
Distributed Snapshots

CS 240: Computing Systems and Concurrency
Lecture 5

Marco Canini

Today
1. Distributed Snapshots and Global State

2. Chandy-Lamport algorithm

3. Reasoning about C-L: Consistent Cuts

2

• What is the state of a distributed system?

3

Distributed Snapshots

New York
acct1 balance =

$1000
acct2 balance =

$2000

San Francisco
acct1 balance =

$1000
acct2 balance =

$2000

• N processes in the system with no process failures
– Each process has some state it keeps track of

• There are two first-in, first-out, unidirectional channels
between every process pair P and Q
– Call them channel(P, Q) and channel(Q, P)

– All messages sent on channels arrive intact,
unduplicated, in order

– The channel has state, too: the set of messages inside

4

System model

“All messages sent on channels arrive intact,
unduplicated, in order”

• Q: Arrive?
• Q: Intact?
• Q: Unduplicated?
• Q: In order?

• TCP provides all of these when processes don’t fail

5

Aside: FIFO communication channel

• At-least-once retransmission
• Network layer checksums
• At-most-once deduplication
• Sender include sequence numbers,

receiver only delivers in sequence order

Global snapshot is global state
• Each distributed system has a number of processes

running on a number of physical servers

• These processes communicate with each other via
channels

• A global snapshot captures
1. The local states of each process (e.g., program

variables), and

2. The state of each communication channel

6

• Let’s represent process state as a set of colored tokens

• Suppose there are two processes, P and Q:

7

System model: Graphical example

P Q

Process P: Process Q:

channel(P, Q)

channel(Q, P)

R

G B

Y

O

V

Correct global snapshot =
Exactly one of each token

Why do we need snapshots?
• Checkpointing: Restart if the application fails

• Collecting garbage: Remove objects that don’t have any
references

• Detecting deadlocks: The snapshot can examine the
current application state
– Process A grabs Lock 1, B grabs 2, A waits for 2,

B waits for 1...

• Other debugging: A little easier to work with than printf…

8

Just synchronize local clocks?
• Each process records state at some agreed-upon time

• But system clocks skew, significantly with respect to CPU
process’ clock cycle
– And we wouldn’t record messages between

processes

• Do we need synchronization?

• What did Lamport realize about ordering events?

9

• Suppose we take snapshots only from a process
perspective

• Suppose snapshots happen independently at each
process

• Let’s look at the implications...

10

When is inconsistency possible?

• P, Q put tokens into channels, then snapshot

11

Problem: Disappearing tokens

P Q
R

G B
O

V

P = { G }

Y
Y

Q = { R, V }

B O

This snapshot misses Y, B, and O tokens

• P snapshots, then sends Y
• Q receives Y, then snapshots

12

Problem: Duplicated tokens

P Q
R

G B

Y

O

V

P = { G, Y }

Y Y

Q = { Y, R, V, B, O }

This snapshot duplicates the Y token

• What went wrong? We should have captured the state of
the channels as well

• Let’s send a marker message▲ to track this state
– Not an application message, does not interfere with

other application messages
– Channels deliver marker and other messages FIFO

13

Idea: “Marker” messages

Today
1. Distributed Snapshots and Global State

2. Chandy-Lamport algorithm

3. Reasoning about C-L: Consistent Cuts

14

• We’ll designate one node (say P) to start the snapshot
– Without any steps in between, P:

1. Records its local state (“snapshots”)
2. Sends a marker on each outbound channel

• Nodes remember whether they have snapshotted

• On receiving a marker, a non-snapshotted node
performs steps (1) and (2) above

15

Chandy-Lamport algorithm: Overview

• P snapshots and sends marker, then sends Y

• Send Rule: Send marker on all outgoing channels
– Immediately after snapshot
– Before sending any further messages

16

Chandy-Lamport: Sending process

P Q
R

G B

Y

O

V

snap: P = { G, Y }

▲Y

• At the same time, Q sends orange token O
• Then, Q receives marker ▲
• Receive Rule (if not yet snapshotted)

– On receiving marker on channel c record c’s state as empty

17

Chandy-Lamport: Receiving process (1/2)

P Q
R

G B
O

V

P = { G, Y }

▲Y

O

▲

Q = { R, V, B }

channel(P,Q) = { }

• Q sends marker to P
• P receives orange token O, then marker ▲
• Receive Rule (if already snapshotted):

– On receiving marker on c record c’s state: all msgs from c
since snapshot

18

Chandy-Lamport: Receiving process (2/2)

P Q
R

G B

V

P = { G, Y }

Y

O

Q = { R, V, B }

▲

O ▲

channel(P,Q) = { }

channel(Q,P) = { O }

• Distributed algorithm: No single process decides when it
terminates

• Eventually, all processes have received a marker (and
recorded their own state)

• All processes have received a marker on all the N–1
incoming channels (and recorded their states)

• Later, a central server can gather the local states to build
a global snapshot

Terminating a snapshot

19

• First: Initiator Pi records its own state

• for j=1 to N except i
• Pi sends out a Marker message on outgoing

channel Ci,j
• (N-1) channels

• Starts recording the incoming messages on each of the
incoming channels at Pi: Cj,i (for j=1 to N except i)

C-L Global Snapshot Algorithm (1/2)

20

Whenever a process Pi receives a Marker message
on an incoming channel Ck,i
• if (this is the first Marker Pi is seeing)

– Pi records its own state first
– Marks the state of channel Ck,i as “empty”
– for j=1 to N except i

• Pi sends out a Marker message on outgoing channel Ci,j
– Starts recording the incoming messages on each of the

incoming channels at Pi: Cj,i (for j=1 to N except i and k)
• else /* already seen a Marker message */

– Mark the state of channel Ck,i as all the messages that have
arrived on it since recording was turned on for Ck,i

CL Global Snapshot Algorithm (2/2)

21

Today
1. Distributed Snapshots and Global State

2. Chandy-Lamport algorithm

3. Reasoning about C-L: Consistent Cuts

22

23

Global state as cut of system’s execution

P1

P2

P3

A B C D

E

F

G

H

Cut = { The last event of each process, and message
of each channel that is in the cut }

Time →Snapshot of global state:
a subset of its global history

Global states and cuts
• Global state is a n-tuple of local states (one per process

and channel)

• A cut is a subset of the global history that contains an initial
prefix of each local state
– Therefore every cut is a natural global state
– Intuitively, a cut partitions the space time diagram along

the time axis

• Cut = { The last event of each process, and message of
each channel that is in the cut }

• A consistent cut is a cut that respects causality of
events

• A cut C is consistent when:

– For each pair of events x and y, if:
1. y is in the cut, and
2. x à y,

– then, event x is also in the cut

25

Consistent versus inconsistent cuts

26

Consistent versus inconsistent cuts

P1

P2

P3

A B C D

E

F

G

H

Consistent: H à F
and H in the cut

Inconsistent: G à D
but only D is in the cut

27

C-L returns a consistent cut

P1

P2

P3

A B C D

E

F

G

H

Inconsistent: G à D
but only D is in the cut

C-L can’t
return this cut

C-L ensures that if D is in the cut, then G is in the cut

28

C-L can’t return this inconsistent cut

P1

P2

P3

A B C D

E

F

G

H

sn
ap

!

• Global State
– A global snapshot captures

• The local states of each process (e.g., program variables), and
• The state of each communication channel

• Distributed Global Snapshots
– FIFO Channels: we can realize them and build on guarantees
– Chandy-Lamport algorithm: use marker messages to

coordinate
– Chandy-Lamport provides a consistent cut

Take-away points

29

Is this snapshot possible? And if so, how?
P = { G }
chan(P, Q) = { Y }
Q = { R, V }
chan(Q, P) = { B, O }

30

Chandy-Lamport Puzzle #1

P Q
R

G B

Y

O

V

Either P or Q starts CL
from the current state

Is this snapshot possible? And if so, how?
P = { G, Y, R, V, B, O }
chan(P, Q) = { }
Q = { }
chan(Q, P) = { }

31

Chandy-Lamport Puzzle #2

P Q
R

G B

Y

O

V

Either P or Q starts CL
from the current state

Is this snapshot possible? And if so, how?
P = { }
chan(P, Q) = { }
Q = { }
chan(Q, P) = {G, Y, R, V, B, O }

32

Chandy-Lamport Puzzle #3

P Q
R

G B

Y

O

V

Either P or Q starts CL
from the current state

Is this snapshot possible? And if so, how?
P = { G, Y }
chan(P, Q) = { R }
Q = { B, O }
chan(Q, P) = { V }

33

Chandy-Lamport Puzzle #4

P Q
R

G B

Y

O

V

Either P or Q starts CL
from the current state

Is this snapshot possible? And if so, how?
P = { G, Y }
chan(P, Q) = { R }
Q = { B, O }
chan(Q, P) = { V }

34

Puzzle #4: How are you thinking?

P Q
R

G B
Y

O

V

Either P or Q starts CL
from the current state

P

Q

▲
P = {G, Y}

Q = {B, O}

RV R▲

Is this snapshot possible? And if so, how?
P = { G, Y }
chan(P, Q) = { }
chan(P, T) = { }
Q = { B, O }
chan(Q, P) = { V }
chan(Q, T) = { R }
T = { }
chan(T, P) = { }
chan(T, Q) = { }

35

Chandy-Lamport Puzzle #5

P Q
R

G B

Y

O

V

T

Assume P starts CL
from the current state

Is this snapshot possible? And if so, how?
P = { G, Y }
chan(P, Q) = { }
chan(P, T) = { }
Q = { B }
chan(Q, P) = { V }
chan(Q, T) = { R }
T = { O }
chan(T, P) = { }
chan(T, Q) = { }

36

Chandy-Lamport Puzzle #6

P Q
R

G B

Y

O

V

T

Assume P starts CL
from the current state

