
Introduction + Course Overview

CS 240: Computing Systems and Concurrency

Lecture 1

Marco Canini

2

Distributed Systems, What?

1)Multiple computers

2)Connected by a network

3)Doing something together

• Or, why not 1 computer to rule them all?

• Failure

• Limited computation/storage/…

• Physical location

3

Distributed Systems, Why?

4

Backrub (Google) 1997

5

Google 2012

“The Cloud” is not amorphous

6

7Microsoft

8

Google

9
Facebook

10

11

100,000s of physical servers

10s MW energy consumption

Facebook Prineville:
$250M physical infra, $1B IT infra

12

13

GDH DC @ KAUST

~10,000 servers

14.4 MW IT load

8,000 m2 of DC space

14

2025 DC in the AI Era

• Service with higher-level abstractions/interface

– e.g., file system, database, key-value store,

programming model, RESTful web service, …

• Hide complexity

– Scalable (scale-out)

– Reliable (fault-tolerant)

– Well-defined semantics (consistent)

• Do “heavy lifting” so app developer doesn’t need to

15

The goal of “distributed systems”

• “A collection of independent computers that
appears to its users as a single coherent system”

• Features:
– No shared memory
– Message-based communication
– Each runs its own local OS
– Heterogeneity

• Ideal: to present a single-system image:

– The distributed system “looks like” a single
computer rather than a collection of separate
computers

16

What is a distributed system?

• To present a single-system image:

– Hide internal organization, communication details

– Provide uniform interface

• Easily expandable

– Adding new computers is hidden from users

• Continuous availability

– Failures in one component can be covered by
other components

17

Distributed system characteristics

• Assume a distributed storage

– Clients can read and write files

18

Client

Server1

S2

S3

Example

• N processes p1,…,pN in the system (no process
failures)
– Every process executes an algorithm

• An automation with set of states, set of inputs, set of outputs
and a state transition function S x I → S x O

• There are two first-in, first-out, unidirectional
channels between every process pair pi and pj

– Call them channel(pi, pj) and channel(pj, pi)
– All messages sent on channels arrive intact and in

order
– Channel cannot duplicate, create or modify messages

19

System model

• Message passing

• No failures (for now)

• Two possible timing assumptions

1. Synchronous System

2. Asynchronous System
• No upper bound on message delivery

• No bound on relative process speeds

20

System model

• Assume a distributed storage

– Clients can read and write files

21

Client

Server1

S2

S3

Example execution

• Processes execute sequences of events

– events can be of 3 types: local, send or receive

• An execution (or run) is a sequence of events that
respect the system-wide distributed algorithm

– each process is consistent with the local sequences

– a message is sent by a process only if its (local)
algorithm prescribes it to do it given the preceding
sequence of its inputs

– every received message was previously sent, and no
message is received twice

22

Execution of the system

• A graphic representation of distributed execution

23

Space-Time diagrams

Server1

S2

C

S1

S2

A B

FE

C D

Time →

C

H I

G

J

• Generally, a failure occurs when a process deviates from
the algorithm assigned to it

• A process is correct if it never fails

• crash failure: the faulty process prematurely stops taking
steps of its algorithm

• A typical assumption is that, in every possible execution
out of N processes, at most f < N can be faulty

• We call such a system f-resilient

24

Common failure assumption

• Scale computation across many machines

– MapReduce

• Scale storage across many machines

– Chord, Dynamo, COPS, Spanner

25

Scalable systems in this class

• Retry on another machine

– MapReduce

• Maintain replicas on multiple machines

– Primary-backup replication

– Paxos

– RAFT

– Bayou

– Dynamo, COPS, Spanner

26

Fault tolerant systems in this class

• Eventual Consistency

– Dynamo

• Causal Consistency

– Bayou, COPS

• Linearizability

– Paxos, RAFT, Primary-backup replication

• Strict Serializability

– 2PL, Spanner

27

Range of abstractions and guarantees

• Distributed Systems
– Multiple machines doing something together

– Pretty much everywhere and everything computing now

• “Systems”
– Hide complexity and do the heavy lifting (i.e., interesting!)

– Scalability, fault tolerance, guarantees

28

Summary

Course Overview

29

• Keep it real! This is the real world:

– Things break. Components fail.

– Latency matters. Can’t beat speed of light.

– Certain things are impossible. Need work arounds.

• How do we build systems that work at very large

scale and tolerate failures?

• Given systems span many nodes, how do we

enable different nodes to agree on “things” (e.g.,

time, order of operations, state of the system)?

30

Philosophy and Recurring Themes

• Reasoning about concurrency

• Reasoning about failure

• Reasoning about performance

• Building systems that correctly handle concurrency

and failure

• Knowing specific system designs and design

components
31

Learning Objectives

• Gain an understanding of the principles and

techniques behind the design of modern, reliable,

and high-performance systems

• In particular learn about distributed systems

– Learn general systems principles (modularity,
layering, ...)

– Practice implementing real, larger systems that
must run in nasty environment

32

Course Goals

Course Organization

33

http://sands.kaust.edu.sa/classes/CS240/F25/

http://sands.kaust.edu.sa/classes/CS240/F25/

• Lecture
– Professor Marco Canini

– Slides available on course website

– Office hours: by appointment

• TAs
– Jihao Xin

– Achref Rebai

• Main Q&A forum: www.campuswire.com
– No anonymous (to instructors) posts or questions

– Can send private messages to instructors
34

Learning the material: People

http://www.campuswire.com/

Learning the material: Books

• Lecture notes!

• No required textbooks

• Check the website for recommended references

• Main references available in the Library

– (linked on the website)

35

Grading

• Active participation (10% total)

– Includes attendance, discussion and peer-

review of project proposals

• Three programming assignments (15% total)

– 3% 1st, 3% 2nd, 9% 3rd

• Open-note final exam (25% total)

• Term project (50% total)

– 35% report and deliverables, 15% presentation

and Q&A

36

• Test learning objectives mostly using designs covered in lectures

• And test knowledge of specific design patterns and designs

• Open note/book (but if you don’t study it will create time pressure)

• Recipe for success:
– Attend lecture and actively think through problems
– Ask questions during lecture and afterwards in my office hours
– Actively work through problems
– Complete programming assignments
– Study lecture materials for specific design patterns and designs
– Run the system designs in your mind and see what happens

37

Final Exam

• Systems programming somewhat different from what
you might have done before
– Low-level (C / Go)
– Often designed to run indefinitely (error handling must

be rock solid)
– Must be secure - horrible environment
– Concurrency
– Interfaces specified by documented protocols

• TAs’ Office Hours

• Read: Dave Andersen’s “Software Engineering for
System Hackers”
– Practical techniques designed to save you time & pain

38

About Assignments

https://www.cs.cmu.edu/~dga/systems-se.pdf
https://www.cs.cmu.edu/~dga/systems-se.pdf

• Easy concurrency w/ goroutines (lightweight

threads)

• Garbage collection and memory safety

• Libraries provide easy RPC

• Channels for communication between goroutines

39

Why use Go?

• Google, of course!

• Docker (container management)

• CloudFlare (Content delivery Network)

• Digital Ocean (Virtual Machine hosting)

• Dropbox (Cloud storage/file sharing)

• Netdata (monitoring platform)

• … and many more!

40

Where is Go used?

• Reinforce / demonstrate learning objectives!

• 1: Sequential Map/Reduce (due September 17)

• 2: Distributed Map/Reduce (due September 24)

• 3: RAFT Consensus (due October 19)

41

About Assignments

• Recipe for disaster

– Start day assignment is due

– Write code first, think later

– Test doesn’t pass => randomly flip some bits

– Assume you know what program is doing

42

Programming Assignments

• Recipe for success

– Start early (weeks early)

– Think through a complete design

– Progressively build out your design (using tests to
help)

– Checkpoint progress in git (and to gitlab) frequently

– Debug, debug, debug
• Verify program state is what you expect (print it out!)

• Write your own smaller test cases

• Reconsider your complete design

– Attend office hours

43

Programming Assignments

• Open ended project within course scope

– Must hit at least one trait of distributed systems:
reliability, scalability, correctness/guarantees

– Topics and suggestions will be available

– Research reproductions possible

• Solo or groups of two students

• Structure

– Lightweight proposal (due October 29)

– Final report (based on template, due December 7)
and in-class presentation with Q&A

44

About Term Project

Reproduction: How to Approach It?

1. Pick an interesting paper

2. Ask what kind of “reproduction” is appropriate?

3. Does the primary result of the paper hold up?

4. What happens if you vary a parameter the original

experimenter didn’t consider?

5. Having reproduced the primary result, can you

now extend or improve the work?

6. What was difficult to reproduce?

45

• Working together important

– Discuss course material

– Work on problem debugging

– Work on term project

• Parts must be your own work

– Exam, programming assignments

• What we hate to say: we run cheat checkers…

they work surprisingly well

• Please *do not* put code on *public* repositories

46

Policies: Collaboration

Policies: Write Your Own Code

Programming is an individual creative process. At first,

discussions with friends is fine. When writing code,

however, the program must be your own work.

Do not copy another person’s programs, comments, README

description, or any part of submitted assignment. This

includes character-by-character transliteration but also

derivative works. Cannot use another’s code, etc. even

while “citing” them.

Writing code for use by another or using another’s code is

academic fraud in context of coursework.

Do not publish your code e.g., on Github, during/after course!
47

• AI tools cannot be used for the three

programming assignments

• AI tools can be used as aid in the term project

– Including for coding

• Note: with regard to the term project, it is

expected that you fully understand your system

design, design decisions and what has been

implemented

48

Policies: AI Tools

• 72 late hours on programming assignments

• After that, each additional day late will incur a

10% lateness penalty

– (1 min late counts as 1 day late)

• Submissions late by 3 days or more will no longer

be accepted

– (Fri and Sat count as days)

• In case of illness or extraordinary circumstance

(e.g., emergency), talk to us early!

49

Policies: Late Work

• Attend lectures, think actively!

• Start programming assignments early, use the

right strategy!

• Super cool distributed systems stuff starts Thu!

50

Conclusion

	Slide 1: Introduction + Course Overview
	Slide 2: Distributed Systems, What?
	Slide 3: Distributed Systems, Why?
	Slide 4: Backrub (Google) 1997
	Slide 5: Google 2012
	Slide 6: “The Cloud” is not amorphous
	Slide 7: Microsoft
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: 2025 DC in the AI Era
	Slide 15: The goal of “distributed systems”
	Slide 16: What is a distributed system?
	Slide 17: Distributed system characteristics
	Slide 18: Example
	Slide 19: System model
	Slide 20: System model
	Slide 21: Example execution
	Slide 22: Execution of the system
	Slide 23: Space-Time diagrams
	Slide 24: Common failure assumption
	Slide 25: Scalable systems in this class
	Slide 26: Fault tolerant systems in this class
	Slide 27: Range of abstractions and guarantees
	Slide 28: Summary
	Slide 29: Course Overview
	Slide 30: Philosophy and Recurring Themes
	Slide 31: Learning Objectives
	Slide 32: Course Goals
	Slide 33: Course Organization
	Slide 34: Learning the material: People
	Slide 35: Learning the material: Books
	Slide 36: Grading
	Slide 37: Final Exam
	Slide 38: About Assignments
	Slide 39: Why use Go?
	Slide 40: Where is Go used?
	Slide 41: About Assignments
	Slide 42: Programming Assignments
	Slide 43: Programming Assignments
	Slide 44: About Term Project
	Slide 45: Reproduction: How to Approach It?
	Slide 46: Policies: Collaboration
	Slide 47: Policies: Write Your Own Code
	Slide 48: Policies: AI Tools
	Slide 49: Policies: Late Work
	Slide 50: Conclusion

