Consistency Models

alllasc Ellall aealy

'\‘S‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 13

Marco Canini

Consistency Models

» Contract between a distributed system and the
applications that run on it

» Aconsistency model is a set of made
by the distributed system

* We are concerned with: “what happens if a client
modifies some data items and concurrently
another client reads or modifies the same items
possibly at a different replica™?

Linearizabil ity [Herlihy and Wing 1990]

All replicas execute operations in total order

That total order preserves the
between operations

— If operation A before operation B
. then A is ordered before B in real-time

— If neither A nor B completes before the other
begins, then there is no real-time order

* (But there must be some total order)

Intuitive example

» Consistency model defines what values reads are
admissible

wall-clock time

Pa: |- w(x=1) '|

Pg: |' w(x=2) '|

Po: Frx=21 F rx=2

Pp: F rix)=2 b rix)=2

Intuitive example

» Consistency model defines what values reads are

Time when

Process issues

e

operation wall-clock time
>
Pa: Fw(x=1)'|
Ps: | wix=2)
Po: _/Time when |_ r(x)=7? _l |_ r(x)=? _l
P,: | process receives |— r(x)=?-| |— r(x)=? -|
response

Linearizability

« Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

« Therefore:
— Reads are never stale (i.e., a read returns the value that was last written)
— All replicas enforce wall-clock ordering for all writes
wall-clock time

Pa: |- w(x=1) '|

Pg: |' w(x=2) '|

Po: Frx=21 F rx=2

Pp: F rix)=2 b rix)=2

Linearizability: YES

« Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

« Therefore:
— Reads are never stale (i.e., a read returns the value that was last written)
— All replicas enforce wall-clock ordering for all writes
wall-clock time

Pa: |- w(x=1) '|

Pg: |' w(x=2) '|

P.: F rx=2 F rix)=2

Pp: F rx)=2 F rix)=2

Linearizability: NO

« Any execution is the same as if all read/write ops were executed in order of
wall-clock time at which they were issued

« Therefore:
— Reads are never stale (i.e., a read returns the value that was last written)
— All replicas enforce wall-clock ordering for all writes
wall-clock time

Pa: |- w(x=1) '|

Pg: |' w(x=2) '|

P.: F ro=1 F rix)=2

Pp: F rx)=2 F rix)=2

Linearizability: Quiz

* |If the execution is linearizable, what does P, read
here”?

x originally O wall-clock time

P | w(x=1) | Frx=2

Pg: |' r(x)=1 -l |' w(x=2) -|

P, sees the latest write that took effect on the
system (x=2)

Linearizability ==
“Appears to be a Single Machine”

Single machine processes requests one by one in
the order it receives them

— Will receive requests ordered by real-time in that order

— Will receive all requests in some order

Atomic Multicast, Viewstamped Replication,
Paxos, and RAFT provide Linearizability

 Single machine processing incoming requests
one at a time also provide Linearizability ©

Linearizability is ideal?

» Hides the complexity of the underlying distributed
system from applications!

— Easier to write applications

— Easier to write correct applications

» But, performance trade-offs

Stronger vs weaker consistency

« Stronger consistency models
+ Easier to write applications

- More guarantees for the system to ensure

Results in performance trade-offs

» Weaker consistency models
- Harder to write applications

+ Fewer guarantees for the system to ensure

Strictly stronger consistency

» A consistency model A is strictly stronger than B if
it allows a strict subset of the behaviors of B

— Guarantees are strictly stronger

Sequential consistency

All replicas execute operations in total order

That total order preserves the
between operations

— If process P issues operation A before operation B,
then A is order before B by the process order

— If operations A and B are done by different processes
then there is no process order between them

* (But there must be some total order)

Sequential Consistency =
“Appears to be a Single Machine”

Single machine processes requests one by one in
the order it receives them

— Will receive requests ordered
by process order in that order

— Will receive all requests in some order

Linearizability is strictly stronger
than Sequential Consistency

* Linearizability: 3total order + real-time ordering

» Sequential: Itotal order + process ordering

— Process ordering € Real-time ordering

Sequential consistency

Sequential = Linearizability — real-time ordering
1. All servers execute all ops in some identical sequential order

2. Global ordering preserves each client’s own local ordering

With concurrent ops, “reordering” of ops (w.r.t. real-
time ordering) acceptable, but all servers must see
same order

— e.g., linearizability cares about
sequential consistency cares about

Sequential consistency

« Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

 Therefore:

— Reads may be stale in terms of real time, but not in logical time
— Writes are totally ordered according to logical time across all replicas

wall-clock time

Pa: |- w(x=1) '|

Pg: |' w(x=2) '|

Po: Frx=21 F rx=2

Pp: F rix)=2 b rix)=2

Sequential consistency: YES

. Ana/ execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

 Therefore:

— Reads may be stale in terms of real time, but not in logical time
— Writes are totally ordered according to logical time across all replicas

wall-clock time

Pa: |- w(x=1) '|

Pg: |' w(x=2) '|

P.: F rx=2 F rix)=2

Pp: F rx)=2 F rix)=2

Also valid with linearizability

Sequential consistency: YES

. Ana/ execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

 Therefore:

— Reads may be stale in terms of real time, but not in logical time
— Writes are totally ordered according to logical time across all replicas

wall-clock time

Pa: |- w(x=1) '|

Pg: |' w(x=2) '|

P.: F ro=1 F rix)=2

Pp: F rx)=2 F rix)=2

Not valid with linearizability

Sequential consistency: NO

« Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

 Therefore:

— Reads may be stale in terms of real time, but not in logical time
— Writes are totally ordered according to logical time across all replicas

wall-clock time

Pa: |- w(x=1) '|

Pg: |' w(x=2) '|

P.: F rx=2 F rx)=1

Pp: F rx)=1 F rix)=2

No global ordering can explain these results

Sequential consistency: NO

Any execution is the same as if all read/write ops were executed in some global
ordering, and the ops of each client process appear in the program order

Therefore:
— Reads may be stale in terms of real time, but not in logical time
— Writes are totally ordered according to logical time across all replicas

wall-clock time

>
Pa: w(x=1) w(x=3)
Pg: w(x=2)
P.: F rx)=3 F rx)=1
Pp: F rx)=1 F rix)=2

No sequential global ordering can explain these results...
E.g.: w(x=3), r(x)=3, r(x)=1, w(x=2) doesn’t preserve P,’s ordering

Consistency hierarchy

Linearizability e.d., RAFT

'

Sequential Consistency

1

Causal+ Consistency e.g., Bayou

'

Eventual Consistency e.g., Dynamo

Causal+ Consistency

 Partially orders all operations, does not totally order
them

— Does not look like a single machine

e Guarantees

— For each process, 3 an order of all writes + that process'’s reads
— Order respects the happens-before (=) ordering of operations

— + in Causal+ means replicas converge to the same state
 Skip details, makes it stronger than eventual consistency

Causal Consistency

1. Writes that are
causally related must be seen
by all processes in same order

2. Concurrent writes may be
seen in a different order on

different processes

« Concurrent: Ops not causally related

Causal Consistency

1. Writes that are

P P P
causally related must be seen - 5 c

' d
by all processes in same order] £&
: C
2. Concurrent writes may be q
seen in a different order on e
different processes >
g
 Concurrent: Ops not causally related |, \ \

Physical time |

Causal Consistency

P [Pe| [P

a, b a
b, f b

fo

()

c, f

e, f e

€ Jg g

v v \ 4

Physical time |

Causal Consistency

P [Pe| [P

a,b N a

fo
b, f

()

c, f

e, f

g

Z < Z < =< <
40

v v \ 4

Physical time |

Causal+ But Not Sequential

Pa i) |riy)=0-
Pe Fwiy=1)q |Fr(x=0
Casual+ X Sequential

Happens w(x=1y—>r(y)=0
Before
Order W(y=1)—">r(x)=0

Process w(x=1) ry)=0
Ordering w(y=1)—" r(x)=0

P, Order: w(x=1), r(y=0), w(y=1) w(x=1— r(y)=0
No Total

Pg Order: w(y=1), r(x=0), w(x=1) Order— w(y=1)—"r(x)=0

Eventual But Not Causal+

Pa Fwix=t)d | wiy=1)]
P Frivi=t= - rix=0]

Eventual X Causal+

As long as Pg
eventually would
see r(x)=1 this is

fine

Happens W(x=1y—> w(y)=1
Before
Ordering r(y)=1 —> r(x)=0

w(x=1)y—> w(y)=1
No Order)
forPg ry)=1 —r(x)=0

Summary: Consistency hierarchy

Linearizability e.d., RAFT

'

Sequential Consistency

1

Causal+ Consistency e.g., Bayou

'

Eventual Consistency e.g., Dynamo

Causal Consistency: Quiz

P Fwix=1) F wix=3)-

Ps Frix)=1— Fwix=2)

Pc |— r(x)=3 —l |- r(x)=2 —l
Py F =2} rix)=3-

 Valid under causal consistency

 Why? x=3 and x=2 are concurrent

— So all processes don'’t (need to) see them in same order

* Pc and Py read the values "1"and 2’ in order as potentially
causally related. No ‘causality’ for ‘3.

Sequential Consistency: Quiz

P Fwix=1) F wix=3)-

Ps Frix)=1— F wix=2)

Pc |— r(x)=3 —l |- r(x)=2 —l
Py F =2} rix)=3-

 Invalid under sequential consistency
 Why? P and Py see 2 and 3 in different order

« But fine for causal consistency

— 2 and 3 are not causally related

Causal Consistency

P, |—w(x=1)-|

Pg |- r(x)=1 —l |-w(x=2)-|

Pc Frx=2—{F rix)=1-
Po F rix)=1 < r(x)=2—

X x=2 happens after x=1

Causal Consistency

Py |- w(x=1) -|

Pg |' w(x=2) -l

Pc F rix)=2 4} rix)=1
Po Frx)=1 4} rix)=2

v’ Pgdoesn’t read value of 1 before writing 2

Visualization of linearizability ©

* Nice way to see and think when a certain
execution is / isn't allowed in linearizability

https://mwhittaker.qgithub.io/consistency in_distributed systems/2_cap.html

 Also check out:
hitps://mwhittaker.github.io/blog/visualizing_linearizability/

hitps://muratbuffalo.blogspot.com/2021/10/linearizability. html

36

https://mwhittaker.github.io/consistency_in_distributed_systems/2_cap.html
https://mwhittaker.github.io/blog/visualizing_linearizability/
https://muratbuffalo.blogspot.com/2021/10/linearizability.html

	Slide 1: Consistency Models
	Slide 2: Consistency Models
	Slide 3: Linearizability [Herlihy and Wing 1990]
	Slide 4: Intuitive example
	Slide 5: Intuitive example
	Slide 6: Linearizability
	Slide 7: Linearizability: YES
	Slide 8: Linearizability: NO
	Slide 9: Linearizability: Quiz
	Slide 10: Linearizability == “Appears to be a Single Machine”
	Slide 11: Linearizability is ideal?
	Slide 12: Stronger vs weaker consistency
	Slide 13: Strictly stronger consistency
	Slide 14: Sequential consistency
	Slide 15: Sequential Consistency ≈ “Appears to be a Single Machine”
	Slide 16: Linearizability is strictly stronger than Sequential Consistency
	Slide 17: Sequential consistency
	Slide 18: Sequential consistency
	Slide 19: Sequential consistency: YES
	Slide 20: Sequential consistency: YES
	Slide 21: Sequential consistency: NO
	Slide 22: Sequential consistency: NO
	Slide 23: Consistency hierarchy
	Slide 24: Causal+ Consistency
	Slide 25: Causal Consistency
	Slide 26: Causal Consistency
	Slide 27: Causal Consistency
	Slide 28: Causal Consistency
	Slide 29: Causal+ But Not Sequential
	Slide 30: Eventual But Not Causal+
	Slide 31: Summary: Consistency hierarchy
	Slide 32: Causal Consistency: Quiz
	Slide 33: Sequential Consistency: Quiz
	Slide 34: Causal Consistency
	Slide 35: Causal Consistency
	Slide 36: Visualization of linearizability 

