Peer-to-Peer Systems and
Distributed Hash Tables

alllasc Sfllall asala
'\\“E King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 11

Marco Canini

Today

1. Peer-to-Peer Systems
— Napster, Gnutella, BitTorrent, challenges

2. Distributed Hash Tables

3. The Chord Lookup Service

What is a Peer-to-Peer (P2P) system?

LJ Node
Node\ ‘ / Node
/ Internet \
Node Node

« Adistributed system architecture:
— No centralized control
— Nodes are roughly symmetric in function

« Large number of unreliable nodes

P2P adoption

» Successful adoption in some niche areas

1. Client-to-client (legal, illegal) file sharing
— Napster (1990s), Gnutella, BitTorrent, etc.

2. Digital currency: no natural single owner (Bitcoin)

3. Voicelvideo telephony: user to user (old Skype)
— Issues: Privacy and control

Why might P2P be a win?

* High capacity for services through resource pooling:
— Many disks, network connections, CPUs, as peers join

— Data are divided and duplicated, accessible from
multiple peers concurrently

* No centralized server or servers may mean:
— Less chance of service overload as load increases
— Easier deployment
— A single failure won’t wreck the whole system
— System as a whole is harder to attack

Example: Classic BitTorrent

1. User clicks on download link
— Gets file with content hash, IP addr of

2. User’s BitTorrent (BT) client talks to tracker
— Tracker tells it list of peers who have file

3. User’s BT client downloads file from one or more peers
4. User’s BT client tells tracker it has a copy now, too

5. User’s BT client serves the file to others for a while

Provides huge download bandwidth,
without expensive server or network links |

——

The lookup problem

|_| [get(“Star Wars.mov”)]
o ¢ 3 =
N Client
N
1 2
J Internet

put(“Star Wars.mov”, N;
[content])

Centralized lookup (Napster)

=2 |
g = M =
Cllent

SetLoc(“Star Wars.mov” DB (\/L LOOkUP(‘Star]
IP address of N,) Wars.mov”)

] ,.------------.. __________________

Pubhéihtr (N4)' Simple, but O(N) state and a !
single point of failure

key=“Star Wars.mov L ________________________________ '

value=[content]

Flooded queries (original Gnutella)

Lookup(“Star
= L] Wars.mov”)

[Pﬂz rq3'$~/’\\\JE%

N, Client
' Robust, but O(N = number of peers)
i_ messages per lookup i
"""""""""" Ej----———------------____
iﬁ‘$~__\\ E%
Publisher (N,) /—
key=“Star Wars.mov”, N5

value=[content]

Tradeoffs In distributed systems

msgs

A

A

Nearly no states
Many msgs

Ideal <

Many states
Good performance
Single PoF

states

Tradeoffs In distributed systems

A Nearly no states]

A Many msgs
Many states J

msgs / DHT \ Good performance

msgs < Gnutella
states < Napster

states

Today

1. Peer-to-Peer Systems
2. Distributed Hash Tables

3. The Chord Lookup Service

12

What is a DHT (and why)?

* Distributed Hash Table:
key = hash (data)
lookup (key) =2 IP addr (Chord lookup service)
send-RPC (IP address, put, key, data)
send-RPC (IP address, get, key) =2 data

* Partitioning data in large-scale distributed systems
— Tuples in a global database engine
— Data blocks in a global file system
— Files in a P2P file-sharing system

13

Cooperative storage with a DHT

node node cnee node

user user foen user

Q. : l upload l 1download
Q. |
<

| put(key, data) get (key) data

|
c | Distributed hash table (DHash)
..g i lookup(key) l I node IP address
> | (Chord)
@

i

|

!

14

DHT is expected to be

* Decentralized: no central authority
« Scalable: low network traffic overhead
« Efficient: find items quickly (latency)

 Dynamic: nodes fail, new nodes join

Today

1. Peer-to-Peer Systems
2. Distributed Hash Tables

3. The Chord Lookup Service

16

Chord identifiers

« Hashed values (int) using the same hash function
— Key identifier = SHA-1(key)
— Node identifier = SHA-1(IP address)

 How does Chord partition data?
— I.e., map key IDs to node IDs

 Why hash key and address?
— Uniformly distributed in the ID space
— Hashed key - load balancing
— Hashed |IP address - independent failure

Consistent hashing: data partition

Identifiers have m = 3 bits
Key space: [0, 23-1]

® Identifiers/key space

[] Node

Consistent hashing: data partition

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
® Identifiers/key space

[] Node 3-bit

Storeskey 6 (@6 |p space 2

Consistent hashing: basic lookup

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

L
0

@| Stores key 1
® Identifiers/key space

[] Node

- Successor
pointer

/7 3-bit At Noda 1

Storeskey 6 (@6 |p space \ 2

20

Chord: finger tables

Identifiers have m = 3 bits ~

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1 1 \
v ' V4
Separators “ Successors
\ of separators
Key ranges
Each node keeps m states k=1 - range size 1
Key space 2 m ranges via k=2 - range size 2

(N+2k1) mod 2™, 1<=k<=m k=3 - range size 4

22

Chord: finger tables

Identifiers have m = 3 bits

4,[4,0), node 5

2,[2,3), node 3
3, [3,5), node 3

5, [5,1), node 5

1, [1,2), node 1
L 2,[2,4), node 3

4, [4,5), node 5

23

Implication of finger tables

* A binary lookup tree rooted at every node
— Threaded through other nodes' finger tables

* This is better than simply arranging the nodes
In a single tree

—Every node acts as a root
» So there's no root hotspot
* No single point of failure
* But a lot more state in total

25

Chord lookup algorithm properties

' Interface: lookup(key) — IP address :

 Efficient: O(log N) messages per lookup
— N is the total number of nodes

« Scalable: O(log N) state per node

« Robust: survives massive failures

Chord — node joining

Contact node }

Lookup id 2]

3-bit N
ID space

2|®] Node 2 is joining

27

Chord — node joining

3-bit
ID space

Your
successor=3

J

2|®] Node 2 is joining

28

Chord — node joining

Your
successor=3

J

3-bit
ID space

2|®] Node 2 is joining

Moves key 2 to node 2

29

Chord — node joining

- Points to successor
— Points to predecessor

Periodic stabilization messages
from each node to its successor
maintain node positions

30

Chord — node joining

- Points to successor
— Points to predecessor

STABILIZE() [N.successor = M]
N - M: “What is your predecessor?”
M - N: “X'is my predecessor’
if X between (N, M): N.successor = X
N = N.successor: NOTIFY()
NOTIFY()

N = N.successor: “| think you are my successor’
M: upon receiving NOTIFY from N:

if (N between (M.predecessor, M)

M.predecessor = N

Chord — node joining

- Points to successor
— Points to predecessor

Node 2 is joining

TABILIZE() [N.successor = M]

N - M: “What is your predecessor?”

M - N: “X'is my predecessor’

if X between (N, M): N.successor = X

N = N.successor: NOTIFY()

NOTIFY()
N = N.successor: “I think you are my successor

M: upon receiving NOTIFY from N:

if (N between (M.predecessor, M)
M.predecessor = N

Chord — node joining

- Points to successor
— Points to predecessor

Node 2 is joining

/'STABILIZE() [N.successor = M]
N - M: “What is your predecessor?”
M - N: “X'is my predecessor’
if X between (N, M): N.successor = X
N = N.successor: NOTIFY()
NOTIFY()
N = N.successor: “I think you are my successor
M: upon receiving NOTIFY from N:
if (N between (M.predecessor, M)
M.predecessor = N

Chord — node joining

- Points to successor
— Points to predecessor

Node 2 is joining

/'STABILIZE() [N.successor = M]
N - M: “What is your predecessor?”
M - N: “X'is my predecessor’
if X between (N, M): N.successor = X
N = N.successor: NOTIFY()
NOTIFY()
N = N.successor: “I think you are my successor
M: upon receiving NOTIFY from N:
if (N between (M.predecessor, M)
M.predecessor = N

Chord - failures and successor list

2,[2,4), node 3
4,[4,0), node 5

/f 1,[1,2), node 1 q

2,[2,3), node 3
3, [3,5), node 3
5, [6,1), node 5

4, [4,5), node 5
5,[5.7), node 5

7,[7,3), node 0

[Look up key 1

35

Chord - failures and successor list

1, [1,2), node 1
2,[2,4), node 3

4,[4,0), node 5

2,[2,3), node 3
3, [3,5), node 3

5, [6,1), node 5

4, [4,5), node 5

[Look up key 1

36

Chord - failures and successor list

1, [1,2), node 1
2,[2,4), node 3

4,[4,0), node 5

2,[2,3), node 3
3, [3,5), node 3
5, [6,1), node 5

I
4, [4,5), node 5
\
[Look up key 1

37

Chord - failures and successor list

1, [1,2), node 1
2,[2,4), node 3

4,[4,0), node 5

T~

2,[2,3), node 3
3, [3,5), node 3
5, [6,1), node 5

4, [4,5),
3, [5,7),

node 5
node 5

7,[7,3),

node 0

[Succ.of id 7
(Succ. of node 6)

38

Chord - failures and successor list

1, [1,2), node 1
2,[2,4), node 3

4, [4,0), node 5

2,[2,3), node 3
3, [3,5), node 3
5! [551)5 nOde 5

1

I}
4,[4,5), node 5
_____________________ 5,[5.7), node 5
| r-nearest i 7,[7,3), node 0, 1
| SUCCeSSsSors : [
' ! Look up key 1
i r=0(logN) | ook Up key

39

Chord - failures and successor list

What if look up key 7?]

40

DHash replicates blocks at r successors

“Adjacent” nodes in
the ring may be far away
in the network

What if look up key 7?]

Today

1. Peer-to-Peer Systems
2. Distributed Hash Tables
3. The Chord Lookup Service

» Concluding thoughts on DHTs, P2P

43

Why don’t all services use P2P?

1. High latency and limited bandwidth
between peers (vs. intra/inter-datacenter,

client-server model)
— 1M nodes = 20 hops; 50ms/hop = 1s lookup latency

2. User computers are less reliable than
managed servers

3. Lack of trust in peers’ correct behavior
— Securing DHT routing hard, unsolved in practice

44

DHTs in retrospective

« Seem promising for finding data in large P2P systems
« Decentralization seems good for load, fault tolerance

But: the security problems are difficult
But: churn is a problem, particularly if log(N) is big

So DHTs have not had the hoped-for impact

What DHTs got right

* Consistent hashing
— Elegant way to divide a workload across machines

— Very useful in clusters: actively used today in Amazon
Dynamo, Apache Cassandra and other systems

» Replication for high availability, efficient recovery after
node failure

+ Incremental scalability: “add nodes, capacity increases”
+ Self-management: minimal configuration

 Unique trait: no single server to shut down/monitor

46

	Slide 1: Peer-to-Peer Systems and Distributed Hash Tables
	Slide 2: Today
	Slide 3: What is a Peer-to-Peer (P2P) system?
	Slide 4: P2P adoption
	Slide 5: Why might P2P be a win?
	Slide 6: Example: Classic BitTorrent
	Slide 7: The lookup problem
	Slide 8: Centralized lookup (Napster)
	Slide 9: Flooded queries (original Gnutella)
	Slide 10: Tradeoffs in distributed systems
	Slide 11: Tradeoffs in distributed systems
	Slide 12: Today
	Slide 13: What is a DHT (and why)?
	Slide 14: Cooperative storage with a DHT
	Slide 15: DHT is expected to be
	Slide 16: Today
	Slide 17: Chord identifiers
	Slide 18: Consistent hashing: data partition
	Slide 19: Consistent hashing: data partition
	Slide 20: Consistent hashing: basic lookup
	Slide 22: Chord: finger tables
	Slide 23: Chord: finger tables
	Slide 25: Implication of finger tables
	Slide 26: Chord lookup algorithm properties
	Slide 27: Chord – node joining
	Slide 28: Chord – node joining
	Slide 29: Chord – node joining
	Slide 30: Chord – node joining
	Slide 31: Chord – node joining
	Slide 32: Chord – node joining
	Slide 33: Chord – node joining
	Slide 34: Chord – node joining
	Slide 35: Chord – failures and successor list
	Slide 36: Chord – failures and successor list
	Slide 37: Chord – failures and successor list
	Slide 38: Chord – failures and successor list
	Slide 39: Chord – failures and successor list
	Slide 40: Chord – failures and successor list
	Slide 41: DHash replicates blocks at r successors
	Slide 43: Today
	Slide 44: Why don’t all services use P2P?
	Slide 45: DHTs in retrospective
	Slide 46: What DHTs got right

