Scaling Out Key-Value Storage:
Dynamo

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 8

Marco Canini

Availability: vital for web applications

* Web applications are expected to be “always on”
— Down time - pisses off customers, costs $

« System design considerations relevant to availability
— Scalability: always on under growing demand

— Reliability: always on despite failures

— Performance: 10 sec latency considered available?

“an availability event can be modeled as a long-
lasting performance variation”
(Amazon Aurora SIGMOD '17)

Scalability: up or out?

» Scale-up (vertical scaling)
— Upgrade hardware

— E.g., MacBook Air = MacBook Pro
— Down time during upgrade; stops working quickly

« Scale-out (horizontal scaling)
— Add machines, divide the work
— E.g., a supermarket adds more checkout lines
— No disruption; works great with careful design

Reliability: available under failures

* More machines, more likely to fail
— p = probability a machine fails in given period
— n = number of machines
— Probability of any failure in given period = 1=(1-p)”

« For 50K machines, each with 99.99966% available
— 16% of the time, data center experiences failures

* For 100K machines, failures happen 30% of the time!

Two questions (challenges)

* How is data partitioned across machines so the
system scales?

* How are failures handled so the system is always on?

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

Amazon in 2007

« 10%s of servers in multiple DCs
— 108s of servers, 120+ DCs (as of now)

« 10’s of customers at peaks

— 89M+ reqgs/s (Prime Day '21)

* Tiered architecture (similar today)
— Service-oriented architecture

— Stateless web servers
& aggregators
— Stateful storage servers

Client Requests

,____::E:lzf::__--\
f JUP Y. U S
I
Request Routing i
I I
I ,
i ¥e - ./ \b. T IAqgreqator
|\ kkt ‘*J L*t tt) ,,; Services
Request Routing
Services
g G . T,
Lku S g *‘Ej},;
-)

Dynamo instances

Other daxaslores

7

Dynamo requirements

Highly available writes despite failures

— Despite disks failing, network routes flapping, “data centers
destroyed by tornadoes”

— Always respond quickly, even during failures - replication

Low request-response latency: focus on 99.9% SLA

— E.g., “provide a response within 300ms for 99.9% of its requests for
peak client load of 500 regs/s”

Incrementally scalable as servers grow to workload
— Adding “nodes” should be seamless

Comprehensible conflict resolution
— High availability in above sense implies conflicts

Basics in Dynamo

» Basic interface is a key-value store (vs. relational DB)
— get(k) and put(k, v)
— Keys and values opaque to Dynamo

* Nodes are symmetric
— P2P and DHT context

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

10

Consistent hashing recap

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
@® Identifiers/key space

[] Node 3.bit

Stores key 6 |@|6 ID space 2

Incremental scalability
(why consistent hashing)

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
@® Identifiers/key space

[] Node 3.bit

Stores key 6 |@|6 ID space 2

Incremental scalability
(why consistent hashing)

« Minimum data is moved around when nodes join and leave

« Unlike modular hashing (see next slide)

Keys 4~0

3-bit

/ Transfer
]
ID space

/ Keys 4,5

Modulo hashing

« Consider problem of data partition:
— Given object id X, choose one of k servers to use

« Suppose instead we use modulo hashing:
— Place X on server i = hash(X) mod k

« What happens if a server fails or joins (k € k=*=1)?
— or different clients have different estimate of k?

14

Problem for modulo hashing:
Changing number of servers

h(x) =x+1 (mod 4)
Add one machine: h(x) =x + 1 (mod 5)

All entries get remapped to new nodes!
- Need to move objects over the network

5 7 10 11 27 29 36 38 40
Object serial number

15

Challenge: unbalanced load

* Nodes are assigned different # of keys

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

3-bit
Keys 5,6 (@/6 |pgpace 2[@Keys1,2

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

| 3-bit
Keys 5, 6 3l 6 ID space

Keys 5,6,7,0

2 |@®| Keys 1, 2

18

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

« Some keys are more popular

3-bit
Keys 5,6 (@/6 |pgpace 2[@Keys1,2

Best seller item mmp

Solution: virtual nodes (vhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids = same physical node

3-bit

ID space

Solution: virtual nodes (vhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids = same physical node

4 physical nodes (servers) 3-bit
2 vnodes / server ‘ @6 ID space 2

D Virtual node:
same color > same physical node

Solution: virtual nodes (vhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids = same physical node

I
/
Orange server leaves ‘ p 3-bit
Keys moved to blue and red xG ID space

D Virtual node:
same color > same physical node

Solution: virtual nodes (vhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids = same physical node

* More virtual nodes, more balanced

» Faster data transfer for join/leave

e Controllable # of vnodes / server

— Server capacity:
e.g., CPU, memory, network

!
/ 3-bit
xG ID space

D Virtual node:
same color > same physical node

23

Gossip and “lookup”

Gossip: Once per second, each node contacts a
randomly chosen other node

— They exchange their lists of known nodes
(including virtual node IDs)

Assumes all nodes will come back eventually, doesn't
repartition

Each node learns which others handle all key ranges

— Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)

* Reduces variability in response times

24

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

25

Preference list (data replication)

» Key replicated on M vnhodes
— Remember “r-successor” in DHT?

 All M vnodes on distinct servers across different datacenters

3-bit \

®6 |Dspace 2@

D Virtual node:
5 colors = 5 physical nodes

26

Preference list (data replication)

» Key replicated on M vnhodes
— Remember “r-successor” in DHT?

 All M vnodes on distinct servers across different datacenters
Key 0

Key 0’s Preference list could be
vnodes: {0, 1, 3, 5} mapping to servers:
{green, red, , blue}

1 Green is the coordinator server of key Oj

®6 |Dspace 2@

01

D Virtual node:
5 colors = 5 physical nodes

27

Read and write requests

* Received by the coordinator (this is not Chord)
— Either the client (web server) knows the mapping or re-routed

« Sentto in preference list (coordinator incl.)
— Durable writes: my updates recorded on multiple servers
— Fast reads: possible to avoid straggler

« Awrite creates a new immutable version of the key (no overwrite)
— Multi-versioned data store

* Quorum-based protocol
— Awrite succeeds if W out of N servers reply (write quorum)
— Aread succeeds if R out of N servers reply (read quorum)

Quorum implications (W, R, and N)

* N determines the durability of data (Dynamo N = 3)

W and R adjust the availability-consistency tradeoff
— W =1 (R = 3): fast write, weak durability, slow read
— R =1 (W = 3): slow write, good durability, fast read
— Dynamo: W =R =2

« WhyW+R>N?
— Read and write quorums overlap when there are no
failures!
— Reads see all updates without failures

 WWhat if there are failures?

29

Failure handing: sloppy quorum +
hinted handoff

« Sloppy: not always the same servers used in N
— First N servers in the preference list without failures
— Later servers in the list take over if some in the first N fail

« Consequences

— Good performance: no need to wait for failed servers in N to
recover

— Eventual (weak) consistency: conflicts are possible, versions
diverge

— Another decision on !

Failure handing: sloppy quorum +
hinted handoff

« Key O’s preference list {green, red, , blue}
 N=3:{green, red, } without failures
* |f red fails, requests go to {green, blue} Key 0

* Hinted handoff
— Blue temporarily serves requests
— Hinted that red is the intended recipient
— Send replica back to red when red is on ® 5

ID space 2@

Key 0 3 & Key 0

D Virtual node:
5 colors = 5 physical nodes

Wide-area replication

« Lastq], § 4.6: Preference lists always contain nodes
from more than one data center

— Consequence: Data likely to survive failure of
entire data center

* Blocking on writes to a remote data center would
Incur unacceptably high latency

— Compromise: W < N, eventual consistency
— Better durability & latency but worse consistency

32

Conflicts

o« SupposeN=3, W=R=2 nodesareA,B,C,D, E
— CL1 put(k, ...) completes on A and B
— CL2 put(k, ...) completeson Cand D

« Conflicting results from A,Band C, D
— Each has seen a different put(k, ...)

* How does Dynamo handle conflicting versions?

33

An example of conflicting writes
(versions)

Preference list (M =5, N = 3)
‘A B C! D E

4NN BEN EEN EEN BEN BN BN BEE BN BN BN B e

Shopping cart:

CL1: Add Item x

A and B fail

=
dmmmmmm e om S
®

An example of conflicting writes
(versions)

Preference list (M =5, N = 3)
Shopping cart:

CL1: Add Item x
A and B fail

CL2: Add ltem y

=
dmmmmmm e om S
®

An example of conflicting writes
(versions)

Preference list (M =5, N = 3)
‘A B CI D E

—]
3
o)

Shopping cart:

4NN BEN EEN NN BEN EEN BN BEE BN BN BN B e .

i
i
i
!

CL1: Add Item x : X X
i
i

A and B fail :

i

CL2: Add Item y | y y
i
i

A and B recover :
i
i

CL1: Read cart J read read

Vector clocks: handling conflicting
versions

Time
. ! A L L L L LD Ll
Shopping cart: i LA _____ ? _____ 9:: D E
|
CL1: Add Item x I X X
L (A1) (A1)
_______________________ L.
{ Read returns 3
i x(A1)andy(C1) |
. (Aland(Clare | y Y
i not causally related: " _ (C,1) (C.1)
' conflicts! AN,
B S .
CL1: Read cart i read read

Version vectors (vector clocks)

List of (coordinator node, counter) pairs
-e.g, [(A, 1), (B, 3), ...]

* Dynamo stores a version vector with each stored key-
value pair

 ldea: track “ancestor-descendant” relationship
between different versions of data stored under the

same key k

Dynamo’s system interface

« get(key) = value, context
— Returns one value or multiple conflicting values
— Context describes version(s) of value(s)

» put(key, context, value) - “OK”

— Context indicates which versions this version
supersedes or merges

Version vectors: Dynamo’s mechanism

* Rule: If vector clock comparison of v1 <v2, then the first is
an ancestor of the second — Dynamo can forget v1

« Each time a put() occurs, Dynamo increments the counter
in the V.V. for the coordinator node

« Each time a get() occurs, Dynamo returns the V.V. for the
value(s) returned (in the “context”)

— Then users must supply that context to put()s that
modify the same key

40

Conflict resolution (reconciliation)

If vector clocks show causally related (not really
conflicting)

— System overwrites with the later version

For conflicting versions

— System handles it automatically, e.q., last-writer-
wins (limited use case)

— Application specific resolution (most common)

* Clients resolve the conflict , €.9., merge
shopping cart

Vector clocks: handling conflicting

versions

Shopping cart:

CL1: Add Item x
CL2: Add ltem y

CL1: Read cart
X (A1), y (C,1)

=
dmmmmmm e om S
®

Preference list (M =5, N = 3)
‘A B CI D E

4NN BEN EEN NN BEN EEN BN BEE BN BN BN B e .

X X
(A1) (A1)

y y
(C.1) (C,1)

Vector clocks: handling conflicting

versions

Shopping cart:
CL1: Add Item x
CL2: Add ltem y

CL1: Read cart
X (A1), y (C,1)

CL1: Add Item z
X, ¥, 2z [(A,1), (C,1)]

=
dmmmmmm e om S
®

Preference list (M =5, N = 3)

A__B G D E
X X
(A1) (A1)
y y
(C.1) (C,1)

43

Vector clocks: handling conflicting

versions

—]
3
o)

Shopping cart:
CL1: Add Item x
CL2: Add ltem y

CL1: Read cart
X (A1), y (C,1)

CL1: Add Item z
X, ¥, 2z [(A,1), (C,1)]

Qe o

Preference list (M =5, N = 3)

A__B__G D E
X X
(A1) (A1)
y |y
(C,1) (C,1)
Xyz Xyz

(A,2,C,1)(A,2, C,1)

44

How useful is it to vary N, R, W?

NRWBehavior

3 2 2 Parameters from paper:
Good durability, good R/W latency

45

How useful is it to vary N, R, W?

NRWBehavior

3 2 2

Parameters from paper:
Good durability, good R/W latency

Slow reads, weak durability, fast writes
Slow writes, strong durability, fast reads
More likely that reads see all prior writes?
Read quorum may not overlap write quorum

46

Failure detection and ring membership

Server A considers B has failed if B does not reply to A's
message

— Evenif B replies to C
— A then tries alternative nodes

With servers join and permanently leave

— Servers periodically send gossip messages to their
neighbors to sync who are in the ring

— Some servers are chosen as seeds, i.e., common
neighbors to all nodes

Anti-entropy (replica synchronization)

* Hinted handoff node crashes before it can replicate
data to node in preference list

— Need another way to ensure that each key-value
pair is replicated N times

* Mechanism: replica synchronization
— Nodes nearby on ring periodically gossip
» Compare the (k, v) pairs they hold
« Copy any missing keys the other has

r How to compare and copy replica
i state quickly and efficiently?

48

Efficient synchronization with Merkle trees

Merkle trees hierarchically summarize the key-value
pairs a node holds

One Merkle tree for each virtual node key range

— Leaf node = hash of one key’s value
(# of leaves = # keys on the virtual node)

— Internal node = hash of concatenation of children
* Replicas exchange trees from top down, depth by depth

— If root nodes match, then identical replicas, stop
— Else, go to next level, compare nodes pair-wise

49

Merkle tree reconciliation

* B is missing orange key; A is missing green one

« Exchange and compare hash nodes from root
downwards, pruning when hashes match

A’s values: B’s values:
[O 2128 [O 2128)

[O 2127: I‘ 2127 2128 [O 2127i ; 2127 2128

| Finds differing keys quickly and with
minimum information exchange i

Dynamo: Take-aways ideas

* Avalilabllity is important
— Systems need to be scalable and reliable

* Dynamo is eventually consistent
— Many design decisions

* Core techniques
— Consistent hashing: data partitioning

— Replication, preference list, sloppy quorum, hinted
handoff: availability under failures

— Vector clocks: conflict resolution (partly automatic, rest app.)
— Anti-entropy: synchronize replicas
— Gossip: synchronize ring membership

