
Scaling Out Key-Value Storage:

Dynamo

CS 240: Computing Systems and Concurrency

Lecture 12

Marco Canini

• Web applications are expected to be “always on”

– Down time → pisses off customers, costs $

• System design considerations relevant to availability

– Scalability: always on under growing demand

– Reliability: always on despite failures

– Performance: 10 sec latency considered available?

“an availability event can be modeled as a long-
lasting performance variation”
(Amazon Aurora SIGMOD ’17)

2

Availability: vital for web applications

• Scale-up (vertical scaling)

– Upgrade hardware

– E.g., MacBook Air → MacBook Pro

– Down time during upgrade; stops working quickly

• Scale-out (horizontal scaling)

– Add machines, divide the work

– E.g., a supermarket adds more checkout lines

– No disruption; works great with careful design

3

Scalability: up or out?

• More machines, more likely to fail

– p = probability a machine fails in given period

– n = number of machines
– Probability of any failure in given period = 1−(1−p)n

• For 50K machines, each with 99.99966% available

– 16% of the time, data center experiences failures

• For 100K machines, failures happen 30% of the time!

Reliability: available under failures

4

• How is data partitioned across machines so the
system scales?

• How are failures handled so the system is always on?

5

Two questions (challenges)

1. Background and system model

2. Data partitioning

3. Failure handling

6

Today: Amazon Dynamo

• 104s of servers in multiple DCs
– 106s of servers, 120+ DCs (as of now)

• 107s of customers at peaks
– 89M+ reqs/s (Prime Day ’21)

• Tiered architecture (similar today)

– Service-oriented architecture

– Stateless web servers

 & aggregators

– Stateful storage servers

7

Amazon in 2007

• Highly available writes despite failures

– Despite disks failing, network routes flapping, “data centers
destroyed by tornadoes”

– Always respond quickly, even during failures → replication

• Low request-response latency: focus on 99.9% SLA
– E.g., “provide a response within 300ms for 99.9% of its requests for

peak client load of 500 reqs/s”

• Incrementally scalable as servers grow to workload

– Adding “nodes” should be seamless

• Comprehensible conflict resolution

– High availability in above sense implies conflicts

8

Dynamo requirements

Basics in Dynamo
• Basic interface is a key-value store (vs. relational DB)

– get(k) and put(k, v)

– Keys and values opaque to Dynamo

• Nodes are symmetric
– P2P and DHT context

9

1. Background and system model

2. Data partitioning

3. Failure handling

10

Today: Amazon Dynamo

11

Consistent hashing recap

Key is stored at its successor: node with next-higher ID

3-bit

ID space

0

1

2

3

4

5

6

7

Identifiers have m = 3 bits

Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Identifiers/key space

12

Incremental scalability
(why consistent hashing)

Key is stored at its successor: node with next-higher ID

3-bit

ID space

0

1

2

3

4

5

6

7

Identifiers have m = 3 bits

Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Identifiers/key space

Incremental scalability
(why consistent hashing)

• Minimum data is moved around when nodes join and leave

• Unlike modular hashing (see next slide)

13

3-bit

ID space

0

1

2

3

4

5

6

7

Keys 1 ~ 3

Keys 4 ~ 0

Node 5 joins

0

1

2

3

4

5

6

7

Keys 1 ~ 3

Keys 6 ~ 0

Transfer

Keys 4, 5

Keys 4, 5

• Consider problem of data partition:

– Given object id X, choose one of k servers to use

• Suppose instead we use modulo hashing:

– Place X on server i = hash(X) mod k

• What happens if a server fails or joins (k  k±1)?

– or different clients have different estimate of k?

14

Modulo hashing

Problem for modulo hashing:
Changing number of servers

Server

Object serial number

h(x) = x + 1 (mod 4)

7 10 11 27 29 36 38 40

4

3

2

1

0

5

Add one machine: h(x) = x + 1 (mod 5)

All entries get remapped to new nodes!

→ Need to move objects over the network

15

Challenge: unbalanced load
• Nodes are assigned different # of keys

16

3-bit

ID space

0

1

2

3

4

5

6

7

Keys 4 ~ 0

Keys 1 ~ 3

Challenge: unbalanced load
• Nodes are assigned different # of keys

• Unbalanced with nodes join/leave

17

3-bit

ID space

0

1

2

3

4

5

6

7

Keys 7, 0

Keys 3, 4

Keys 1, 2 Keys 5, 6

Challenge: unbalanced load
• Nodes are assigned different # of keys

• Unbalanced with nodes join/leave

18

3-bit

ID space

0

1

2

3

4

5

6

7

Keys 5, 6, 7, 0

Keys 3, 4

Keys 1, 2 Keys 5, 6

Challenge: unbalanced load
• Nodes are assigned different # of keys

• Unbalanced with nodes join/leave

• Some keys are more popular

19

3-bit

ID space

0

1

2

3

4

5

6

7

Keys 7, 0

Keys 3, 4

Best seller item

Keys 1, 2 Keys 5, 6

Solution: virtual nodes (vnodes)
• An extra level of mapping

– From node id in the ring to physical node

– Node ids are now virtual nodes (tokens)

– Multiple node ids → same physical node

20

3-bit

ID space

0

1

2

3

4

5

6

7

Solution: virtual nodes (vnodes)
• An extra level of mapping

– From node id in the ring to physical node

– Node ids are now virtual nodes (tokens)

– Multiple node ids → same physical node

21

3-bit

ID space

0

1

2

3

4

5

6

7

4 physical nodes (servers)

2 vnodes / server

Virtual node:

same color → same physical node

Solution: virtual nodes (vnodes)
• An extra level of mapping

– From node id in the ring to physical node

– Node ids are now virtual nodes (tokens)

– Multiple node ids → same physical node

22

Virtual node:

same color → same physical node

3-bit

ID space

0

1

2

3

4

5

6

7

Orange server leaves

Keys moved to blue and red

Solution: virtual nodes (vnodes)
• An extra level of mapping

– From node id in the ring to physical node

– Node ids are now virtual nodes (tokens)

– Multiple node ids → same physical node

• More virtual nodes, more balanced

• Faster data transfer for join/leave

• Controllable # of vnodes / server
– Server capacity:

e.g., CPU, memory, network

23

Virtual node:

same color → same physical node

3-bit

ID space

0

1

2

3

4

5

6

7

• Gossip: Once per second, each node contacts a
randomly chosen other node

– They exchange their lists of known nodes
(including virtual node IDs)

• Assumes all nodes will come back eventually, doesn’t
repartition

• Each node learns which others handle all key ranges

– Result: All nodes can send directly to any key’s
coordinator (“zero-hop DHT”)

• Reduces variability in response times

24

Gossip and “lookup”

1. Background and system model

2. Data partitioning

3. Failure handling

25

Today: Amazon Dynamo

Preference list (data replication)
• Key replicated on M vnodes

– Remember “r-successor” in DHT?

• All M vnodes on distinct servers across different datacenters

26

3-bit

ID space

0

1

2

3

4

5

6

7

Virtual node:

5 colors → 5 physical nodes

Preference list (data replication)
• Key replicated on M vnodes

– Remember “r-successor” in DHT?

• All M vnodes on distinct servers across different datacenters

27

3-bit

ID space

0

1

2

3

4

5

6

7

Virtual node:

5 colors → 5 physical nodes

M = 4

Key 0’s Preference list could be

vnodes: {0, 1, 3, 5} mapping to servers:

{green, red, orange, blue}

Green is the coordinator server of key 0

Key 0

Key 0

Key 0Key 0

Read and write requests
• Received by the coordinator (this is not Chord)

– Either the client (web server) knows the mapping or re-routed

• Sent to first N “healthy” servers in preference list (coordinator incl.)

– Durable writes: my updates recorded on multiple servers

– Fast reads: possible to avoid straggler

• A write creates a new immutable version of the key (no overwrite)

– Multi-versioned data store

• Quorum-based protocol
– A write succeeds if W out of N servers reply (write quorum)

– A read succeeds if R out of N servers reply (read quorum)

– W + R > N

28

Quorum implications (W, R, and N)

• N determines the durability of data (Dynamo N = 3)

• W and R adjust the availability-consistency tradeoff

– W = 1 (R = 3): fast write, weak durability, slow read

– R = 1 (W = 3): slow write, good durability, fast read

– Dynamo: W = R = 2

• Why W + R > N ?

– Read and write quorums overlap when there are no
failures!

– Reads see all updates without failures

• What if there are failures?

29

Failure handing: sloppy quorum +
hinted handoff

• Sloppy: not always the same servers used in N
– First N servers in the preference list without failures

– Later servers in the list take over if some in the first N fail

• Consequences
– Good performance: no need to wait for failed servers in N to

recover

– Eventual (weak) consistency: conflicts are possible, versions
diverge

– Another decision on availability-consistency tradeoff!

30

Failure handing: sloppy quorum +
hinted handoff
• Key 0’s preference list {green, red, orange, blue}

• N = 3: {green, red, orange} without failures

• If red fails, requests go to {green, orange, blue}

• Hinted handoff
– Blue temporarily serves requests

– Hinted that red is the intended recipient

– Send replica back to red when red is on

31

3-bit

ID space

0

1

2

3

4

5

6

7

Virtual node:

5 colors → 5 physical nodes

Key 0

Key 0

Key 0Key 0

• Last ¶,§4.6: Preference lists always contain nodes
from more than one data center

– Consequence: Data likely to survive failure of
entire data center

• Blocking on writes to a remote data center would
incur unacceptably high latency

– Compromise: W < N, eventual consistency

– Better durability & latency but worse consistency

32

Wide-area replication

• Suppose N = 3, W = R = 2, nodes are A, B, C, D, E

– CL1 put(k, …) completes on A and B

– CL2 put(k, …) completes on C and D

• Conflicting results from A, B and C, D

– Each has seen a different put(k, …)

• How does Dynamo handle conflicting versions?

33

Conflicts

An example of conflicting writes
(versions)

34

Time

A B C D E

Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

A and B fail

An example of conflicting writes
(versions)

35

Time

A B C D E

Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

A and B fail

CL2: Add Item y y y

An example of conflicting writes
(versions)

36

A B C D E

Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

A and B fail

CL2: Add Item y y y

A and B recover

CL1: Read cart read read

Conflicting versions only possible under failures

Time

Vector clocks: handling conflicting
versions

37

A B C D E

Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

A and B fail

CL2: Add Item y y y

A and B recover

CL1: Read cart read read

Time

(A,1) (A,1)

(C,1) (C,1)

Read returns

x (A,1) and y (C,1)

(A,1) and (C,1) are

not causally related:

 conflicts!

Can we use Lamport clocks?

• Version vector: List of (coordinator node, counter) pairs

– e.g., [(A, 1), (B, 3), …]

• Dynamo stores a version vector with each stored key-
value pair

• Idea: track “ancestor-descendant” relationship
between different versions of data stored under the
same key k

38

Version vectors (vector clocks)

Dynamo’s system interface
• get(key) → value, context

– Returns one value or multiple conflicting values

– Context describes version(s) of value(s)

• put(key, context, value) → “OK”
– Context indicates which versions this version

supersedes or merges

39

• Rule: If vector clock comparison of v1 < v2, then the first is
an ancestor of the second – Dynamo can forget v1

• Each time a put() occurs, Dynamo increments the counter
in the V.V. for the coordinator node

• Each time a get() occurs, Dynamo returns the V.V. for the
value(s) returned (in the “context”)

– Then users must supply that context to put()s that
modify the same key

40

Version vectors: Dynamo’s mechanism

Conflict resolution (reconciliation)

• If vector clocks show causally related (not really
conflicting)

– System overwrites with the later version

• For conflicting versions

– System handles it automatically, e.g., last-writer-
wins (limited use case)

– Application specific resolution (most common)

• Clients resolve the conflict via reads, e.g., merge
shopping cart

41

Vector clocks: handling conflicting
versions

42

Time

A B C D E

Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

CL2: Add Item y y y

CL1: Read cart

x (A,1), y (C,1)

(A,1) (A,1)

(C,1) (C,1)

Vector clocks: handling conflicting
versions

43

Time

A B C D E

Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

CL2: Add Item y y y

CL1: Add Item z

x, y, z [(A,1), (C,1)]

CL1: Read cart

x (A,1), y (C,1)

(A,1) (A,1)

(C,1) (C,1)

Vector clocks: handling conflicting
versions

44

Time

A B C D E

Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

CL2: Add Item y y y

xyz xyz
(A,2, C,1)(A,2, C,1)

CL1: Read cart

x (A,1), y (C,1)

(A,1) (A,1)

(C,1) (C,1)

CL1: Add Item z

x, y, z [(A,1), (C,1)]

How useful is it to vary N, R, W?

N R W Behavior

3 2 2 Parameters from paper:

Good durability, good R/W latency

3 3 1

3 1 3

3 3 3

3 1 1

45

How useful is it to vary N, R, W?

N R W Behavior

3 2 2 Parameters from paper:

Good durability, good R/W latency

3 3 1 Slow reads, weak durability, fast writes

3 1 3 Slow writes, strong durability, fast reads

3 3 3 More likely that reads see all prior writes?

3 1 1 Read quorum may not overlap write quorum

46

Failure detection and ring membership

• Server A considers B has failed if B does not reply to A’s
message
– Even if B replies to C

– A then tries alternative nodes

• With servers join and permanently leave

– Servers periodically send gossip messages to their
neighbors to sync who are in the ring

– Some servers are chosen as seeds, i.e., common
neighbors to all nodes

47

• Hinted handoff node crashes before it can replicate
data to node in preference list

– Need another way to ensure that each key-value
pair is replicated N times

• Mechanism: replica synchronization

– Nodes nearby on ring periodically gossip

• Compare the (k, v) pairs they hold

• Copy any missing keys the other has

48

Anti-entropy (replica synchronization)

How to compare and copy replica

state quickly and efficiently?

• Merkle trees hierarchically summarize the key-value
pairs a node holds

• One Merkle tree for each virtual node key range

– Leaf node = hash of one key’s value
(# of leaves = # keys on the virtual node)

– Internal node = hash of concatenation of children

• Replicas exchange trees from top down, depth by depth

– If root nodes match, then identical replicas, stop

– Else, go to next level, compare nodes pair-wise

49

Efficient synchronization with Merkle trees

• B is missing orange key; A is missing green one

• Exchange and compare hash nodes from root
downwards, pruning when hashes match

50

Merkle tree reconciliation

B’s values:A’s values:

[0, 2128)

[0, 2127) [2127, 2128)

[0, 2128)

[0, 2127) [2127, 2128)

Finds differing keys quickly and with

minimum information exchange

Dynamo: Take-aways ideas

• Availability is important
– Systems need to be scalable and reliable

• Dynamo is eventually consistent
– Many design decisions trade consistency for availability

• Core techniques
– Consistent hashing: data partitioning

– Replication, preference list, sloppy quorum, hinted
handoff: availability under failures

– Vector clocks: conflict resolution (partly automatic, rest app.)

– Anti-entropy: synchronize replicas

– Gossip: synchronize ring membership

51

	Slide 1: Scaling Out Key-Value Storage: Dynamo
	Slide 2: Availability: vital for web applications
	Slide 3: Scalability: up or out?
	Slide 4: Reliability: available under failures
	Slide 5: Two questions (challenges)
	Slide 6: Today: Amazon Dynamo
	Slide 7: Amazon in 2007
	Slide 8: Dynamo requirements
	Slide 9: Basics in Dynamo
	Slide 10: Today: Amazon Dynamo
	Slide 11: Consistent hashing recap
	Slide 12: Incremental scalability (why consistent hashing)
	Slide 13: Incremental scalability (why consistent hashing)
	Slide 14: Modulo hashing
	Slide 15: Problem for modulo hashing: Changing number of servers
	Slide 16: Challenge: unbalanced load
	Slide 17: Challenge: unbalanced load
	Slide 18: Challenge: unbalanced load
	Slide 19: Challenge: unbalanced load
	Slide 20: Solution: virtual nodes (vnodes)
	Slide 21: Solution: virtual nodes (vnodes)
	Slide 22: Solution: virtual nodes (vnodes)
	Slide 23: Solution: virtual nodes (vnodes)
	Slide 24: Gossip and “lookup”
	Slide 25: Today: Amazon Dynamo
	Slide 26: Preference list (data replication)
	Slide 27: Preference list (data replication)
	Slide 28: Read and write requests
	Slide 29: Quorum implications (W, R, and N)
	Slide 30: Failure handing: sloppy quorum + hinted handoff
	Slide 31: Failure handing: sloppy quorum + hinted handoff
	Slide 32: Wide-area replication
	Slide 33: Conflicts
	Slide 34: An example of conflicting writes (versions)
	Slide 35: An example of conflicting writes (versions)
	Slide 36: An example of conflicting writes (versions)
	Slide 37: Vector clocks: handling conflicting versions
	Slide 38: Version vectors (vector clocks)
	Slide 39: Dynamo’s system interface
	Slide 40: Version vectors: Dynamo’s mechanism
	Slide 41: Conflict resolution (reconciliation)
	Slide 42: Vector clocks: handling conflicting versions
	Slide 43: Vector clocks: handling conflicting versions
	Slide 44: Vector clocks: handling conflicting versions
	Slide 45: How useful is it to vary N, R, W?
	Slide 46: How useful is it to vary N, R, W?
	Slide 47: Failure detection and ring membership
	Slide 48: Anti-entropy (replica synchronization)
	Slide 49: Efficient synchronization with Merkle trees
	Slide 50: Merkle tree reconciliation
	Slide 51: Dynamo: Take-aways ideas

