
Big Data Processing

CS 240: Computing Systems and Concurrency
Lecture 9

Marco Canini

• BIG DATA really demands distributed systems!

2

Distributed Systems, Why?

• BIG DATA really demands distributed systems!

Large-scale computing with:
• Scalability and parallelism
• Fault tolerance
• Load management
• Consistency (exactly-once processing guarantees)
• Transparency (programming abstractions and high-

level languages)
3

Distributed Systems, Why?

BIG DATA Landscape evo

4

2012

2021

© Matt Turck (@mattturck), John Wu (@john_d_wu) & FirstMark (@firstmarkcap)

• Batch vs streaming data
– Is data available in full before its processing begins?
– Is data produced incrementally over time?

• Generality vs specialization
– A general system can be used for many different

applications, but not ideally suited to any
– A specialized system focuses on the needs of a class of

application and takes advantage of their characteristics

5

Diff. Problems à Diff. Approaches

6

Diff. Problems à Diff. Approaches

General Specialized

Unified

7

Diff. Problems à Diff. Approaches

Unified

General Specialized

8

Diff. Problems à Diff. Approaches

Unified

General Specialized

Data-Parallel Computation

9

10

Ex. Five top pages on class website

47 /course/CS240/assignment2
35 /course/CS240/assignment1
20 /courselist
18 /auth/page/kaust
4 /admin/CS240

10.1.1.1 cs240.kaust.edu.sa - [05/Oct/2022:13:50:00 +0300] "GET /course/CS240/assignment2 HTTP/1.1”
200 17618 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) [...]"

input: access.log

output

Write a MapReduce* program
that solves this problem

* NOTE: MapReduce automatically sorts
by key the output of mappers

MapReduce is a General System

• Can express large computations on large data; enables fault
tolerant, parallel computation

But …
• Fault tolerance is an inefficient fit for many applications

Parallel programming model (map, reduce) within
synchronous rounds is an inefficient fit for many
applications

• The range of problems you can solve with a single
MapReduce job is limited
– Very common for MapReduce jobs to be chained into workflows

11

12

Ex. Five top pages on class website

MapReduce workflows can be complex and tedious
to write
Can it be easier?

13

Ex. Five top pages on class website

logFile = sc.textFile("hdfs://access.log")
urls = logFile.map(lambda x: x.split("")(6))
url_counts = urls.map(lambda url: (url, 1))

.reduceByKey(lambda a, b: a + b)
url_counts.sortBy(lambda x: -x[1]).take(5)

MapReduce workflows can be complex and tedious
to write
Can it be easier?

What we wish to write …

MapReduce for Google’s Index
• Flagship application in original MapReduce paper

• Q: What is inefficient about MapReduce for computing
web indexes?
– “MapReduce and other batch-processing systems cannot

process small updates individually as they rely on creating
large batches for efficiency.”

• Index moved to Percolator in ~2010 [OSDI ‘10]

– Incrementally process updates to index
– Uses OCC to apply updates
– 50% reduction in average age of documents

14

MapReduce for Iterative Computations

• Iterative computations: compute on the same data as
we update it
– e.g., PageRank
– e.g., Logistic regression

• Q: What is inefficient about MapReduce for these?
– Writing data to disk between all iterations is slow

• Many systems designed for iterative computations,
most notable is Apache Spark
– Key idea 1: Keep data in memory once loaded
– Key idea 2: Provide fault tolerance via lineage (record ops)

15

MapReduce for Stream Processing

• Stream processing: Continuously process an
infinite stream of data
– e.g., estimating traffic conditions from GPS data
– e.g., identify trending hashtags on twitter
– e.g., detect fraudulent ad-clicks

• Q: What is inefficient about MapReduce for
these?

16

Stream Processing Systems

• Data is only produced incrementally over time
– Can’t batch process it all at once!

• Streaming applications are long-running:
– Definite computation ahead of time
– Setup machines to run specific parts of computation

and pass data around (topology)
– Stream data into topology
– Repeat forever (trickiest part: fault tolerance!)

• Specialization is much faster
– E.g., click-fraud detection at Microsoft

• Batch-processing system: 6 hours
• w/ StreamScope [NSDI’16]: 20 minutes on average

17

In-Memory Data-Parallel
Computation

18

Spark: Resilient Distributed Datasets

• Let’s think of just having a big block of RAM,
partitioned across machines…
– And a series of operators that can be executed in

parallel across the different partitions

• That’s basically Spark
– A distributed memory abstraction that is both

fault-tolerant and efficient

19

• Restricted form of distributed shared memory
– Immutable, partitioned collections of records
– Can only be built through coarse-grained

deterministic transformations (map, filter, join, …)
– They are called Resilient Distributed Datasets (RDDs)

• Efficient fault recovery using lineage
– Log one operation to apply to many elements
– Recompute lost partitions on failure
– No cost if nothing fails

Spark: Resilient Distributed Datasets

20

Example: Log Mining

• Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

messages.persist()
Block 1

Block 2

Block 3

Worker

Worker

Worker

Master

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

tasks
results

Msgs. 1

Msgs. 2

Msgs. 3

Base RDDTransformed RDD

Action

21

Efficient Fault Recovery via Lineage

Input

query 1

query 2

query 3

. . .

one-time
processing

iter. 1 iter. 2 . . .

Input

Maintain a reliable log of applied operations

Recompute lost partitions on failure

22

Generality of RDDs

• Despite their restrictions, RDDs can express many
parallel algorithms
– These naturally apply the same operation to many

items
• Unify many programming models

– Data flow models: MapReduce, Dryad, SQL, …
– Specialized models for iterative apps: BSP (Pregel),

iterative MapReduce (Haloop), bulk incremental, …
• Support new apps that these models don’t
• Enables apps to efficiently intermix these models

23

Stream Processing

24

• Single node/process
– Read data from input source (e.g., network socket)
– Process

– Write output

Simple stream processing

25

• Convert Celsius temperature to Fahrenheit
– Stateless operation: emit (input * 9 / 5) + 32

Examples: Stateless conversion

CtoF

26

• Function can filter inputs
– if (input > threshold) { emit input }

Examples: Stateless filtering

Filter

27

• Compute EWMA of Fahrenheit temperature
– new_temp = ⍺ * (CtoF(input)) + (1- ⍺) * last_temp
– last_temp = new_temp
– emit new_temp

Examples: Stateful conversion

EWMA

28

• E.g., Average value per window
– Window can be # elements (10) or time (1s)

– Windows can be fixed (every 5s)

– Windows can be “sliding” (5s window every 1s)

Examples: Aggregation (stateful)

Avg

29

Stream processing as chain

AvgCtoF Filter

30

Stream processing as directed graph

AvgCtoF Filter

KtoF
sensor
type 2

sensor
type 1 alerts

storage

31

• Large amounts of data to process in (near) real time

• Examples
– Social network trends (#trending)

– Intrusion detection systems (networks, datacenters)

– Sensors: Detect earthquakes by correlating
vibrations of millions of smartphones

– Fraud detection
• Visa: 2000 txn / sec on average, peak ~47,000 / sec

The challenge of stream processing

32

Tuple-by-Tuple
input ← read
if (input > threshold) {

emit input
}

Micro-batch
inputs ← read
out = []
for input in inputs {

if (input > threshold) {
out.append(input)

}
}
emit out

Scale “up”: batching

33

Tuple-by-Tuple
Lower Latency

Lower Throughput

Micro-batch
Higher Latency

Higher Throughput

Scale “up”

Why? Each read/write is an system call into kernel.
More cycles performing kernel/application transitions

(context switches), less actually spent processing data.

34

Scale “out”

35

Stateless operations: trivially parallelized

C F

C F

C F

36

• Aggregations:
– Need to join results across parallel computations

State complicates parallelization

AvgCtoF Filter

37

• Aggregations:
– Need to join results across parallel computations

State complicates parallelization

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

38

• Aggregations:
– Need to join results across parallel computations

Parallelization complicates fault-tolerance

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

- blocks -

39

• Compute trending keywords
– E.g.,

Can parallelize joins

Sum
/ key

Sum
/ key

Sum
/ key

Sum
/ key

Sort top-k

- blocks -

portion tweets

portion tweets

portion tweets

40

Can parallelize joins

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

1. merge
2. sort
3. top-k

41

Parallelization complicates fault-tolerance

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

1. merge
2. sort
3. top-k

42

Various fault tolerance mechanisms:

1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

Popular Streaming Frameworks

43

1. Record acknowledgement (Storm)
– At least once semantics
– Ensure each input “fully processed”
– Track every processed tuple over the DAG, propagate ACKs

upwards to the input source of data
– Cons: Apps need to deal with duplicate or out-of-order tuples

2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

Popular Streaming Frameworks

44

1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)

– Each micro-batch may succeed or fail
– On failure, recompute the micro-batch
– Use lineage to track dependencies
– Checkpoint state to support failure recovery

3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

Popular Streaming Frameworks

45

1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)

– Treat every processed record as a transaction, committed upon
processing

– On failure, replay the log to restore a consistent state and replay
lost records

4. Distributed snapshots (Flink)

Popular Streaming Frameworks

46

1. Record acknowledgement (Storm)
2. Micro-batches (Spark Streaming, Storm Trident)
3. Transactional updates (Google Cloud dataflow)
4. Distributed snapshots (Flink)

– Take system-wide consistent snapshot (algo is a variation of
Chandy-Lamport)

– Snapshot periodically
– On failure, recover the latest snapshot and rewind the stream

source to snapshot point, then replay inputs

Popular Streaming Frameworks

47

Graph-Parallel Computation

48

Properties of Graph Parallel Algorithms

Dependency
Graph

Iterative
Computation

What I Like

What My
Friends Like

Factored
Computation

49

ML Tasks Beyond Data-Parallelism

Data-Parallel Graph-Parallel

Cross
Validation

Feature
Extraction

Map Reduce

Computing Sufficient
Statistics

Graphical Models
Gibbs Sampling

Belief Propagation
Variational Opt.

Semi-Supervised
Learning

Label Propagation
CoEM

Graph Analysis
PageRank

Triangle Counting

Collaborative
Filtering

Tensor Factorization

?

50

Pregel: Bulk Synchronous Parallel

Let’s slightly rethink the MapReduce model for processing graphs
– Vertices
– “Edges” are really messages

Compare to MapReduce keys à values?

“Think like a vertex”
vertex

ID

vertex value

vertex
ID

51

The Basic Pregel Execution Model

A sequence of supersteps, for each vertex V
At superstep S:
• Compute in parallel at each V

– Read messages sent to V in superstep S-1
– Update value / state
– Optionally change topology

• Send messages
• Synchronization

– Wait till all communication is finished vertex
ID

vertex valuevertex value

52

Termination Test

• Based on every vertex voting to halt
– Once a vertex deactivates itself it does no further work unless

triggered externally by receiving a message
• Algorithm terminates when all vertices are simultaneously

inactive

Active Inactive

Vote to halt

Message received

53

Distributed Machine Learning

54

Machine learning (ML)
ML algorithms can improve automatically through experience (data)

• Most common approaches
– Supervised learning: train the model first, then use it
– Unsupervised learning: the model learns by itself
– Reinforcement learning (RL): model learns while doing

Training
Feed the ML model data, so that it
can learn how to make decisions

Inference (or model serving)
ML model in use, to process live data

55

Loss
function

ML training

Training
datasetDOG

CAT
DOG

CAT DOG

100% WRONG

Δ

56

WORKER 2

Distributed ML training
Data parallel

Training
dataset

DOG
CAT

Training
dataset

CAT
DOG

WORKER 1

Mini-batch
Amount of data
processed by a single
worker during 1 iteration
Global batch
Amount of data
processed by all workers
during 1 iteration

Δ1
Δ

Δ2

Δ

+

Stochastic gradient
descent (SGD)

𝜔 ≔ 𝜔 −
𝜂
𝑛&
!"#

$

𝛻 𝑄!(𝜔)

57

WORKER 2

Distributed ML training
Model parallel or hybrid

Training
dataset

Training
dataset

WORKER 1
DOG

CAT
DOG

CAT

DOG

CAT
DOG

CAT

WORKER 2

Training
dataset

Training
dataset

WORKER 1
DOG CAT

DOG CAT

WORKER 4

Training
dataset

Training
dataset

WORKER 3

CAT
DOG

CAT
DOG

Model parallel Hybrid model-data parallel

58

Weak scaling
• Fixed local batch size per-

worker fixed
• More workers can process a

larger global batch in one
iteration

• Same iteration time, fewer
iterations

• Same data transfers at each
iteration

• Time to accuracy does not
scale linearly with the number
of workers

Strong scaling
• Fixed global batch size
• With more workers, the local

batch size per-worker
decreases

• Reduced iteration time (for
computation)

• Same data transfers at each
iteration

• More frequent
synchronizations among
workers (more network
traffic)

Weak scaling and strong scaling

59

• Different applications of AI have their specific
computational tasks

• Based on these tasks, they impose some system
requirements

• Ex. supervised learning application:

60

Beyond training: AI applications

Ack: Saber Malekmohammadi (Waterloo)

The stateful training task

The stateless prediction task
Impose system requirements (training stage):
Tensorflow, MXNet and Pytorch

61

ML Ecosystem

Distributed System

Distributed System

Distributed System Distributed System

Distributed System Distributed System

Hyperparameter
Search

Distributed
Training Model Serving

Streaming Simulation Data Processing

Vizier, many internal
systems at companies

Flink, many others

Horovod, PyTorch DDP,
distributed TensorFlow

Clipper, TensorFlow
serving

MPI, simulators,
custom tools

Spark, Hadoop

62

ML Ecosystem

Distributed System

Distributed System

Distributed System Distributed System

Distributed System Distributed System

Hyperparameter
Search

Distributed
Training Model Serving

Streaming Simulation Data Processing

Vizier, many internal
systems at companies

Flink, many others

Horovod, PyTorch DDP,
distributed TensorFlow

Clipper, TensorFlow
serving

MPI, simulators,
custom tools

Spark, Hadoop

Emerging AI Applications require stitching together multiple
disparate systems to satisfy diverse computation requirements

• Goal: do all the tasks of training, serving and
simulation together by a single framework

63

Ray: unified framework for AI apps

Motivating Example: Reinforcement Learning

Requirements:
• Distributed training: fine-grained computations, heterogeneous computations
• Serving: latency-sensitive, fine-grained computations, heterogeneous computations
• Simulations: dynamic execution

Ack: Saber Malekmohammadi (Waterloo)

• Provides a general programming model supporting
task-parallel and actor-based computations

• Supports a range of computations: from lightweight
and stateless computations (simulations) to long and
stateful computations (training)

• Provides low latency, high scalability and fault
tolerance

64

Ray: unified framework for AI apps

Ack: Saber Malekmohammadi (Waterloo)

