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Availability: vital for web applications

* Web applications are expected to be “always on”
— Down time - pisses off customers, costs $

« System design considerations relevant to availability
— Scalability: always on under growing demand

— Reliability: always on despite failures

— Performance: 10 sec latency considered available?

“an availability event can be modeled as a long-
lasting performance variation”
(Amazon Aurora SIGMOD '17)



Scalability: up or out?

« Scale-up (vertical scaling)
— Upgrade hardware

— E.g., MacBook Air 2> MacBook Pro
— Down time during upgrade; stops working quickly

* Scale-out (horizontal scaling)
— Add machines, divide the work
— E.g., a supermarket adds more checkout lines
— No disruption; works great with careful design



Reliability: available under failures

* More machines, more likely to falil
— p = probability a machine fails in given period
— n = number of machines
— Probability of any failure in given period = 1—=(1-p)”

* For 50K machines, each with 99.99966% available
— 16% of the time, data center experiences failures

* For 100K machines, failures happen 30% of the time!



Two questions (challenges)

 How is data partitioned across machines so the
system scales?

* How are failures handled so the system is always on?



Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling



Amazon in 2007

» 10%s of servers in multiple DCs

— 1068s of servers, 120+ DCs (as of now)

* 107s of customers at peaks
— 89M+ reqs/s (Prime Day '21)

* Tiered architecture (similar today)
— Service-oriented architecture
— Stateless web servers
& aggregators
— Stateful storage servers
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Dynamo requirements

Highly available writes despite failures

— Despite disks failing, network routes flapping, “data centers
destroyed by tornadoes”

— Always respond quickly, even during failures - replication

Low request-response latency: focus on 99.9% SLA

— E.g., “provide a response within 300ms for 99.9% of its requests for
peak client load of 500 reqs/s”

Incrementally scalable as servers grow to workload
— Adding “nodes” should be seamless

Comprehensible conflict resolution
— High availability in above sense implies conflicts



Basics in Dynamo

+ Basic interface is a key-value store (vs. relational DB)
— get(k) and put(k, v)
— Keys and values opaque to Dynamo

* Nodes are symmetric
— P2P and DHT context



Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

10



Consistent hashing recap

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
® Identifiers/key space

[] Node 3-bit

Storeskey 6 (@6 |p space 2



Incremental scalability
(why consistent hashing)

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
® Identifiers/key space

[] Node 3-bit

Storeskey 6 (@6 |p space 2



Incremental scalability
(why consistent hashing)

Minimum data is moved around when nodes join and leave

Unlike modular hashing (see next slide)

® Keys 4~0

3-bit
ID space

,I' Transfer
! Keys 4,5




Modulo hashing

* Consider problem of data partition:
— Given object id X, choose one of k servers to use

« Suppose instead we use modulo hashing:
— Place X on server i = hash(X) mod k

« What happens if a server fails or joins (k € k=*=1)?
— or different clients have different estimate of k?
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Problem for modulo hashing:
Changing number of servers

h(x) =x+ 1 (mod 4)
Add one machine: h(x) = x + 1 (mod 5)

Server 4[ ___________________________________________ I _______
-~ All entries get remapped to new nodes!
- Need to move objects over the network

5 7 10 11 27 29 36 38 40
Object serial number
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Challenge: unbalanced load

* Nodes are assigned different # of keys

3-bit

ID space




Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

3-bit
Keys56 @6 |pgpace 2@ Keyst,2



Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave
Keys 5,6,7,0

v 3-bit
Keys 5,6 [l 6 ID space 2 |®| Keys 1, 2
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Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

« Some keys are more popular

3-bit
Keys56 @6 |pgpace 2@ Keyst,2

Best seller item mmp



Solution: virtual nodes (vnhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids - same physical node




Solution: virtual nodes (vnhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids - same physical node

4 physical nodes (servers) 3-bit
2 vnodes / server ‘ @6 ID space

Virtual node:
same color - same physical node



Solution: virtual nodes (vnhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids - same physical node

4
Orange server leaves ‘ 1 3-bit
Keys moved to blue and red x6 ID space 2

Virtual node:
same color - same physical node



Solution: virtual nodes (vnhodes)

An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids - same physical node

More virtual nodes, more balanced

Faster data transfer for join/leave

Controllable # of vnodes / server

— Server capacity:
e.g., CPU, memory, network

Virtual node:
same color - same physical node
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Gossip and “lookup”

Gossip: Once per second, each node contacts a
randomly chosen other node

— They exchange their lists of known nodes
(including virtual node IDs)

Assumes all nodes will come back eventually, doesn't
repartition

« Each node learns which others handle all key ranges

— Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)

* Reduces variability in response times
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Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling
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Preference list (data replication)

* Key replicated on M vnhodes
— Remember “r-successor” in DHT?

 All M vhodes on distinct servers across different datacenters

Virtual node:
5 colors = 5 physical nodes
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Preference list (data replication)

* Key replicated on M vnhodes
— Remember “r-successor” in DHT?

 All M vnodes on distinct servers across different datacenters
Key 0

Key 0's Preference list could be
vnodes: {0, 1, 3, 5} mapping to servers:
{green, red, , blue}
LGreen is the coordinator server of key O !

Virtual node:
5 colors = 5 physical nodes
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Read and write requests

Received by the coordinator (this is not Chord)
— Either the client (web server) knows the mapping or re-routed

Sent to in preference list (coordinator incl.)
— Durable writes: my updates recorded on multiple servers
— Fast reads: possible to avoid straggler

A write creates a new immutable version of the key (no overwrite)
— Multi-versioned data store

Quorum-based protocol
— Awrite succeeds if W out of N servers reply (write quorum)
— Aread succeeds if R out of N servers reply (read quorum)



Quorum implications (W, R, and N)

* N determines the durability of data (Dynamo N = 3)

W and R adjust the availability-consistency tradeoff
— W =1 (R = 3): fast write, weak durability, slow read
— R =1 (W = 3): slow write, good durability, fast read
— Dynamo: W=R =2

« WhyW+R>N?
— Read and write quorums overlap when there are no
failures!
— Reads see all updates without failures
« What if there are failures?
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Failure handing: sloppy quorum +
hinted handoff

+ Sloppy: not always the same servers used in N
— First N servers in the preference list without failures
— Later servers in the list take over if some in the first N fail

« Consequences

— Good performance: no need to wait for failed servers in N to
recover

— Eventual (weak) consistency: conflicts are possible, versions
diverge

— Another decision on !



Failure handing: sloppy quorum +
hinted handoff

Key O’s preference list {green, red, , blue}
N = 3: {green, red, } without failures
If red fails, requests go to {green, blue} Key 0

Hinted handoff
— Blue temporarily serves requests
— Hinted that red is the intended recipient
— Send replica back to red when red is on ® 5

Key 0 S & Key 0

Virtual node:
5 colors = 5 physical nodes
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Wide-area replication

« Last ], § 4.6: Preference lists always contain nodes
from more than one data center

— Consequence: Data likely to survive failure of
entire data center

* Blocking on writes to a remote data center would
iIncur unacceptably high latency

— Compromise: W < N, eventual consistency
— Better durability & latency but worse consistency
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Conflicts

« Suppose N=3, W=R=2 nodesare A,B,C,D, E
— CL1 put(k, ...) completes on A and B
— CL2 put(k, ...) completes on C and D

« Conflicting results from A, Band C, D
— Each has seen a different put(k, ...)

* How does Dynamo handle conflicting versions?
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An example of conflicting writes
(versions)

Preference list (M =5, N = 3)

(A B i D E

4NN NN EEN NN EEE ENE EEN BEE IEE I S e

=

d-mmmmmmmmmmmm oo
@

Shopping cart:

CL1: Add ltem x

A and B fail



An example of conflicting writes
(versions)

Preference list (M =5, N = 3)

=
3

e

Shopping cart:

CL1: Add ltem x
A and B fail

CL2: Add ltem y

e ——
<
<



An example of conflicting writes
(versions)

Time
Shopping cart: i :’A B CE D E

T o S~ .
i

CL1: Add Item x i X X
i

A and B fail :

i

CL2: Add ltem y : y y
i
i

A and B recover :
i
i

CL1: Read cart v read read

l | Conflicting versions only possible under failures |



Vector clocks: handling conflicting
versions

o

Ti

)

Shopping cart:

CL1: Add ltem x

----------3

———————————————————————————

Read returns
x (A,1) andy (C,1)
(A,1) and (C,1) are
not causally related:
conflicts!

N i —————————

i

Preference list (M =5, N = 3)

pe-ssssssasassaas \
LA B C! D E
X X
(A1) (A1)
y y
s (C,1) (C)11)
read read



Version vectors (vector clocks)

List of (coordinator node, counter) pairs
-e.g., [(A, 1), (B, 3), ...]

* Dynamo stores a version vector with each stored key-
value pair

 |dea: track "ancestor-descendant” relationship
between different versions of data stored under the

same key k



Dynamo’s system interface

» get(key) = value, context
— Returns one value or multiple conflicting values
— Context describes version(s) of value(s)

 put(key, context, value) 2> “OK”

— Context indicates which versions this version
supersedes or merges



Version vectors: Dynamo’s mechanism

* Rule: If vector clock comparison of v1 <v2, then the first is
an ancestor of the second — Dynamo can forget v1

« Each time a put() occurs, Dynamo increments the counter
in the V.V. for the coordinator node

« Each time a get() occurs, Dynamo retums the V.V. for the
value(s) returned (in the “context”)

— Then users must supply that context to put()s that
modify the same key
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Conflict resolution (reconciliation)

If vector clocks show causally related (not really
conflicting)

— System overwrites with the later version

For conflicting versions

— System handles it automatically, e.q., last-writer-
wins (limited use case)

— Application specific resolution (most common)

* Clients resolve the conflict , €.9., merge
shopping cart



Vector clocks: handling conflicting

versions

Shopping cart:

CL1: Add ltem x

CL2: Add Item y

CL1: Read cart
x (A1),y(C,1)

=
3

Q= e

e

Preference list (M =5, N = 3)

A_B_C D E
X X
(A1) (A1)
y y
1) (C1)



Vector clocks: handling conflicting

versions

Shopping cart:
CL1: Add Item x
CL2: Add Item y

CL1: Read cart
x (A1),y(C,1)

CL1: Add Item z
X, ¥, z [(A,1), (C,1)]

=
3

Q= e

e

Preference list (M =5, N = 3)

A_B_C D E
X X
(A1) (A1)
y y
1) (C1)
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Vector clocks: handling conflicting

versions

Shopping cart:
CL1: Add Item x
CL2: Add Itemy

CL1: Read cart
x (A1),y(C,1)

CL1: Add Item z
X, ¥, z [(A,1), (C,1)]

=
3

Preference list (M =5, N = 3)
i(A B C D E

e

4NN NN EEN EEN EEE EEE BEN BEE ENE EE S S

(A,2, C,1)(A,2, C,1)

X x

(A1) (AT)

! y y

: (C,1) (C1)
| Xyz Xyz
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How useful is it to vary N, R, W?

NRWBehavior

3 2 2 Parameters from paper:
Good durability, good R/W latency

3 3 1
313
3 33
31 1
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How useful is it to vary N, R, W?

NRWBehavior

3 2 2

3 3 1
313
3 33
311

Parameters from paper:
Good durability, good R/W latency

Slow reads, weak durability, fast writes
Slow writes, strong durability, fast reads
More likely that reads see all prior writes?
Read quorum may not overlap write quorum
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Failure detection and ring membership

Server A considers B has failed if B does not reply to As
message

— Evenif Brepliesto C
— A then tries alternative nodes

With servers join and permanently leave

— Servers periodically send gossip messages to their
neighbors to sync who are in the ring

— Some servers are chosen as seeds, i.e., common
neighbors to all nodes



Anti-entropy (replica synchronization)

« Hinted handoff node crashes before it can replicate
data to node in preference list

— Need another way to ensure that each key-value
pair is replicated N times

* Mechanism: replica synchronization
— Nodes nearby on ring periodically gossip
« Compare the (k, v) pairs they hold
» Copy any missing keys the other has

How to compare and copy replica
state quickly and efficiently?
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Efficient synchronization with Merkle trees

Merkle trees hierarchically summarize the key-value
pairs a node holds

One Merkle tree for each virtual node key range

— Leaf node = hash of one key’s value
(# of leaves = # keys on the virtual node)

— Internal node = hash of concatenation of children
* Replicas exchange trees from top down, depth by depth

— If root nodes match, then identical replicas, stop
— Else, go to next level, compare nodes pair-wise
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Merkle tree reconciliation

* B is missing orange key; A is missing green one

« Exchange and compare hash nodes from root
downwards, pruning when hashes match

A’s values: B’s values:
[O 2128 [O 2128

[O 2127:| I‘ 2127 2128) [O 2127: ; 2127 2128

Finds differing keys quickly and with
minimum information exchange



Dynamo: Take-aways ideas

 Avallability is important
— Systems need to be scalable and reliable

* Dynamo is eventually consistent
— Many design decisions

* Core techniques
— Consistent hashing: data partitioning

— Replication, preference list, sloppy quorum, hinted
handoff: availability under failures

— Vector clocks: conflict resolution (partly automatic, rest app.)
— Anti-entropy: synchronize replicas
— Gossip: synchronize ring membership
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