Big Data Processing

alllauc Ellall aealy

'\\‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 9

Marco Canini

Distributed Systems, Why?

* BIG DATA really demands distributed systems!

175ZB

Distributed Systems, Why?

BIG DATA really demands distributed systems!

Large-scale computing with:

Scalability and parallelism

Fault tolerance

Load management

Consistency (exactly-once processing guarantees)

Transparency (programming abstractions and high-
level languages)

BIG DATA Landscape evo

——— mtaencue

o = 4)
ol HADART. | 6d Detak ¢
HIP nfocki a TURN ook

iy . = TV
; :h"-"""'vl

itoblee

2021

Fiph
Faciwaniheny
RADIU!

ARTIFICIAL INTELLIGENCE, 2021
ANALYTICS MACHINE LEARNING & ARTIFICIAL INTELLIGENCE APPLICATIONS - ENTERPRISE
ToRAG 0oor aih BPUATIORMS isuzATION —————| | oaasaENc: OATASCENCE MLPLATRORMS MARKETNG -~ WARKETING 620 CUSTOER EXPERIENCE SERVICE HOMAN CPITAL
528 s o v “@cinmsnstics
databricia \Giker @ @ | i 4eblesy @R n T e | @databricks Gostanoset @) {0 2 ‘ wcnowa | @ s -
= * Z . @bindor e B At Orvine | O etk Qs @ik -
[Torwen | % 2 || o g e | @ G Woo @ U | e o
ot | @lremio o ® e . 2 = o 4 © o % e P L
- o Wmes cwcad | | . e 2 3 Samcurn TIUIZ 3 P S—
p B s | LB amca ama @ wr o e o e e O | Sy
regE—— — R : p/
s T g o 18 e G omana | S o
om |22 o . — woirgt | Porers OObrarabe =3 ocnysam oaom Liguer srodgla w0 =
U = ot PRORPUN A PO lonct mosngaga | e
o e 2 = 4 Ppeset L s e Béstata datmo. vy
REGIECHS —) FINANCE secuRTy
DATA ANALYST PATRORMS weuenepauncs —| | owceneaanon MODELBULDING —— FEATURESTORE —— DEPLOY- wooe. —{ GO [dpes s PR o SR B
8 AUBEUNG MENTAPRG. | WONTORING s e
B sion @perteho x] Po— e A OBSERVA —_ ror et —
i ¥ O y = Thoughtspot " e s - | 2
= Pt n— roee s | © Goost " = R0 it S
= oracie Omong b i Mriooe Datameer. B oo -outier doics | 1D, e eine > el
e S T | frOKSEY] | CRACLE Qoo woanose st | g1 rasc0 @on | s
Stk P — . R @ amwo neo - s |12 e
. Ot - e | e | oni 3 so @ o P b . ' .
pe G B Wi ke [@iais; - ruera P B L U =
g L L serun | B Sz V- Ll guans s | gfocet mocheyel » sl e
- ity [o— - p— arize
s o (o 3 f T -
- owr e vha . ’ o 4 o e | APPLICATIONS- INDUSTRY
ee oy REVERSEETL — OATAINTEGRATION OATA GOVERNANCE DATACATALOG — METRCS — L0GANALTCS couPuTERVISION ne SIHETICMEDW AVERTSING EDUCKTON) REALESIATE GOVTa ANANCE- LENDING. — INSURANCE ——]
OATATRANSFORMATION 4 ANDDISCOVERY | STORE ry e @ e INTLGENCE
Ran wlend st | SOSUS | | (b9 metophor | g o | SPIUNK a8 o e | ot s | - b i M|
VI | povens Wi i | " (@ atlan @, oum §=xe 08 e s, | BEWR a - e
- - - s s dwts oo ot e —r— iy
N e o vee N, e] . o g o
s | i f A I & Supergeain o : e T) FNANCE. NVESTING
R - o oo | © sy ZALON) importde Cssecrsan | o tonstorm L o] Tt o (e abet curgum P senie | EYASDI Kenst
ol ||/ o ownon €ttt — e | S @ [C— Ao CXEEH
oRAC OATAGRSERVASH SR ouERr — saRcH HORZOTALA GuDssacion HEALTHOARE UFESCIENCES TRANSPORTATION AGRICUTURE NOUSTRAL
Secum iz ENGINE
" pomen i ORACLE () mum eTr =) s 3T e RN prg—
P— = L e p = o | | @ wason @OpenAl G i el LU= Ay on it
== T | T g o Y- o [oovcone | | Wewen s @ o Pl i
N e @lgolis covbo siico Voager Wk et S O - 5
| s e oono | - s] = o= o Fiocas
- e N o | 12 Locitwona @swiftype ATTIV/O | [s B o e s s [
o o -
wlend 300, Gsome s | i W | Hexa Sphasense omINizus. oy CRED HTHIE Mok @ » 2
o - o cammm nnin G | S @ i
RS e Wems B s gt | mngat] avew cunossearc P P s - Y i s

FRAMEWORKS CHINE LEARNING DEEP LEARNING —
e i o W @omormes oy WG @@, Bl BERT ot Cafl |
@ : e [OSeR— i B e

¢ = o = O — ~
Ao b 0o - @ ‘ — el i i’ i1 = & o [
DATA SOURCES & APls DATA RESOURCES

ONTAMARKETPLACES FINNCAL S ECONOMICONTA AR/SPACESEA s CATON NTELLGENCE omer oATASERVICES RESEARCH
SDISCOVERY o Qe on Gowim | e @mapbox o Mac ¥ okl GorglReseuch focabook rseac
= I o . o o s aspire ® : oursquare @ mapbs [~ » MaGE Lavewse O iselionion | @eunsson OEEMISBY @ osucomy | 0% it Socabiook resen

e i vt Sapill [V . secier O | ool @esi BN Anader Avpsry | ¢ BN mmm cRUX Gocttsl ocobe fou | Hows B s, | vz »m
o g i et s P Do [T g — v i e s = " anmmome sk L
Version 3.0 - November 2021 © Matt Turck (@mattturck), John Wu (@john_d_wu) & FirstMark (@firstmarkcap) mattturck.com/data2021 FIRSTMARK

© Matt Turck (@mattturck), John Wu (@john_d_wu) & FirstMark (@firstmarkcap) 4

Diff. Problems = Diff. Approaches

« Batch vs streaming data
— |s data available in full before its processing begins?
— |s data produced incrementally over time?

* Generality vs specialization

— A general system can be used for many different
applications, but not ideally suited to any

— A specialized system focuses on the needs of a class of
application and takes advantage of their characteristics

Diff. Problems = Diff. Approaches

General Specialized

Unified

Diff. Problems = Diff. Approaches

General Specialized

-
~
~——_——

Unified

Diff. Problems = Diff. Approaches

General Specialized

Unified

Data-Parallel Computation

Ex. Five top pages on class website

input: access.log

10.1.1.1 cs240.kaust.edu.sa - [05/0ct/2022:13:50:00 +0300] "GET /course/CS240/assignment2 HTTP/1.1”
200 17618 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) [...]"

\4

output

47 [course/CS240/assignment2
35 /course/CS240/assignmentl
20 /courselist

18 /auth/page/kaust

4 /admin/CS240

Write a MapReduce* program
that solves this problem

* NOTE: MapReduce automatically sorts
by key the output of mappers

MapReduce is a General System

* Can express large computations on large data; enables fault
tolerant, parallel computation

But ...

* Fault tolerance is an inefficient fit for many applications
Parallel programming model (map, reduce) within
synchronous rounds is an inefficient fit for many
applications

 The range of problems you can solve with a single

MapReduce job is limited
— Very common for MapReduce jobs to be chained into workflows

Ex. Five top pages on class website

MapReduce workflows can be complex and tedious
to write
Can it be easier?

Ex. Five top pages on class website

MapReduce workflows can be complex and tedious

to write
Can it be easier?

What we wish to write ...

logFile = sc.textFile("hdfs://access.log")

urls = logFile.map(lambda x: x.split("")(6))

url counts = urls.map(lambda url: (url, 1))
.reduceByKey(lambda a, b: a + b)

url counts.sortBy(lambda x: -x[1]).take(5)

13

MapReduce for Google’s Index
* Flagship application in original MapReduce paper

* Q: Whatis inefficient about MapReduce for computing
web indexes?

— “MapReduce and other batch-processing systems cannot
process small updates individually as they rely on creating
large batches for efficiency.”

* |Index moved to Percolatorin ~2010 (osoi ‘10
— Incrementally process updates to index
— Uses OCC to apply updates
— 50% reduction in average age of documents

MapReduce for Iterative Computations

* |terative computations: compute on the same data as
we update it

— e.g., PageRank
— e.g., Logistic regression

* Q: What s inefficient about MapReduce for these?
— Writing data to disk between all iterations is slow

* Many systems designed for iterative computations,
most notable is Apache Spark

— Key idea 1: Keep data in memory once loaded
— Key idea 2: Provide fault tolerance via lineage (record ops)

MapReduce for Stream Processing

e Stream processing: Continuously process an
infinite stream of data
— e.g., estimating traffic conditions from GPS data
— e.g., identify trending hashtags on twitter
— e.g., detect fraudulent ad-clicks

* Q: What is inefficient about MapReduce for
these?

Stream Processing Systems

* Datais only produced incrementally over time
— Can’t batch process it all at once!

e Streaming applications are long-running:
— Definite computation ahead of time

— Setup machines to run specific parts of computation
and pass data around (topology)

— Stream data into topology
— Repeat forever (trickiest part: fault tolerance!)

e Specialization is much faster

— E.g., click-fraud detection at Microsoft
* Batch-processing system: 6 hours
* w/ StreamScope [NSDI’16]: 20 minutes on average

In-Memory Data-Parallel
Computation

Spark: Resilient Distributed Datasets

* Let’s think of just having a big block of RAM,
partitioned across machines...

— And a series of operators that can be executed in
parallel across the different partitions

* That’s basically Spark

— A distributed memory abstraction that is both
fault-tolerant and efficient

Spark: Resilient Distributed Datasets

* Restricted form of distributed shared memory

— Immutable, partitioned collections of records

— Can only be built through coarse-grained
deterministic transformations (map, filter, join, ...)

— They are called Resilient Distributed Datasets (RDDs)

* Efficient fault recovery using lineage
— Log one operation to apply to many elements
— Recompute lost partitions on failure
— No cost if nothing fails

Example: Log Mining

* Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(.startsWith(“ERROR™))
messages = errors.map(.split(“\t’)(2))

messages.persist()

messages.filter(.contains(“foo”)).count

messages.filter(.contains(“bar”)).count

Efficient Fault Recovery via Lineage

Maintain a reliable log of applied operations

Input

one-time
processing

Generality of RDDs

Despite their restrictions, RDDs can express many
parallel algorithms

— These naturally apply the same operation to many
items

Unify many programming models
— Data flow models: MapReduce, Dryad, SQL, ...

— Specialized models for iterative apps: BSP (Pregel),
iterative MapReduce (Haloop), bulk incremental, ...

Support new apps that these models don’t
Enables apps to efficiently intermix these models

Stream Processing

Simple stream processing

-OO-0O000- O-O00O0-00-

 Single node/process
— Read data from input source (e.g., network socket)
— Process

— Write output

Examples: Stateless conversion

-O-O-O0O0O—|CtoF | -O-OOOO~

» Convert Celsius temperature to Fahrenheit

— Stateless operation: emit (input*9/5) + 32

Examples: Stateless filtering

-O- OO~ |Filter| O O

* Function can filter inputs

—if (input > threshold) { emit input }

Examples: Stateful conversion

OO-000-

EWMA
O

O-O-O0O00-

« Compute EWMA of Fahrenheit temperature
— new_temp = a * (CtoF(input)) + (1- a) * last_temp
— last_temp = new_temp

— emit new_temp

Examples: Aggregation (stateful)

OO-000-

Avg

_Q

* E.g., Average value per window

— Window can be # elements (10) or time (1s)

— Windows can be fixed (every 5s)

Stream processing as chain

{ CtoF ——{ Avg ——Filter

Stream processing as directed graph

sensor

type 1 _ alerts
" CtoF Avg Filter >

sensor

type 2 storage

» KtoF g

The challenge of stream processing

Large amounts of data to process in (near) real time

 Examples
— Social network trends (#trending)
— Intrusion detection systems (networks, datacenters)

— Sensors: Detect earthquakes by correlating
vibrations of millions of smartphones

— Fraud detection
* Visa: 2000 txn / sec on average, peak ~47,000 / sec

Scale “up”: batching

Tuple-by-Tuple Micro-batch
input — read iInputs <— read
if (input > threshold) { out =]
emit input for input in inputs {

} f (input > threshold) {

out.append(input)
}
}

emit out

33

Scale “up”

Tuple-by-Tuple Micro-batch
Lower Latency Higher Latency
Lower Throughput Higher Throughput

Why? Each read/write is an system call into kernel.
More cycles performing kernel/application transitions
(context switches), less actually spent processing data.

Scale “out”

000"

-O-O0O00-

00,

Stateless operations: trivially parallelized

/O/O/O/O/O/CF—O—O—O—O—O—'
%O\O\o\c e YeYe Yo Yo R

State complicates parallelization

« Aggregations:

— Need to join results across parallel computations

| CtoF ——{ Avg —— Filter ——

State complicates parallelization

Aggregations:

— Need to join results across parallel computations

— | CtoF - Sum Filter
Cnt
Sum :

—>| CtoF Cnt Avg » Filter —

— | CtoF | Sum Filter —
Cnt

Parallelization complicates fault-tolerance

Aggregations:

— Need to join results across parallel computations

— | CtoF - Su Filter —
Cnt
Sum @ :
—| CtoF Cnt Avg » Filter ——
- blocks -
—|CtoF H SC”nT Filter |—

Can parallelize joins

« Compute trending keywords

—E.qg.,

portion tweets

<>

portion tweets

Sum
| key

portion tweets

>

Sum
| key

>

Sum
| key

Sum
| key

- blocks -

Sort

top-k

Can parallelize joins

portion tweets

<>

portion tweets

Sum
| key

portion tweets

>

Sum
| key

>

Sum
| key

Hash 1. merge
partitioned 2. sort

tweets 3. top-k

. Sort | top-k —

| key

e Sort | top-k —

| key

e Sort ¢ top-k |—

| key

Parallelization complicates fault-tolerance

Hash 1. merge
partitioned 2. sort
tweets 3. top-k

portion tweets

<>

—> Sort | top-k ——

portion tweets

>

—> Sort | top-k ——

portion tweets

> —>| Sort % top-k |—

Popular Streaming Frameworks

Various fault tolerance mechanisms:

Record acknowledgement (Storm)
Micro-batches (Spark Streaming, Storm Trident)
Transactional updates (Google Cloud dataflow)
Distributed snapshots (Flink)

I\ e

Popular Streaming Frameworks

1. Record acknowledgement (Storm)
— At least once semantics
— Ensure each input “fully processed”

— Track every processed tuple over the DAG, propagate ACKs
upwards to the input source of data

— Cons: Apps need to deal with duplicate or out-of-order tuples
2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

Popular Streaming Frameworks

1. Record acknowledgement (Storm)

2. Micro-batches (Spark Streaming, Storm Trident)
— Each micro-batch may succeed or fail
— On failure, recompute the micro-batch
— Use lineage to track dependencies
— Checkpoint state to support failure recovery

3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

Popular Streaming Frameworks

1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)

— Treat every processed record as a transaction, committed upon
processing

— On failure, replay the log to restore a consistent state and replay
lost records

4. Distributed snapshots (Flink)

Popular Streaming Frameworks

Db~

Record acknowledgement (Storm)
Micro-batches (Spark Streaming, Storm Trident)
Transactional updates (Google Cloud dataflow)

Distributed snapshots (Flink)

— Take system-wide consistent snapshot (algo is a variation of
Chandy-Lamport)

— Snapshot periodically

— On failure, recover the latest snapshot and rewind the stream
source to snapshot point, then replay inputs

Graph-Parallel Computation

Properties of Graph Parallel Algorithms

Dependency Factored Iterative
Graph Computation Computation
oY _ 7 What I Like
b =
! / What My
. Friends Like

49

ML Tasks Beyond Data-Parallelism

Data-Parallel

Graph-Parallel

Map Reduce

Feature Cross
Extraction Validation

Computing Sufficient
Statistics

Graphical Models
Gibbs Sampling
Belief Propagation
Variational Opt.

Collaborative
Filtering
Tensor Factorization

Semi-Supervised
Learning

Label Propagation
CoEM

Graph Analysis
PageRank
Triangle Counting

50

Pregel: Bulk Synchronous Parallel

Let’s slightly rethink the MapReduce model for processing graphs
— Vertices
— “Edges” are really messages

Compare to MapReduce keys - values?

“Think like a vertex”

vertex value

51

The Basic Pregel Execution Model

A sequence of supersteps, for each vertex V
At superstep S:

« Compute in parallel at each V
— Read messages sent to V in superstep S-1
— Update value / state

— Optionally change topology
« Send messages

« Synchronization
— Wait till all communication is finished

<

vertex value

52

Termination Test

« Based on every vertex voting to halt

— Once a vertex deactivates itself it does no further work unless
triggered externally by receiving a message

 Algorithm terminates when all vertices are simultaneously
Inactive

Vote to halt

N

A e] [
=

Message received

Distributed Machine Learning

Machine learning (ML)

ML algorithms can improve automatically through experience (data)

* Most common approaches
— Supervised learning:

— Unsupervised learning:

— Reinforcement learning (RL):

Training

Feed the ML model data, so that it
can learn how to make decisions

train the model first, then use it
the model learns by itself

model learns while doing

Inference (or model serving)

ML model in use, to process live data

ML training

DOG

100% WRONG

\.

Loss
function

]

56

Distributed ML training

Data parallel

raining
dataset
¥

\\WORKER 1

Mini-batch

Amount of data
processed by a single
worker during 1 iteration

Global batch

Amount of data
processed by all workers
during 1 iteration

Stochastic gradient
descent (SGD)

57

Distributed ML training
Model parallel or hybrid

Model parallel

Hybrid model-data parallel

\\ WORKER 1

P

\\ WORKER 1

\\WORKER 3|

P

\\WORKER 2

%

WORKER 2

A

\\WORKER 4

58

Weak scaling and strong scaling

Weak scaling Strong scaling |
» Fixed local batch size per- » Fixed global batch size
worker fixed « With more workers, the local
» More workers can process a gggﬁggézees per-worker
!?er?aetiro%lobal batch in one * Reduced iteration time (for
, o computation)
* Same iteration time, fewer » Same data transfers at each
Iterations iteration
« Same data transfers at each
iteration

* More frequent

« T synchronizations amon
Time to accuracy does not workers (more networ

scale linearly with the number traffic)
of workers

Beyond training: Al applications

 Different applications of Al have their specific
computational tasks

« Based on these tasks, they impose some system
requirements

* EX. supervised learning application:

The stateful training task _ Impose system requirements (training stage):

Tensorflow, MXNet and Pytorch

The stateless prediction task

Ack: Saber Malekmohammadi (Waterloo)

ML Ecosystem

Distributed System Distributed System Distributed System
Hyperparameter Dlstr!bgted Model Serving
Search Training
Vizier, many internal Horovod, PyTorch DDP, Clipper, TensorFlow
systems at companies distributed TensorFlow serving
Distributed System Distributed System Distributed System
Streaming Simulation Data Processing
Flink, many others MPI, simulators, Spark, Hadoop
custom tools

ML Ecosystem

Distributed System Distributed System Distributed System
Hyperparameter Distributed :
Search Training _’ Model Serving
Vizier, many internal Horojod, PyTorda DD Clipper, TensorFlow
systems at companies distripputed TensprFlow serving
Distributed System ibuted Sytem Distributed System
Streaming Simulation Data Processing
Flink, many others MPI, simulators, Spark, Hadoop
custom tools

Emerging Al Applications require stitching together multiple
disparate systems to satisfy diverse computation requirements

Ray: unified framework for Al apps

* (Goal: do all the tasks of training, serving and
simulation together by a single framework

Motivating Example: Reinforcement Learning
Agent Environment

4
Policy:

state -> action state/reward

action

Requirements:
 Distributed training: fine-grained computations, heterogeneous computations
« Serving: latency-sensitive, fine-grained computations, heterogeneous computations
« Simulations: dynamic execution
Ack: Saber Malekmohammadi (Waterloo) 63

Ray: unified framework for Al apps

* Provides a general programming model supporting
task-parallel and actor-based computations

« Supports a range of computations: from lightweight
and stateless computations (simulations) to long and
stateful computations (training)

* Provides low latency, high scalability and fault
tolerance

Ack: Saber Malekmohammadi (Waterloo) 64

