
Eventual Consistency: Bayou

CS 240: Computing Systems and Concurrency

Lecture 10

Marco Canini

• Totally-Ordered Multicast kept replicas consistent
but had single points of failure

– Not available under failures

• (Later): Distributed consensus algorithms

– Strong consistency (ops in same order everywhere)

– But, strong reachability requirements

2

Availability versus consistency

If the network fails (common case), can we

provide any consistency when we replicate?

• Eventual consistency: If no new updates to the object,
eventually all reads will return the last updated value

• Common: git, iPhone sync, Dropbox, Amazon Dynamo

• Why do people like eventual consistency?

– Fast read/write of local copy

– Disconnected operation

3

Eventual consistency

Issue: Conflicting writes to different copies

How to reconcile them when discovered?

• Meeting room calendar application as case study in
ordering and conflicts in a distributed system with poor
connectivity

• Each calendar entry = room, time, set of participants

• Want everyone to see the same set of entries, eventually

– Else users may double-book room

• or avoid using an empty room

4

Bayou: A Weakly Connected
Replicated Storage System

• Early ’90s when paper was written: Dawn of PDAs,
laptops, tablets

– H/W clunky but showing clear potential

• Commercial devices did not have wireless

• This problem has not gone away!

– Devices might be off, not have network access
• Mainly outside the context of datacenters

– Local write/reads still really fast
• In datacenters when replicas are far away (geo-replicated)

5

Paper context

• Want my calendar on a disconnected mobile phone

– i.e., each user wants database replicated on their
mobile device

– No master copy

• But phone has only intermittent connectivity

– Mobile data expensive when roaming, Wi-Fi not
everywhere, all the time

– Bluetooth useful for direct contact with other
calendar users’ devices, but very short range

6

Why not just a central server?

• Suppose two users are in Bluetooth range

– Each sends entire calendar database to other

– Possibly expend lots of network bandwidth

• What if the calendars conflict, e.g., the two calendars
have concurrent meetings in a room?

– iPhone sync keeps both meetings

– Want to do better: automatic conflict resolution

7

Swap complete databases?

• Can’t just view the calendar database as abstract bits:

– Too little information to resolve conflicts:

1. “Both files have changed” can falsely conclude
entire databases conflict

• e.g., Mon 10am meeting in room 3 and Tuesday 11am
meeting in room 4

2. “Distinct record in each database changed” can
falsely conclude no conflict

• e.g., Mon 10–11am meeting in room 3 Doug attending,
Mon 10-11am meeting in room 4 Doug attending, …

8

Automatic conflict resolution:
Granularity of “conflicts”

• Want intelligence that knows how to resolve
conflicts

– More like users’ updates: read database, think,
change request to eliminate conflict

– Must ensure all nodes resolve conflicts in the
same way to keep replicas consistent

9

Application-specific conflict resolution

• Suppose calendar update takes form:

– “10 AM meeting, Room=305, CS-240 staff”

– How would this handle conflicts?

• Better: write is an update function for the app

– “1-hour meeting at 10 AM if room is free, else
11 AM, Room=305, CS-240 staff”

10

Application-specific update functions

• Node A asks for meeting M1 at 10 AM, else 11 AM

• Node B asks for meeting M2 at 10 AM, else 11 AM

• X syncs with A, then B

• Y syncs with B, then A

• X will put meeting M1 at 10:00

• Y will put meeting M1 at 11:00

11

Potential Problem:
Permanently inconsistent replicas

Can’t just apply update functions

when replicas sync

• Maintain an ordered list of updates at each node

– Make sure every node holds same updates

• And applies updates in the same order

– Make sure updates are a deterministic function of
database contents

• If we obey the above, “sync” is a simple merge of two
ordered lists

12

Totally order updates and replicate!

Write log

• Timestamp: 〈local timestamp T, originating node ID〉

• Ordering updates a and b:

– a < b if a.T < b.T, or (a.T = b.T and a.ID < b.ID)

13

Agreeing on the update order

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM

• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Pre-sync database state:

– A has M1 at 10 AM

– B has M2 at 10 AM

• What's the correct eventual outcome?

– The result of executing update functions in
timestamp order: M1 at 10 AM, M2 at 11 AM

14

Write log example

Timestamp

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM

• 〈770, B〉: B asks for meeting M2 at 10 AM, else 11 AM

• Now A and B sync with each other. Then:

– Each sorts new entries into its own log

• Ordering by timestamp

– Both now know the full set of updates

• A can just run B’s update function

• But B has already run B’s operation, too soon!

15

Write log example: Sync problem

• B needs to “roll back” the DB, and re-run both ops
in the correct order

• Bayou User Interface: Displayed meeting room
calendar entries are “Tentative” at first

– B’s user saw M2 at 10 AM, then it moved to 11 AM

16

Solution: Roll back and replay

Big point: The log at each node holds the

truth; the DB is just an optimization

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM

• 〈700, B〉: Delete update 〈701, A〉
– Possible if B’s clock is slow, and using real-time

timestamps

• Result: delete will be ordered before add

– (Delete never has an effect.)

• Q: How can we assign timestamp to respect causality?

17

Does update order respect causality?

• Want event timestamps so that if a node observes E1
then generates E2, then TS(E1) < TS(E2)

• Use Lamport clocks!

– If E1 → E2 then TS(E1) < TS(E2)

18

Lamport clocks respect causality

• 〈701, A〉: A asks for meeting M1 at 10 AM, else 11 AM
• 〈700, B〉: Delete update 〈701, A〉
• 〈706, B〉: Delete update 〈701, A〉

• With Lamport clocks:
– When A sends 〈701, A〉, it includes its clock, T (> 701)
– When B receives 〈701, A〉, it updates its clock to T’ > T
– When B creates the delete, it timestamps it with clock T’’ > T’
– T’’ > T’ > T > 701

• E.g., T’’ is 706

Q: What if A and B are concurrent?
A: Lamport timestamps provide some total ordering of events

19

Lamport clocks respect causality

• Never know whether some write from “the past”
may yet reach your node…

• So all entries in log must be tentative forever

• And you must store entire log forever

20

Timestamps for write ordering: Limitations

Want to commit a tentative entry,

so we can trim logs and have meetings

• Strawman proposal: Update 〈10, A〉 is committed
when all nodes have seen all updates with TS ≤ 10

• Have sync always send in log order

• If you have seen updates with TS > 10 from every
node then you’ll never again see one < 〈10, A〉
– So 〈10, A〉 is committed

• Why doesn’t Bayou do this?

– A server that remains disconnected could prevent
writes from committing

• So many writes may be rolled back on re-connect

21

Fully decentralized commit

• Bayou uses a primary commit scheme

– One designated node (the primary) commits updates

• Primary marks each write it receives with a permanent
CSN (commit sequence number)

– That write is committed

– Complete timestamp = 〈CSN, local TS, node-id〉

22

How Bayou commits writes

Advantage: Can pick a primary server

close to locus of update activity

• Nodes exchange CSNs when they sync with each other

• CSNs define a total order for committed writes

– All nodes eventually agree on the total order

– Tentative writes come after all committed writes

23

How Bayou commits writes (2)

• Suppose a node has seen every CSN up to a write, as
guaranteed by propagation protocol

– Can then show user the write has committed

• Mark calendar entry “Confirmed”

• Slow/disconnected node cannot prevent commits!

– Primary replica allocates CSNs

24

Committed vs. tentative writes

• What about tentative writes, though—how do they
behave, as seen by users?

• Two nodes may disagree on meaning of tentative
writes

– Even if those two nodes have synced with each other!

– Only CSNs from primary replica can resolve these
disagreements permanently

25

Tentative writes

26

Scenario 1: nodes that have synced
disagree

Time

Logs

A B C

?
?
?
?

?
?
?
?

?
?
?
?

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉
sync

〈local TS, node-id〉

sync

1

27

Example: Disagreement on tentative writes

Time

Logs

A B C

〈2, A〉 〈1, B〉 〈0, C〉

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉
sync

〈local TS, node-id〉

1

28

Example: Disagreement on tentative writes

Time

Logs

A B C

〈2, A〉

〈1, B〉 〈0, C〉〈1, B〉

〈2, A〉

sync

〈local TS, node-id〉

1

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉
sync

29

Example: Disagreement on tentative writes

Time

Logs

A B C

〈2, A〉 〈1, B〉

〈0, C〉〈1, B〉

〈2, A〉 〈2, A〉

〈1, B〉

〈0, C〉

〈local TS, node-id〉

1

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉
sync

sync

30

Example: Disagreement on tentative writes

Time

Logs

A B C

〈2, A〉 〈1, B〉

〈0, C〉〈1, B〉

〈2, A〉 〈2, A〉

〈1, B〉

〈0, C〉

〈local TS, node-id〉

1

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉
sync

sync

31

Example: Disagreement on tentative writes

Time

Logs

A B C

〈2, A〉 〈1, B〉

〈0, C〉〈1, B〉

〈2, A〉 〈2, A〉

〈1, B〉

〈0, C〉

〈local TS, node-id〉

1

W 〈0, C〉
W 〈1, B〉

W 〈2, A〉
sync

sync

May have disagreement about tentative updates

〈1, B〉 and 〈2, A〉 at A and B, EVEN THOUGH they

synced after entering these updates into their logs

32

Scenario 2: tentative order changes after
commit

Time

Logs

A B Pri

? ? ?

W 〈-,20, B〉
W 〈-,10, A〉

sync

C

?

sync

〈CSN, local TS, node-id〉

sync

sync

sync

2

33

Tentative order ≠ commit order

Time

Logs

A B Pri

〈-,10, A〉 〈-,10, A〉

W 〈-,20, B〉
W 〈-,10, A〉

sync

C

sync

〈-,20, B〉 〈-,20, B〉

〈CSN, local TS, node-id〉

〈-,20, B〉

2

34

Tentative order ≠ commit order

Time

Logs

A B Pri

〈-,20, B〉

〈-,10, A〉 〈-,10, A〉

C

〈-,20, B〉

〈-,20, B〉

sync

〈5,20, B〉 〈5,20, B〉

sync

〈6,10, A〉

〈6,10, A〉

〈5,20, B〉

〈6,10, A〉

sync

〈CSN, local TS, node-id〉

〈5,20, B〉

2

• Suppose a user creates meeting, then decides to
delete or change it

– What CSN order must these ops have?

• Create first, then delete or modify

• Must be true in every node’s view of tentative log
entries, too

• Rule: Primary’s total write order must preserve
causal order of writes

– Q: How?

35

Primary commit order constraint

• Rule: Primary’s total write order must preserve
causal order of writes

• How?

– Nodes sync full logs

• If A → B then A is in all logs before B

– Primary orders newly synced writes in tentative
order

• Primary will commit A and then commit B

36

Primary preserves causal order

• When nodes receive new CSNs, can discard all
committed log entries seen up to that point

– Update protocol → CSNs received in order

• Keep copy of whole database as of highest CSN

• Result: No need to keep years of log data

37

Trimming the log

• Is eventual consistency a useful idea?

• Yes: people want fast writes to local copies
iPhone sync, Dropbox, Dynamo, …

• Are update conflicts a real problem?

• Yes—all systems have some more or less awkward
solution

38

Let’s step back

• update functions, tentative ops, …

• Only critical if you want peer-to-peer sync

– i.e. both disconnected operation and ad-hoc
connectivity

• Only tolerable if humans are main consumers of data

– Otherwise you can sync through a central server

– Or read locally but send updates through a master

39

Is Bayou’s complexity warranted?

1. Eventual consistency, eventually if updates
stop, all replicas are the same

2. Update functions for automatic application-
driven conflict resolution

3. Ordered update log is the real truth, not the DB

4. Application of Lamport clocks for causal
consistency

40

What are Bayou’s take-away ideas?

	Slide 1: Eventual Consistency: Bayou
	Slide 2: Availability versus consistency
	Slide 3: Eventual consistency
	Slide 4: Bayou: A Weakly Connected Replicated Storage System
	Slide 5: Paper context
	Slide 6: Why not just a central server?
	Slide 7: Swap complete databases?
	Slide 8: Automatic conflict resolution: Granularity of “conflicts”
	Slide 9: Application-specific conflict resolution
	Slide 10: Application-specific update functions
	Slide 11: Potential Problem: Permanently inconsistent replicas
	Slide 12: Totally order updates and replicate!
	Slide 13: Agreeing on the update order
	Slide 14: Write log example
	Slide 15: Write log example: Sync problem
	Slide 16: Solution: Roll back and replay
	Slide 17: Does update order respect causality?
	Slide 18: Lamport clocks respect causality
	Slide 19: Lamport clocks respect causality
	Slide 20: Timestamps for write ordering: Limitations
	Slide 21: Fully decentralized commit
	Slide 22: How Bayou commits writes
	Slide 23: How Bayou commits writes (2)
	Slide 24: Committed vs. tentative writes
	Slide 25: Tentative writes
	Slide 26: Scenario 1: nodes that have synced disagree
	Slide 27: Example: Disagreement on tentative writes
	Slide 28: Example: Disagreement on tentative writes
	Slide 29: Example: Disagreement on tentative writes
	Slide 30: Example: Disagreement on tentative writes
	Slide 31: Example: Disagreement on tentative writes
	Slide 32: Scenario 2: tentative order changes after commit
	Slide 33: Tentative order ≠ commit order
	Slide 34: Tentative order ≠ commit order
	Slide 35: Primary commit order constraint
	Slide 36: Primary preserves causal order
	Slide 37: Trimming the log
	Slide 38: Let’s step back
	Slide 39: Is Bayou’s complexity warranted?
	Slide 40: What are Bayou’s take-away ideas?

