
Consistency Models

CS 240: Computing Systems and Concurrency

Lecture 13

Marco Canini

Consistency Models

• Contract between a distributed system and the

applications that run on it

• A consistency model is a set of guarantees made

by the distributed system

• We are concerned with: “what happens if a client

modifies some data items and concurrently

another client reads or modifies the same items

possibly at a different replica”?

• All replicas execute operations in some total order

• That total order preserves the real-time ordering

between operations

– If operation A completes before operation B
begins, then A is ordered before B in real-time

– If neither A nor B completes before the other
begins, then there is no real-time order

• (But there must be some total order)

3

Linearizability [Herlihy and Wing 1990]

• Consistency model defines what values reads are

admissible

4

Intuitive example

wall-clock time

PA:

PB:

PC:

PD:

w(x=1)

w(x=2)

r(x)=?

r(x)=?

r(x)=?

r(x)=?

• Consistency model defines what values reads are

admissible

5

Intuitive example

wall-clock time

w(x=1)

w(x=2)

r(x)=?

r(x)=?

Time when

process issues

operation

Time when

process receives

response

r(x)=?

r(x)=?

PA:

PB:

PC:

PD:

• Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

• Therefore:

– Reads are never stale (i.e., a read returns the value that was last written)

– All replicas enforce wall-clock ordering for all writes

6

Linearizability

wall-clock time

w(x=1)

w(x=2)

r(x)=?

r(x)=?

r(x)=?

r(x)=?

PA:

PB:

PC:

PD:

• Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

• Therefore:

– Reads are never stale (i.e., a read returns the value that was last written)

– All replicas enforce wall-clock ordering for all writes

7

Linearizability: YES

wall-clock time

w(x=1)

w(x=2)

r(x)=2

r(x)=2

r(x)=2

r(x)=2

PA:

PB:

PC:

PD:

• Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

• Therefore:

– Reads are never stale (i.e., a read returns the value that was last written)

– All replicas enforce wall-clock ordering for all writes

8

Linearizability: NO

wall-clock time

w(x=1)

w(x=2)

r(x)=1

r(x)=2

r(x)=2

r(x)=2

PA:

PB:

PC:

PD:

• If the execution is linearizable, what does PA read

here?

9

Linearizability: Quiz

wall-clock time

w(x=1)

w(x=2)r(x)=1

r(x)=?PA:

PB:

PA sees the latest write that took effect on the

system (x=2)

x originally 0

• Single machine processes requests one by one in

the order it receives them

– Will receive requests ordered by real-time in that order

– Will receive all requests in some order

• Atomic Multicast, Viewstamped Replication,

Paxos, and RAFT provide Linearizability

• Single machine processing incoming requests

one at a time also provide Linearizability ☺

10

Linearizability ==
“Appears to be a Single Machine”

• Hides the complexity of the underlying distributed

system from applications!

– Easier to write applications

– Easier to write correct applications

• But, performance trade-offs

11

Linearizability is ideal?

Stronger vs weaker consistency

• Stronger consistency models

+ Easier to write applications

- More guarantees for the system to ensure

Results in performance trade-offs

• Weaker consistency models

- Harder to write applications

+ Fewer guarantees for the system to ensure

Strictly stronger consistency

• A consistency model A is strictly stronger than B if

it allows a strict subset of the behaviors of B

– Guarantees are strictly stronger

Sequential consistency

• All replicas execute operations in some total order

• That total order preserves the process ordering
between operations

– If process P issues operation A before operation B,
then A is order before B by the process order

– If operations A and B are done by different processes
then there is no process order between them

• (But there must be some total order)

Sequential Consistency ≈
“Appears to be a Single Machine”

• Single machine processes requests one by one in

the order it receives them

– Will receive requests ordered
by process order in that order

– Will receive all requests in some order

Linearizability is strictly stronger
than Sequential Consistency

• Linearizability: ∃total order + real-time ordering

• Sequential: ∃total order + process ordering

– Process ordering ⊆ Real-time ordering

• Sequential = Linearizability – real-time ordering

1. All servers execute all ops in some identical sequential order

2. Global ordering preserves each client’s own local ordering

Sequential consistency

• With concurrent ops, “reordering” of ops (w.r.t. real-

time ordering) acceptable, but all servers must see

same order

– e.g., linearizability cares about time
 sequential consistency cares about program order

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:

– Reads may be stale in terms of real time, but not in logical time

– Writes are totally ordered according to logical time across all replicas

18

Sequential consistency

wall-clock time

w(x=1)

w(x=2)

r(x)=?

r(x)=?

r(x)=?

r(x)=?

PA:

PB:

PC:

PD:

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:

– Reads may be stale in terms of real time, but not in logical time

– Writes are totally ordered according to logical time across all replicas

19

Sequential consistency: YES

wall-clock time

w(x=1)

w(x=2)

r(x)=2

r(x)=2

r(x)=2

r(x)=2

Also valid with linearizability

PA:

PB:

PC:

PD:

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:

– Reads may be stale in terms of real time, but not in logical time

– Writes are totally ordered according to logical time across all replicas

20

Sequential consistency: YES

wall-clock time

w(x=1)

w(x=2)

r(x)=1

r(x)=2

r(x)=2

r(x)=2

Not valid with linearizability

PA:

PB:

PC:

PD:

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:

– Reads may be stale in terms of real time, but not in logical time

– Writes are totally ordered according to logical time across all replicas

21

Sequential consistency: NO

wall-clock time

w(x=1)

w(x=2)

r(x)=2

r(x)=1

r(x)=1

r(x)=2

No global ordering can explain these results

PA:

PB:

PC:

PD:

• Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

• Therefore:

– Reads may be stale in terms of real time, but not in logical time

– Writes are totally ordered according to logical time across all replicas

22

Sequential consistency: NO

wall-clock time

w(x=1)

w(x=2)

r(x)=3

r(x)=1

r(x)=1

r(x)=2

No sequential global ordering can explain these results…

E.g.: w(x=3), r(x)=3, r(x)=1, w(x=2) doesn’t preserve PA’s ordering

w(x=3)PA:

PB:

PC:

PD:

Consistency hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Causal+ Consistency

• Partially orders all operations, does not totally order

them

– Does not look like a single machine

• Guarantees

– For each process, ∃ an order of all writes + that process’s reads

– Order respects the happens-before (→) ordering of operations

– + in Causal+ means replicas converge to the same state

• Skip details, makes it stronger than eventual consistency

Causal Consistency

1. Writes that are potentially

causally related must be seen

by all processes in same order

2. Concurrent writes may be

seen in a different order on

different processes

• Concurrent: Ops not causally related

Causal Consistency

PA

a

b

d

PB PC

Physical time ↓

e

f

g

c

1. Writes that are potentially

causally related must be seen

by all processes in same order

2. Concurrent writes may be

seen in a different order on

different processes

• Concurrent: Ops not causally related

Causal Consistency

PA

a

b

d

PB PC

f

g

c

Operations

a, b

b, f

c, f

e, f

e, g

a, c

a, e

Concurrent?

N

Y

Y

Y

N

Y

N

Physical time ↓

e

Causal Consistency

PA

a

b

d

PB PC

f

g

c

Operations

a, b

b, f

c, f

e, f

e, g

a, c

a, e

Concurrent?

N

Y

Y

Y

N

Y

N

Physical time ↓

e

Causal+ But Not Sequential

w(x=1)

w(y=1) r(x)=0

r(y)=0PA

PB

w(x=1)

w(y=1)

r(y)=0

r(x)=0

PA Order: w(x=1), r(y=0), w(y=1)

Happens

Before

Order

Process

Ordering

w(x=1)

w(y=1)

r(y)=0

r(x)=0

No Total

Order

w(x=1)

w(y=1)

r(y)=0

r(x)=0

√ Casual+ X Sequential

PB Order: w(y=1), r(x=0), w(x=1)

Eventual But Not Causal+

w(x=1)

r(y)=1 r(x)=0

w(y=1)PA

PB

As long as PB

eventually would

see r(x)=1 this is

fine

Happens

Before

Ordering

w(x=1)

r(y)=1

w(y)=1

r(x)=0

No Order

for PB

w(x=1)

r(y)=1

w(y)=1

r(x)=0

√ Eventual X Causal+

Summary: Consistency hierarchy

Linearizability

Sequential Consistency

Causal+ Consistency

Eventual Consistency

e.g., RAFT

e.g., Bayou

e.g., Dynamo

Causal Consistency: Quiz

• Valid under causal consistency

• Why? x=3 and x=2 are concurrent

– So all processes don’t (need to) see them in same order

• PC and PD read the values ‘1’ and ‘2’ in order as potentially
causally related. No ‘causality’ for ‘3’.

w(x=1)PA

w(x=2)PB

w(x=3)

PC

PD

r(x)=1

r(x)=3 r(x)=2

r(x)=2 r(x)=3

Sequential Consistency: Quiz

• Invalid under sequential consistency

• Why? PC and PD see 2 and 3 in different order

• But fine for causal consistency

– 2 and 3 are not causally related

w(x=1)PA

w(x=2)PB

w(x=3)

PC

PD

r(x)=1

r(x)=3 r(x)=2

r(x)=2 r(x)=3

Causal Consistency

x x=2 happens after x=1

w(x=1)PA

w(x=2)PB

PC

PD

r(x)=1

r(x)=2 r(x)=1

r(x)=1 r(x)=2

Causal Consistency

✓ PB doesn’t read value of 1 before writing 2

w(x=1)PA

w(x=2)PB

PC

PD

r(x)=2 r(x)=1

r(x)=1 r(x)=2

• Nice way to see and think when a certain

execution is / isn’t allowed in linearizability

https://mwhittaker.github.io/consistency_in_distributed_systems/2_cap.html

• Also check out:

https://mwhittaker.github.io/blog/visualizing_linearizability/

https://muratbuffalo.blogspot.com/2021/10/linearizability.html

36

Visualization of linearizability ☺

https://mwhittaker.github.io/consistency_in_distributed_systems/2_cap.html
https://mwhittaker.github.io/blog/visualizing_linearizability/
https://muratbuffalo.blogspot.com/2021/10/linearizability.html

	Slide 1: Consistency Models
	Slide 2: Consistency Models
	Slide 3: Linearizability [Herlihy and Wing 1990]
	Slide 4: Intuitive example
	Slide 5: Intuitive example
	Slide 6: Linearizability
	Slide 7: Linearizability: YES
	Slide 8: Linearizability: NO
	Slide 9: Linearizability: Quiz
	Slide 10: Linearizability == “Appears to be a Single Machine”
	Slide 11: Linearizability is ideal?
	Slide 12: Stronger vs weaker consistency
	Slide 13: Strictly stronger consistency
	Slide 14: Sequential consistency
	Slide 15: Sequential Consistency ≈ “Appears to be a Single Machine”
	Slide 16: Linearizability is strictly stronger than Sequential Consistency
	Slide 17: Sequential consistency
	Slide 18: Sequential consistency
	Slide 19: Sequential consistency: YES
	Slide 20: Sequential consistency: YES
	Slide 21: Sequential consistency: NO
	Slide 22: Sequential consistency: NO
	Slide 23: Consistency hierarchy
	Slide 24: Causal+ Consistency
	Slide 25: Causal Consistency
	Slide 26: Causal Consistency
	Slide 27: Causal Consistency
	Slide 28: Causal Consistency
	Slide 29: Causal+ But Not Sequential
	Slide 30: Eventual But Not Causal+
	Slide 31: Summary: Consistency hierarchy
	Slide 32: Causal Consistency: Quiz
	Slide 33: Sequential Consistency: Quiz
	Slide 34: Causal Consistency
	Slide 35: Causal Consistency
	Slide 36: Visualization of linearizability 

