Scaling Out Key-Value Storage:
Dynamo

alllausc Ellall asala

‘\\“E King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 12

Marco Canini

Availability: vital for web applications

* Web applications are expected to be “always on”
— Down time - pisses off customers, costs $

« System design considerations relevant to availability
— Scalability: always on under growing demand

— Reliability: always on despite failures

— Performance: 10 sec latency considered available?

“an availability event can be modeled as a long-
lasting performance variation”
(Amazon Aurora SIGMOD '17)

Scalability: up or out?

« Scale-up (vertical scaling)
— Upgrade hardware

— E.g., MacBook Air 2> MacBook Pro
— Down time during upgrade; stops working quickly

* Scale-out (horizontal scaling)
— Add machines, divide the work
— E.g., a supermarket adds more checkout lines
— No disruption; works great with careful design

Reliability: available under failures

* More machines, more likely to falil
— p = probability a machine fails in given period
— n = number of machines
— Probability of any failure in given period = 1—=(1-p)”

* For 50K machines, each with 99.99966% available
— 16% of the time, data center experiences failures

* For 100K machines, failures happen 30% of the time!

Two questions (challenges)

 How is data partitioned across machines so the
system scales?

* How are failures handled so the system is always on?

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

Amazon in 2007

» 10%s of servers in multiple DCs

— 1068s of servers, 120+ DCs (as of now)

* 107s of customers at peaks
— 89M+ reqs/s (Prime Day '21)

* Tiered architecture (similar today)
— Service-oriented architecture
— Stateless web servers
& aggregators
— Stateful storage servers

Client Requests

P P \
y, N~ \Page
I J rg l - e e b Reqndering
i tJ . J o Corponents
| |
I \ e I
i |
: Request Routing] |
|
I ~ / \ |
| Eo> >
I B Aggregator
I\ LL* J L tk. | / Services
S. z

Request Routing

/,/\ Y

Services

EL >

kg & B W

1 b - tJ t J : <H Amazon I:\‘ l |

:i‘fl 3 o §3 N5d

l -5/ t/J t/J \ - :/‘ ‘,‘} ’I
N Dmamoinstancess =T e Other datasiores

7

Dynamo requirements

Highly available writes despite failures

— Despite disks failing, network routes flapping, “data centers
destroyed by tornadoes”

— Always respond quickly, even during failures - replication

Low request-response latency: focus on 99.9% SLA

— E.g., “provide a response within 300ms for 99.9% of its requests for
peak client load of 500 reqs/s”

Incrementally scalable as servers grow to workload
— Adding “nodes” should be seamless

Comprehensible conflict resolution
— High availability in above sense implies conflicts

Basics in Dynamo

+ Basic interface is a key-value store (vs. relational DB)
— get(k) and put(k, v)
— Keys and values opaque to Dynamo

* Nodes are symmetric
— P2P and DHT context

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

10

Consistent hashing recap

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
® Identifiers/key space

[] Node 3-bit

Storeskey 6 (@6 |p space 2

Incremental scalability
(why consistent hashing)

Identifiers have m = 3 bits Stores key 7, 0
Key space: [0, 23-1]

@| Stores key 1
® Identifiers/key space

[] Node 3-bit

Storeskey 6 (@6 |p space 2

Incremental scalability
(why consistent hashing)

Minimum data is moved around when nodes join and leave

Unlike modular hashing (see next slide)

® Keys 4~0

3-bit
ID space

,I' Transfer
! Keys 4,5

Modulo hashing

* Consider problem of data partition:
— Given object id X, choose one of k servers to use

« Suppose instead we use modulo hashing:
— Place X on server i = hash(X) mod k

« What happens if a server fails or joins (k € k=*=1)?
— or different clients have different estimate of k?

14

Problem for modulo hashing:
Changing number of servers

h(x) =x+ 1 (mod 4)
Add one machine: h(x) = x + 1 (mod 5)

Server 4[___ I _______
-~ All entries get remapped to new nodes!
- Need to move objects over the network

5 7 10 11 27 29 36 38 40
Object serial number

15

Challenge: unbalanced load

* Nodes are assigned different # of keys

3-bit

ID space

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

3-bit
Keys56 @6 |pgpace 2@ Keyst,2

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave
Keys 5,6,7,0

v 3-bit
Keys 5,6 [l 6 ID space 2 |®| Keys 1, 2

18

Challenge: unbalanced load

* Nodes are assigned different # of keys

« Unbalanced with nodes join/leave

« Some keys are more popular

3-bit
Keys56 @6 |pgpace 2@ Keyst,2

Best seller item mmp

Solution: virtual nodes (vnhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids - same physical node

Solution: virtual nodes (vnhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids - same physical node

4 physical nodes (servers) 3-bit
2 vnodes / server ‘ @6 ID space

Virtual node:
same color - same physical node

Solution: virtual nodes (vnhodes)

* An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids - same physical node

4
Orange server leaves ‘ 1 3-bit
Keys moved to blue and red x6 ID space 2

Virtual node:
same color - same physical node

Solution: virtual nodes (vnhodes)

An extra level of mapping
— From node id in the ring to physical node
— Node ids are now virtual nodes (tokens)
— Multiple node ids - same physical node

More virtual nodes, more balanced

Faster data transfer for join/leave

Controllable # of vnodes / server

— Server capacity:
e.g., CPU, memory, network

Virtual node:
same color - same physical node

23

Gossip and “lookup”

Gossip: Once per second, each node contacts a
randomly chosen other node

— They exchange their lists of known nodes
(including virtual node IDs)

Assumes all nodes will come back eventually, doesn't
repartition

« Each node learns which others handle all key ranges

— Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)

* Reduces variability in response times

24

Today: Amazon Dynamo

1. Background and system model
2. Data partitioning

3. Failure handling

25

Preference list (data replication)

* Key replicated on M vnhodes
— Remember “r-successor” in DHT?

 All M vhodes on distinct servers across different datacenters

Virtual node:
5 colors = 5 physical nodes

26

Preference list (data replication)

* Key replicated on M vnhodes
— Remember “r-successor” in DHT?

 All M vnodes on distinct servers across different datacenters
Key 0

Key 0's Preference list could be
vnodes: {0, 1, 3, 5} mapping to servers:
{green, red, , blue}
LGreen is the coordinator server of key O !

Virtual node:
5 colors = 5 physical nodes

27

Read and write requests

Received by the coordinator (this is not Chord)
— Either the client (web server) knows the mapping or re-routed

Sent to in preference list (coordinator incl.)
— Durable writes: my updates recorded on multiple servers
— Fast reads: possible to avoid straggler

A write creates a new immutable version of the key (no overwrite)
— Multi-versioned data store

Quorum-based protocol
— Awrite succeeds if W out of N servers reply (write quorum)
— Aread succeeds if R out of N servers reply (read quorum)

Quorum implications (W, R, and N)

* N determines the durability of data (Dynamo N = 3)

W and R adjust the availability-consistency tradeoff
— W =1 (R = 3): fast write, weak durability, slow read
— R =1 (W = 3): slow write, good durability, fast read
— Dynamo: W=R =2

« WhyW+R>N?
— Read and write quorums overlap when there are no
failures!
— Reads see all updates without failures
« What if there are failures?

29

Failure handing: sloppy quorum +
hinted handoff

+ Sloppy: not always the same servers used in N
— First N servers in the preference list without failures
— Later servers in the list take over if some in the first N fail

« Consequences

— Good performance: no need to wait for failed servers in N to
recover

— Eventual (weak) consistency: conflicts are possible, versions
diverge

— Another decision on !

Failure handing: sloppy quorum +
hinted handoff

Key O’s preference list {green, red, , blue}
N = 3: {green, red, } without failures
If red fails, requests go to {green, blue} Key 0

Hinted handoff
— Blue temporarily serves requests
— Hinted that red is the intended recipient
— Send replica back to red when red is on ® 5

Key 0 S & Key 0

Virtual node:
5 colors = 5 physical nodes

31

Wide-area replication

« Last], § 4.6: Preference lists always contain nodes
from more than one data center

— Consequence: Data likely to survive failure of
entire data center

* Blocking on writes to a remote data center would
iIncur unacceptably high latency

— Compromise: W < N, eventual consistency
— Better durability & latency but worse consistency

32

Conflicts

« Suppose N=3, W=R=2 nodesare A,B,C,D, E
— CL1 put(k, ...) completes on A and B
— CL2 put(k, ...) completes on C and D

« Conflicting results from A, Band C, D
— Each has seen a different put(k, ...)

* How does Dynamo handle conflicting versions?

33

An example of conflicting writes
(versions)

Preference list (M =5, N = 3)

(A B i D E

4NN NN EEN NN EEE ENE EEN BEE IEE I S e

=

d-mmmmmmmmmmmm oo
@

Shopping cart:

CL1: Add ltem x

A and B fail

An example of conflicting writes
(versions)

Preference list (M =5, N = 3)

=
3

e

Shopping cart:

CL1: Add ltem x
A and B fail

CL2: Add ltem y

e ——
<
<

An example of conflicting writes
(versions)

Time
Shopping cart: i :’A B CE D E

T o S~ .
i

CL1: Add Item x i X X
i

A and B fail :

i

CL2: Add ltem y : y y
i
i

A and B recover :
i
i

CL1: Read cart v read read

l | Conflicting versions only possible under failures |

Vector clocks: handling conflicting
versions

o

Ti

)

Shopping cart:

CL1: Add ltem x

----------3

———————————————————————————

Read returns
x (A,1) andy (C,1)
(A,1) and (C,1) are
not causally related:
conflicts!

N i —————————

i

Preference list (M =5, N = 3)

pe-ssssssasassaas \
LA B C! D E
X X
(A1) (A1)
y y
s (C,1) (C)11)
read read

Version vectors (vector clocks)

List of (coordinator node, counter) pairs
-e.g., [(A, 1), (B, 3), ...]

* Dynamo stores a version vector with each stored key-
value pair

 |dea: track "ancestor-descendant” relationship
between different versions of data stored under the

same key k

Dynamo’s system interface

» get(key) = value, context
— Returns one value or multiple conflicting values
— Context describes version(s) of value(s)

 put(key, context, value) 2> “OK”

— Context indicates which versions this version
supersedes or merges

Version vectors: Dynamo’s mechanism

* Rule: If vector clock comparison of v1 <v2, then the first is
an ancestor of the second — Dynamo can forget v1

« Each time a put() occurs, Dynamo increments the counter
in the V.V. for the coordinator node

« Each time a get() occurs, Dynamo retums the V.V. for the
value(s) returned (in the “context”)

— Then users must supply that context to put()s that
modify the same key

40

Conflict resolution (reconciliation)

If vector clocks show causally related (not really
conflicting)

— System overwrites with the later version

For conflicting versions

— System handles it automatically, e.q., last-writer-
wins (limited use case)

— Application specific resolution (most common)

* Clients resolve the conflict , €.9., merge
shopping cart

Vector clocks: handling conflicting

versions

Shopping cart:

CL1: Add ltem x

CL2: Add Item y

CL1: Read cart
x (A1),y(C,1)

=
3

Q= e

e

Preference list (M =5, N = 3)

A_B_C D E
X X
(A1) (A1)
y y
1) (C1)

Vector clocks: handling conflicting

versions

Shopping cart:
CL1: Add Item x
CL2: Add Item y

CL1: Read cart
x (A1),y(C,1)

CL1: Add Item z
X, ¥, z [(A,1), (C,1)]

=
3

Q= e

e

Preference list (M =5, N = 3)

A_B_C D E
X X
(A1) (A1)
y y
1) (C1)

43

Vector clocks: handling conflicting

versions

Shopping cart:
CL1: Add Item x
CL2: Add Itemy

CL1: Read cart
x (A1),y(C,1)

CL1: Add Item z
X, ¥, z [(A,1), (C,1)]

=
3

Preference list (M =5, N = 3)
i(A B C D E

e

4NN NN EEN EEN EEE EEE BEN BEE ENE EE S S

(A,2, C,1)(A,2, C,1)

X x

(A1) (AT)

! y y

: (C,1) (C1)
| Xyz Xyz

44

How useful is it to vary N, R, W?

NRWBehavior

3 2 2 Parameters from paper:
Good durability, good R/W latency

3 3 1
313
3 33
31 1

45

How useful is it to vary N, R, W?

NRWBehavior

3 2 2

3 3 1
313
3 33
311

Parameters from paper:
Good durability, good R/W latency

Slow reads, weak durability, fast writes
Slow writes, strong durability, fast reads
More likely that reads see all prior writes?
Read quorum may not overlap write quorum

46

Failure detection and ring membership

Server A considers B has failed if B does not reply to As
message

— Evenif Brepliesto C
— A then tries alternative nodes

With servers join and permanently leave

— Servers periodically send gossip messages to their
neighbors to sync who are in the ring

— Some servers are chosen as seeds, i.e., common
neighbors to all nodes

Anti-entropy (replica synchronization)

« Hinted handoff node crashes before it can replicate
data to node in preference list

— Need another way to ensure that each key-value
pair is replicated N times

* Mechanism: replica synchronization
— Nodes nearby on ring periodically gossip
« Compare the (k, v) pairs they hold
» Copy any missing keys the other has

How to compare and copy replica
state quickly and efficiently?

48

Efficient synchronization with Merkle trees

Merkle trees hierarchically summarize the key-value
pairs a node holds

One Merkle tree for each virtual node key range

— Leaf node = hash of one key’s value
(# of leaves = # keys on the virtual node)

— Internal node = hash of concatenation of children
* Replicas exchange trees from top down, depth by depth

— If root nodes match, then identical replicas, stop
— Else, go to next level, compare nodes pair-wise

49

Merkle tree reconciliation

* B is missing orange key; A is missing green one

« Exchange and compare hash nodes from root
downwards, pruning when hashes match

A’s values: B’s values:
[O 2128 [O 2128

[O 2127:| I‘ 2127 2128) [O 2127: ; 2127 2128

Finds differing keys quickly and with
minimum information exchange

Dynamo: Take-aways ideas

 Avallability is important
— Systems need to be scalable and reliable

* Dynamo is eventually consistent
— Many design decisions

* Core techniques
— Consistent hashing: data partitioning

— Replication, preference list, sloppy quorum, hinted
handoff: availability under failures

— Vector clocks: conflict resolution (partly automatic, rest app.)
— Anti-entropy: synchronize replicas
— Gossip: synchronize ring membership

	Slide 1: Scaling Out Key-Value Storage: Dynamo
	Slide 2: Availability: vital for web applications
	Slide 3: Scalability: up or out?
	Slide 4: Reliability: available under failures
	Slide 5: Two questions (challenges)
	Slide 6: Today: Amazon Dynamo
	Slide 7: Amazon in 2007
	Slide 8: Dynamo requirements
	Slide 9: Basics in Dynamo
	Slide 10: Today: Amazon Dynamo
	Slide 11: Consistent hashing recap
	Slide 12: Incremental scalability (why consistent hashing)
	Slide 13: Incremental scalability (why consistent hashing)
	Slide 14: Modulo hashing
	Slide 15: Problem for modulo hashing: Changing number of servers
	Slide 16: Challenge: unbalanced load
	Slide 17: Challenge: unbalanced load
	Slide 18: Challenge: unbalanced load
	Slide 19: Challenge: unbalanced load
	Slide 20: Solution: virtual nodes (vnodes)
	Slide 21: Solution: virtual nodes (vnodes)
	Slide 22: Solution: virtual nodes (vnodes)
	Slide 23: Solution: virtual nodes (vnodes)
	Slide 24: Gossip and “lookup”
	Slide 25: Today: Amazon Dynamo
	Slide 26: Preference list (data replication)
	Slide 27: Preference list (data replication)
	Slide 28: Read and write requests
	Slide 29: Quorum implications (W, R, and N)
	Slide 30: Failure handing: sloppy quorum + hinted handoff
	Slide 31: Failure handing: sloppy quorum + hinted handoff
	Slide 32: Wide-area replication
	Slide 33: Conflicts
	Slide 34: An example of conflicting writes (versions)
	Slide 35: An example of conflicting writes (versions)
	Slide 36: An example of conflicting writes (versions)
	Slide 37: Vector clocks: handling conflicting versions
	Slide 38: Version vectors (vector clocks)
	Slide 39: Dynamo’s system interface
	Slide 40: Version vectors: Dynamo’s mechanism
	Slide 41: Conflict resolution (reconciliation)
	Slide 42: Vector clocks: handling conflicting versions
	Slide 43: Vector clocks: handling conflicting versions
	Slide 44: Vector clocks: handling conflicting versions
	Slide 45: How useful is it to vary N, R, W?
	Slide 46: How useful is it to vary N, R, W?
	Slide 47: Failure detection and ring membership
	Slide 48: Anti-entropy (replica synchronization)
	Slide 49: Efficient synchronization with Merkle trees
	Slide 50: Merkle tree reconciliation
	Slide 51: Dynamo: Take-aways ideas

