
Peer-to-Peer Systems and

Distributed Hash Tables

CS 240: Computing Systems and Concurrency

Lecture 11

Marco Canini

1. Peer-to-Peer Systems
– Napster, Gnutella, BitTorrent, challenges

2. Distributed Hash Tables

3. The Chord Lookup Service

2

Today

• A distributed system architecture:

– No centralized control

– Nodes are roughly symmetric in function

• Large number of unreliable nodes

3

What is a Peer-to-Peer (P2P) system?

Node

Node

Node Node

Node

Internet

• Successful adoption in some niche areas

1. Client-to-client (legal, illegal) file sharing

– Napster (1990s), Gnutella, BitTorrent, etc.

2. Digital currency: no natural single owner (Bitcoin)

3. Voice/video telephony: user to user (old Skype)

– Issues: Privacy and control

4

P2P adoption

• High capacity for services through resource pooling:

– Many disks, network connections, CPUs, as peers join

– Data are divided and duplicated, accessible from
multiple peers concurrently

• No centralized server or servers may mean:

– Less chance of service overload as load increases

– Easier deployment

– A single failure won’t wreck the whole system

– System as a whole is harder to attack

5

Why might P2P be a win?

1. User clicks on download link
– Gets torrent file with content hash, IP addr of tracker

2. User’s BitTorrent (BT) client talks to tracker
– Tracker tells it list of peers who have file

3. User’s BT client downloads file from one or more peers

4. User’s BT client tells tracker it has a copy now, too

5. User’s BT client serves the file to others for a while

6

Example: Classic BitTorrent

Provides huge download bandwidth,
without expensive server or network links

7

The lookup problem

N1

N2 N3

N6N5

Publisher (N4)

Client

?
Internet

put(“Star Wars.mov”,

[content])

get(“Star Wars.mov”)

8

Centralized lookup (Napster)

N1

N2 N3

N6N5

Publisher (N4)

Client

SetLoc(“Star Wars.mov”,

IP address of N4)

Lookup(“Star

Wars.mov”)DB

key=“Star Wars.mov”,

value=[content]

Simple, but O(N) state and a

single point of failure

9

Flooded queries (original Gnutella)

N1

N2 N3

N6N5

Publisher (N4)

Client

Lookup(“Star

Wars.mov”)

key=“Star Wars.mov”,

value=[content]

Robust, but O(N = number of peers)

messages per lookup

10

Tradeoffs in distributed systems

msgs

states

Napster

Many states

Good performance

Single PoF

Gnutella

Nearly no states

Many msgs

Ideal

11

Tradeoffs in distributed systems

msgs

states

Napster

Many states

Good performance

Single PoF

Gnutella

Nearly no states

Many msgs

DHT

(Chord)

msgs < Gnutella

states < Napster

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

12

Today

13

What is a DHT (and why)?

• Distributed Hash Table:

 key = hash(data)

 lookup(key) → IP addr (Chord lookup service)

 send-RPC(IP address, put, key, data)

 send-RPC(IP address, get, key) → data

• Partitioning data in large-scale distributed systems

– Tuples in a global database engine

– Data blocks in a global file system

– Files in a P2P file-sharing system

14

Cooperative storage with a DHT

Distributed hash table

Distributed application

get (key) data

node node node….

put(key, data)

Lookup service

lookup(key) node IP address

(DHash)

(Chord)

S
y

s
te

m
A

p
p

user user user….

upload download

• Decentralized: no central authority

• Scalable: low network traffic overhead

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join

15

DHT is expected to be

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

16

Today

• Hashed values (int) using the same hash function

– Key identifier = SHA-1(key)

– Node identifier = SHA-1(IP address)

• How does Chord partition data?

– i.e., map key IDs to node IDs

• Why hash key and address?

– Uniformly distributed in the ID space

– Hashed key → load balancing

– Hashed IP address → independent failure

17

Chord identifiers

18

Consistent hashing: data partition

3-bit

ID space

0

1

2

3

4

5

6

7

Identifiers have m = 3 bits

Key space: [0, 23-1]

Node

Identifiers/key space

19

Consistent hashing: data partition

Key is stored at its successor: node with next-higher ID

3-bit

ID space

0

1

2

3

4

5

6

7

Identifiers have m = 3 bits

Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Identifiers/key space

20

Consistent hashing: basic lookup

3-bit

ID space

0

1

2

3

4

5

6

7

Identifiers have m = 3 bits

Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Key 1 ?

At Node 1

Look up key 1

Successor

pointer

O(N) messages and hops!

Identifiers/key space

22

Chord: finger tables

3-bit

ID space

0

1

2

3

4

5

6

7

Identifiers have m = 3 bits

Each node keeps m states

Key space → m ranges via

(N+2k-1) mod 2m, 1<=k<=m

2, [2,3), node 3

3, [3,5), node 3

5, [5,1), node 5

Separators

Key ranges

Successors

of separators

k=1 → range size 1

k=2 → range size 2

k=3 → range size 4

23

Chord: finger tables

Identifiers have m = 3 bits

Each node keeps m states

Key space → m ranges via

(N+2k-1) mod 2m, 1<=k<=m O(log N) messages and hops!

3-bit

ID space

0

1

2

3

4

5

6

7
2, [2,3), node 3

3, [3,5), node 3

5, [5,1), node 5

1, [1,2), node 1

2, [2,4), node 3

4, [4,0), node 5

4, [4,5), node 5

5, [5,7), node 5

7, [7,3), node 0

Look up key 1

Node 1

• A binary lookup tree rooted at every node

– Threaded through other nodes' finger tables

• This is better than simply arranging the nodes
in a single tree

– Every node acts as a root

• So there's no root hotspot

• No single point of failure

• But a lot more state in total

25

Implication of finger tables

• Efficient: O(log N) messages per lookup

– N is the total number of nodes

• Scalable: O(log N) state per node

• Robust: survives massive failures

26

Chord lookup algorithm properties

Interface: lookup(key) → IP address

27

Chord – node joining

3-bit

ID space

0

1

2

3

4

5

6

7

Node 2 is joining

Contact node

Lookup id 2

28

Chord – node joining

3-bit

ID space

0

1

2

3

4

5

6

7

Node 2 is joining

Your

successor = 3

29

Chord – node joining

3-bit

ID space

0

1

2

3

4

5

6

7

Node 2 is joining

Your

successor = 3

Moves key 2 to node 2

30

Chord – node joining

3-bit

ID space

0

1

2

3

4

5

6

7

Node 2 is joining

Points to successor

Points to predecessor

Periodic stabilization messages

from each node to its successor

maintain node positions

31

Chord – node joining

3-bit

ID space

0

1

2

3

4

5

6

7

Node 2 is joining

Points to successor

Points to predecessor

STABILIZE() [N.successor = M]

 N → M: “What is your predecessor?”

 M → N: “X is my predecessor”

 if X between (N, M): N.successor = X

 N → N.successor: NOTIFY()
NOTIFY()

 N → N.successor: “I think you are my successor”

M: upon receiving NOTIFY from N:

 if (N between (M.predecessor, M)

 M.predecessor = N

32

Chord – node joining

3-bit

ID space

0

1

2

3

4

5

6

7

Node 2 is joining

Points to successor

Points to predecessor

STABILIZE() [N.successor = M]

 N → M: “What is your predecessor?”

 M → N: “X is my predecessor”

 if X between (N, M): N.successor = X

 N → N.successor: NOTIFY()
NOTIFY()

 N → N.successor: “I think you are my successor”

M: upon receiving NOTIFY from N:

 if (N between (M.predecessor, M)

 M.predecessor = N

33

Chord – node joining

3-bit

ID space

0

1

2

3

4

5

6

7

Node 2 is joining

Points to successor

Points to predecessor

STABILIZE() [N.successor = M]

 N → M: “What is your predecessor?”

 M → N: “X is my predecessor”

 if X between (N, M): N.successor = X

 N → N.successor: NOTIFY()
NOTIFY()

 N → N.successor: “I think you are my successor”

M: upon receiving NOTIFY from N:

 if (N between (M.predecessor, M)

 M.predecessor = N

34

Chord – node joining

3-bit

ID space

0

1

2

3

4

5

6

7

Node 2 is joining

Points to successor

Points to predecessor

STABILIZE() [N.successor = M]

 N → M: “What is your predecessor?”

 M → N: “X is my predecessor”

 if X between (N, M): N.successor = X

 N → N.successor: NOTIFY()
NOTIFY()

 N → N.successor: “I think you are my successor”

M: upon receiving NOTIFY from N:

 if (N between (M.predecessor, M)

 M.predecessor = N

35

Chord – failures and successor list

3-bit

ID space

0

1

2

3

4

5

6

7
2, [2,3), node 3

3, [3,5), node 3

5, [5,1), node 5

1, [1,2), node 1

2, [2,4), node 3

4, [4,0), node 5

4, [4,5), node 5

5, [5,7), node 5

7, [7,3), node 0

Look up key 1

36

Chord – failures and successor list

3-bit

ID space

0

1

2

3

4

5

6

7
2, [2,3), node 3

3, [3,5), node 3

5, [5,1), node 5

1, [1,2), node 1

2, [2,4), node 3

4, [4,0), node 5

4, [4,5), node 5

5, [5,7), node 5

7, [7,3), node 0

Look up key 1

37

Chord – failures and successor list

Points to successor

3-bit

ID space

0

1

2

3

4

5

6

7
2, [2,3), node 3

3, [3,5), node 3

5, [5,1), node 5

1, [1,2), node 1

2, [2,4), node 3

4, [4,0), node 5

4, [4,5), node 5

5, [5,7), node 5

7, [7,3), node 0

Look up key 1

38

Chord – failures and successor list

Points to successor

3-bit

ID space

0

1

2

3

4

5

6

7
2, [2,3), node 3

3, [3,5), node 3

5, [5,1), node 5

1, [1,2), node 1

2, [2,4), node 3

4, [4,0), node 5

4, [4,5), node 5

5, [5,7), node 5

7, [7,3), node 0

Look up key 1
Succ. of id 7

(Succ. of node 6)

39

Chord – failures and successor list

Points to successor

3-bit

ID space

0

1

2

3

4

5

6

7
2, [2,3), node 3

3, [3,5), node 3

5, [5,1), node 5

1, [1,2), node 1

2, [2,4), node 3

4, [4,0), node 5

4, [4,5), node 5

5, [5,7), node 5

7, [7,3), node 0, 1

Look up key 1

r-nearest

successors

r = O(log N)

40

Chord – failures and successor list

3-bit

ID space

0

1

2

3

4

5

6

7

What if look up key 7?

r-nearest

successors

r = O(log N)

41

DHash replicates blocks at r successors

3-bit

ID space

0

1

2

3

4

5

6

7

What if look up key 7?

r-nearest

successors

r = O(log N)

Key 7

Key 7

“Adjacent” nodes in

the ring may be far away

in the network

→ Independent failures

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

• Concluding thoughts on DHTs, P2P

43

Today

Why don’t all services use P2P?

1. High latency and limited bandwidth
between peers (vs. intra/inter-datacenter,
client-server model)
– 1M nodes = 20 hops; 50ms/hop → 1s lookup latency

2. User computers are less reliable than
managed servers

3. Lack of trust in peers’ correct behavior
– Securing DHT routing hard, unsolved in practice

44

• Seem promising for finding data in large P2P systems

• Decentralization seems good for load, fault tolerance

• But: the security problems are difficult

• But: churn is a problem, particularly if log(N) is big

• So DHTs have not had the hoped-for impact

45

DHTs in retrospective

• Consistent hashing

– Elegant way to divide a workload across machines

– Very useful in clusters: actively used today in Amazon
Dynamo, Apache Cassandra and other systems

• Replication for high availability, efficient recovery after
node failure

• Incremental scalability: “add nodes, capacity increases”

• Self-management: minimal configuration

• Unique trait: no single server to shut down/monitor

46

What DHTs got right

	Slide 1: Peer-to-Peer Systems and Distributed Hash Tables
	Slide 2: Today
	Slide 3: What is a Peer-to-Peer (P2P) system?
	Slide 4: P2P adoption
	Slide 5: Why might P2P be a win?
	Slide 6: Example: Classic BitTorrent
	Slide 7: The lookup problem
	Slide 8: Centralized lookup (Napster)
	Slide 9: Flooded queries (original Gnutella)
	Slide 10: Tradeoffs in distributed systems
	Slide 11: Tradeoffs in distributed systems
	Slide 12: Today
	Slide 13: What is a DHT (and why)?
	Slide 14: Cooperative storage with a DHT
	Slide 15: DHT is expected to be
	Slide 16: Today
	Slide 17: Chord identifiers
	Slide 18: Consistent hashing: data partition
	Slide 19: Consistent hashing: data partition
	Slide 20: Consistent hashing: basic lookup
	Slide 22: Chord: finger tables
	Slide 23: Chord: finger tables
	Slide 25: Implication of finger tables
	Slide 26: Chord lookup algorithm properties
	Slide 27: Chord – node joining
	Slide 28: Chord – node joining
	Slide 29: Chord – node joining
	Slide 30: Chord – node joining
	Slide 31: Chord – node joining
	Slide 32: Chord – node joining
	Slide 33: Chord – node joining
	Slide 34: Chord – node joining
	Slide 35: Chord – failures and successor list
	Slide 36: Chord – failures and successor list
	Slide 37: Chord – failures and successor list
	Slide 38: Chord – failures and successor list
	Slide 39: Chord – failures and successor list
	Slide 40: Chord – failures and successor list
	Slide 41: DHash replicates blocks at r successors
	Slide 43: Today
	Slide 44: Why don’t all services use P2P?
	Slide 45: DHTs in retrospective
	Slide 46: What DHTs got right

