20 40
100

Throughput (operations/sec)
29



Throughput-Latency Graph
La

te
nc

y

Throughput

Underloaded

Overload

Common operating point:
70-80% max load

30



Throughput / Latency Relationship
• Proportional at low load … but not high load
• Because measured throughput is a function of 

latency
– i.e., throughput bottleneck is offered load

• Related, but you should reason about both
• For system A vs system B, all are possible:

– A has lower latency and higher throughput than B
– A has lower latency and lower throughput than B
– A has higher latency and lower throughput than B
– A has higher latency and higher throughput than B

31



32

Scalability
Th

ro
ug

hp
ut

Load

Saturation

Knee point: beyond it, 
contention for resources 
increases; a component 
becomes 100% utilized

Linear

Actual



Evaluation in Minutes not Months
• Reasoning using your mental model is much 

much faster than really doing it

• What would happen if?
– I moved my servers from the San Jose datacenter to Oregon?
– I switch from c5.xlarges to c5.24xlarges for my servers?
– I doubled the number of servers?
– I switch from system design X to system design Y?

• replace single server with Paxos-replicated system?
• replace Paxos with eventually consistent design?
• add batching?
• replace Paxos with new variant?

33



Let’s use these tools!

34



Mental Experimental Setup

• System A versus System B

• From 1 to N closed-loop clients loading each

• Compare throughput and latency

35



Move Single Server from San Jose to Oregon
(Clients in San Jose)

La
te

nc
y

Throughput

Server in San Jose
Server in Oregon

36



Replace Single Server with Paxos
(Clients and servers in same datacenter, 3 replicas)

La
te

nc
y

Throughput

Single Server
Paxos

37



Paxos: 3 replicas to 5 replicas
(Clients and servers in same datacenter)

La
te

nc
y

Throughput

3 replicas
5 replicas

38



Paxos: 3 replicas to 30 replicas
(Clients and servers in same datacenter)

La
te

nc
y

Throughput

3 replicas
30 replicas

39



Batching
• Group together multiple operations

• Improves throughput, e.g., 
– Marshall data together
– Send to network layer together
– Unmarshall data together
– Handle group of operations together

• Delay processing/sending operations 
to increase batch size
– Common way to trade an increase in latency

for increase in throughput

40



Paxos with batching
(Clients and servers in same datacenter, 3 replicas)

La
te

nc
y

Throughput

no batching
with batching

41



Paxos: 3 local replicas to geo-replicated
(Clients in NY; replicas in NY, Oregon, Singapore

La
te

nc
y

Throughput

all local
leader in NY
leader in Singapore

42



Summary
• Measure distributed systems externally

• Latency: how long operations take
• Throughput: how many operations/sec

• Reason about latency and throughput using internal 
knowledge of system design 
– (and back-of-the-envelope calculations)

• Reason about effects on latency and throughput from 
changes to system choice, deployment, design
– Critical tool in system design

43



Five ways not to fool yourself 
or: designing experiments for 
understanding performance

Tim Harris

https://timharris.uk/misc/five-ways.pdf

44

https://timharris.uk/misc/five-ways.pdf


Measure as you go

• Develop good test harness for running 
experiments early

• Have scripts for plotting results
• Automate as much as possible

– Ideally it is a single click process!
• Divide experimental data from plot data



Gain confidence (and 
understanding)

• Plot what you measure
• Be careful about trade-offs
• Beware of averages
• Check experiments are reproducible

• (Also statistics! Deal with outliers, repetitions)



Include lightweight sanity checks

• It’s easy for things to go wrong… and without 
noticing…

• Make sure you catch problems
• Have sufficiently cheap checks to leave on in all 

runs
• Have sanity checks at the end of a run
• And don’t output results if any problem occurs



Understand simple cases first
• Start with simple settings and check the system 

behaves as expected
• Be in control of sources of uncertainty to the 

largest extent possible
– And use checks to detect if that assumption does 

not hold
• Simplify workloads and make sure experiments 

are long enough
• Use these as a performance regression test for 

the future



Look beyond timing

• End to end improvements are great but are they 
happening because of your optimization?

• Try to link differences in workloads with 
performance

• Look further into differences in resource utilization 
and statistics from performance counters



Toward production setting

• Do observations made in simple controlled 
settings hold in more complex environments?

• If that is not true, try to decouple a number of
aspects of this problem

• Change one factor at a time
• Try to understand the differences



Document results
• You will forget!

– What did that experiment produce?
– Where did I see that result?

• Pick a good convention to save data
• Use non destructive approaches
• Write summary of observations and possible 

explanations
– Recall: our objective is better understanding

• Pick a good tool for experimenting, documenting and 
sharing
– Try Jupyter



52

Final exam: Wed 12/14, 8:00-10:50AM , 9-4223

Please fill in course feedback


