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• We cared a lot about:
– Are the results correct?

• But in practice we also need to consider 
quantitatively:
– Are the results obtained in a reasonable time?
– Is a system faster than another one?

• Today— How to analyze the performance of a 
system?
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Context and today’s outline



• The study of an entire system, including all 
physical components and the full software stack

• Include anything that can affect performance
– Anything in the data path, software or hardware
– For distributed systems, this means multiple servers
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What’s systems performance?
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• Workload
– The input to the system or load applied

• Utilization
– A measure of how busy a resource is
– The capacity consumed (for a capacity-based 

resource)
• Saturation

– The degree to which a resource has queued work it 
cannot service

• Bottleneck
– A resource that limits the system performance
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Some terms



• Response time (also latency at times)
– The time for an operation to complete
– Includes any time spent waiting (queuing time) and 

time spent being serviced (service time), and time to 
transfer the result
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More terms
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• Many roles:
– Sys admins / capacity planners
– Support staff
– Application developers
– DB / Web admins
– Researchers
– Performance engineers (primary activity)
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Who in interested?



• Like a work of art, a successful 
evaluation cannot be produced 
mechanically

• Every evaluation requires an 
intimate knowledge of the system 
and a careful selection of 
methodology, workloads and tools

• Performance is challenging
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Performance evaluation is an art



• Is there an issue to begin with? If so, when is it considered fixed?

• Consider:
– The average disk I/O response time is 1 ms

• Is this good or bad?

• Response time is one of the best metrics to quantify 
performance; the difficulty is interpreting its information

• Performance objectives and goals need to be clear
– Orient expectations as well as choice of techniques, tools, 

metrics and workloads
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Performance is subjective



• Many components and sources of root causes
• Issues may arise from complex interactions between 

subsystems that operate well in isolation
– Cascading failures: when one failed component causes 

performance issues in others
• Bottlenecks may be complex and related in unexpected ways

– Fixing one may simply move the bottleneck elsewhere
• Issue may be caused by characteristics of workload that are 

hard to reproduce in isolation
• Solving complex issues often require a holistic approach

– The whole system needs to be investigated
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Systems are complex
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Example of cascading failure

Upstream 
service

August 2014 outage
• One request type was accessing a single slow database

and exhausted an upstream service’s thread pool
• This starved other unrelated requests… causing 

widespread application unavailability
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• You can’t optimize what you don’t know
• Must quantify the magnitude of issues
• Measuring an existing system helps to see its 

performance and perhaps the room for possible 
improvements

• Need to define metrics

• Know your tools!
• Be systematic!
• Don’t reinvent the wheel!
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Measurement is crucial



Measuring Distributed Systems

Client 1

Client 2

Client N

Distributed System
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Measuring Distributed Systems

Client Distributed System
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• The time spent waiting
– E.g., setup a network connection

OR (broadly)
• The time for a request/operation to complete

– E.g., an RPC, data transfer over the network,
a DB query, a file system write

• Measured externally from time request is sent until 
time response is received

• Can allow to estimate maximum speedup
– E.g., assume the network had infinite capacity and 

transfer were instantaneous, how fast would the 
system go?
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Latency



Latency, Measure Externally

Client Distributed System
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Latency, Reason Internally
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Latency, Reason Internally
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Latency = 1 + 2 + 3
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Throughput
• The rate of work performed: how many operations 

per unit time (ops/s) a system can handle
– In communication:

• Data rate: bytes per second, bits per second
• (Goodput useful throughput: rate for the payload only)

– Systems:
• Operation rate: ops per second, txns, per second

– IOPS
• Input/output operations per second

– E.g., reads and writes to disk per second

• Measured externally as the rate that responses come 
out of the system
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Max Throughput Example (Not Ideal)

Client

Single Machine

Server

Throughput = Number of (valid) responses received by all clients
End time – start time
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Queuing Delay & Overload

Client

Single Machine

Server

• Queuing delay: extra latency spent in queue(s)
• Higher load à increase in latency

• Overload: offered load > max system throughput
• Queues get really long
• Other weird/bad things happen
• àObserved throughput < max system throughput 20
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Utilization, Saturation
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Measuring Throughput Method

1. Starting with low load

2. Increase load

3. Repeat until measured throughput stops 
increasing
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Throughput, Reason Internally
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24



Throughput, Reason Internally
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Throughput = min(1, 2, 3)
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Throughput Bottlenecks (simplified)

Client

Single Machine
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Max throughput limited by some bottleneck resource:
1) Incoming bandwidth
2) Server CPU
3) Outgoing bandwidth
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Load Generation
• Closed-loop

– Each “client” sends one request, waits for the response 
to come back, and then sends another request

– More “clients” => more load

• Open-loop
– Load is generated independently of the response rate 

of the system, typically from a probability distribution
– More directly control the load on the system

• Which one is more realistic?
• We’ll reason using closed-loop clients
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Mental Experimental Setup

• Start with 1 closed-loop client
– Expected latency?
– Expected throughput?

• Double number of closed-loop clients
– Expected increase in latency?
– Expected increase in throughput?

• Repeat
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Throughput-Latency Graph
Simple Setting: Single Server; Client-Server RTT 90ms;
Server Processing latency 10ms; Single-Threaded Server (100 ops/s)
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Throughput-Latency Graph
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Common operating point:
70-80% max load
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Throughput / Latency Relationship
• Proportional at low load … but not high load
• Because measured throughput is a function of 

latency
– i.e., throughput bottleneck is offered load

• Related, but you should reason about both
• For system A vs system B, all are possible:

– A has lower latency and higher throughput than B
– A has lower latency and lower throughput than B
– A has higher latency and lower throughput than B
– A has higher latency and higher throughput than B
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Scalability
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Evaluation in Minutes not Months
• Reasoning using your mental model is much 

much faster than really doing it

• What would happen if?
– I moved my servers from the San Jose datacenter to Oregon?
– I switch from c5.xlarges to c5.24xlarges for my servers?
– I doubled the number of servers?
– I switch from system design X to system design Y?

• replace single server with Paxos-replicated system?
• replace Paxos with eventually consistent design?
• add batching?
• replace Paxos with new variant?
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Let’s use these tools!
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Mental Experimental Setup

• System A versus System B

• From 1 to N closed-loop clients loading each

• Compare throughput and latency
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Move Single Server from San Jose to Oregon
(Clients in San Jose)
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Replace Single Server with Paxos
(Clients and servers in same datacenter, 3 replicas)
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Paxos: 3 replicas to 5 replicas
(Clients and servers in same datacenter)
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Paxos: 3 replicas to 30 replicas
(Clients and servers in same datacenter)
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Batching
• Group together multiple operations

• Improves throughput, e.g., 
– Marshall data together
– Send to network layer together
– Unmarshall data together
– Handle group of operations together

• Delay processing/sending operations 
to increase batch size
– Common way to trade an increase in latency

for increase in throughput
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Paxos with batching
(Clients and servers in same datacenter, 3 replicas)
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Paxos: 3 local replicas to geo-replicated
(Clients in NY; replicas in NY, Oregon, Singapore
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Summary
• Measure distributed systems externally

• Latency: how long operations take
• Throughput: how many operations/sec

• Reason about latency and throughput using internal 
knowledge of system design 
– (and back-of-the-envelope calculations)

• Reason about effects on latency and throughput from 
changes to system choice, deployment, design
– Critical tool in system design
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Five ways not to fool yourself 
or: designing experiments for 
understanding performance

Tim Harris

https://timharris.uk/misc/five-ways.pdf
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https://timharris.uk/misc/five-ways.pdf


Measure as you go

• Develop good test harness for running 
experiments early

• Have scripts for plotting results
• Automate as much as possible

– Ideally it is a single click process!
• Divide experimental data from plot data



Gain confidence (and 
understanding)

• Plot what you measure
• Be careful about trade-offs
• Beware of averages
• Check experiments are reproducible

• (Also statistics! Deal with outliers, repetitions)



Include lightweight sanity checks

• It’s easy for things to go wrong… and without 
noticing…

• Make sure you catch problems
• Have sufficiently cheap checks to leave on in all 

runs
• Have sanity checks at the end of a run
• And don’t output results if any problem occurs



Understand simple cases first
• Start with simple settings and check the system 

behaves as expected
• Be in control of sources of uncertainty to the 

largest extent possible
– And use checks to detect if that assumption does 

not hold
• Simplify workloads and make sure experiments 

are long enough
• Use these as a performance regression test for 

the future



Look beyond timing

• End to end improvements are great but are they 
happening because of your optimization?

• Try to link differences in workloads with 
performance

• Look further into differences in resource utilization 
and statistics from performance counters



Toward production setting

• Do observations made in simple controlled 
settings hold in more complex environments?

• If that is not true, try to decouple a number of
aspects of this problem

• Change one factor at a time
• Try to understand the differences



Document results
• You will forget!

– What did that experiment produce?
– Where did I see that result?

• Pick a good convention to save data
• Use non destructive approaches
• Write summary of observations and possible 

explanations
– Recall: our objective is better understanding

• Pick a good tool for experimenting, documenting and 
sharing
– Try Jupyter
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Final exam: Wed 12/14, 8:00-10:50AM , 9-4223

Please fill in course feedback


