
Impossibility Results:

CAP, PRAM & FLP

CS 240: Computing Systems and Concurrency

Lecture 14

Marco Canini

Network partitions divide systems

2

Network partitions divide systems

3

• Totally-ordered Multicast?

• Bayou?

• Dynamo?

• Chord?

• Paxos?

• RAFT?

How can we handle partitions?

4

How about this set of partitions?

5

• Replicas appear to be a single machine,

but lose availability during a network partition

OR

• All replicas remain available during a network

partition but do not appear to be a single machine

Fundamental trade-off?

6

• You cannot achieve all three of:

1. Consistency

2. Availability

3. Partition-Tolerance

• Partition Tolerance => Partitions Can Happen

• Availability => All Sides of Partition Continue

• Consistency => Replicas Act Like Single Machine

– Specifically, Linearizability

CAP theorem preview

7

Impossibility Results Useful!!!!

• Fundamental tradeoff in design space

– Must make a choice

• Avoids wasting effort trying to achieve the
impossible

• Tells us the best-possible systems we can build!

8

• From keynote lecture by Eric Brewer (2000)

– History: Eric started Inktomi, early Internet search site based
around “commodity” clusters of computers

– Using CAP to justify “BASE” model: Basically Available, Soft-
state services with Eventual consistency

• Popular interpretation: 2-out-of-3

– Consistency (Linearizability)

– Availability

– Partition Tolerance: Arbitrary crash/network failures

CAP conjecture [Brewer 00]

9

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1 Client 1

10

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Client 1 Client 1

11

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns

(from A)

Client 1

w(x=1)

ok

Client 1

12

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns

(from A)

Client 1

w(x=1)

ok

Client 1
r(x)

x=0

Read begins after write completes

Read eventually returns (from A)

13

CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns

(from A)

Client 1

w(x=1)

ok

Client 1
r(x)

x=0

Read begins after write completes

Read eventually returns (from A)

Not consistent (C) => contradiction!

14

CAP Interpretation Part 1

• Cannot “choose” no partitions

– 2-out-of-3 interpretation doesn’t make sense

– Instead, availability OR consistency?

• i.e., fundamental trade-off between availability and

consistency

– When designing system must choose one or the
other, both are not possible

15

CAP Interpretation Part 2

• Cannot “beat” CAP theorem

• Can engineer systems to make partitions

extremely rare, however, and then just take the

rare hit to availability (or consistency)

16

More trade-offs L vs. C

• Low-latency: Speak to fewer than quorum of nodes?

– 2PC: write N, read 1

– RAFT: write ⌊N/2⌋ + 1, read ⌊N/2⌋ + 1

– General: |W| + |R| > N

• L and C are fundamentally at odds

– “C” = linearizability, sequential, serializability (more later)

17

PACELC

• If there is a partition (P):

– How does system tradeoff A and C?

• Else (no partition)

– How does system tradeoff L and C?

• Is there a useful system that switches?

– Dynamo: PA/EL

– “ACID” dbs: PC/EC

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
18

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

PRAM [Lipton Sandberg 88] [Attiya Welch 94]

• d is the worst-case delay in the network over all

pairs of processes [datacenters]

• Sequentially consistent system

• read time + write time ≥ d

19

PRAM Theorem:

Impossible for sequentially consistent

system to always provide low latency

20

PRAM [Lipton Sandberg 88] [Attiya Welch 94]

• Fundamental tradeoff between consistency and latency!

• Proof intuition (see papers for details)

• Let P1 and P2 be the 2 furthest away processes;
assume 2 objects: x, y

• Assume to contradict read time + write time < d

• Thus the following executions are possible because P1’s
Write can’t be seen at P2 Read:

• P1: |--W(x=1)--| |--R(y)=0--|

• P2: |--W(y=1)--| |--R(x)=0--|

• But there is no total order of these operations, so does not
provide sequential consistency

21

• No deterministic
1-crash-robust
consensus algorithm
exists with
asynchronous
communication

“FLP” result

22

• Useful interpretation: no consensus algorithm can

always reach consensus with an asynchronous

network

– Do not believe such claims!

• Led to lots and lots of theoretical work

– (Consensus is possible when the network is
reasonably well-behaved)

FLP is the original impossibility
result for distributed systems!

23

• Only 1 failure

– Also impossible for more failures

• For “weak” consensus (only some process needs to decide)

– Also impossible for real consensus

• For reliable communication

– Also impossible for unreliable communication

• For only two states: 0 and 1

– Also impossible for more failures

• For crash failures

– Also impossible for Byzantine failures

FLP’s weak assumptions

24

• Deterministic actions at each node

• Asynchronous network communication

• All “runs” must eventually achieve consensus

FLP’s strong assumptions

25

• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state

[1,1,1,1,1] → 1

[1,1,1,1,0] → ?

[1,1,1,0,0] → ?

[1,1,0,0,0] → ?

[1,0,0,0,0] → 0

Main technical approach

Must exist two

configurations

here which differ

in decision

26

• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state

[1,1,1,1,1] → 1

[1,1,1,1,0] → 1

[1,1,1,0,0] → 1

[1,1,0,0,0] → 0

[1,0,0,0,0] → 0

Main technical approach

Assume decision differs

between these two processes

27

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →

[1,1,1,0,0] →

Main technical approach

One of these configurations must be “bi-valent”

(i.e., undecided):

Both futures possible

1 | 0

0

28

• Goal: Consensus holds in face of 1 failure

[1,1,0,0,0] →

[1,1,1,0,0] →

• Inherent non-determinism from asynchronous network

• Key result: All bi-valent states can remain in bi-valent

states after performing some work

Main technical approach

1

0 | 1

One of these configurations must be “bi-valent”

(i.e., undecided):

Both futures possible

29

1. System thinks process p failed, adapts to it…

2. But no, p was merely slow, not failed…
(Can’t tell the difference between slow and failed.)

3. System think process q failed, adapts to it…

4. But no, q was merely slow, not failed…

5. Repeat ad infinitum …

Staying bi-valent forever

30

Consensus is

impossible

But, we achieve consensus all the time…

31

• Deterministic actions at each node

– Randomized algorithms can achieve consensus

• Asynchronous network communication

– Synchronous or even partial synchrony is sufficient

• All “runs” must eventually achieve consensus

– In practice, many “runs” achieve consensus quickly

– In practice, “runs” that never achieve consensus happen
vanishingly rarely

• Both are true with good system designs

FLP’s strong assumptions

32

	Slide 1: Impossibility Results: CAP, PRAM & FLP
	Slide 2: Network partitions divide systems
	Slide 3: Network partitions divide systems
	Slide 4: How can we handle partitions?
	Slide 5: How about this set of partitions?
	Slide 6: Fundamental trade-off?
	Slide 7: CAP theorem preview
	Slide 8: Impossibility Results Useful!!!!
	Slide 9: CAP conjecture [Brewer 00]
	Slide 10: CAP theorem [Gilbert Lynch 02]
	Slide 11: CAP theorem [Gilbert Lynch 02]
	Slide 12: CAP theorem [Gilbert Lynch 02]
	Slide 13: CAP theorem [Gilbert Lynch 02]
	Slide 14: CAP theorem [Gilbert Lynch 02]
	Slide 15: CAP Interpretation Part 1
	Slide 16: CAP Interpretation Part 2
	Slide 17: More trade-offs L vs. C
	Slide 18: PACELC
	Slide 19: PRAM [Lipton Sandberg 88] [Attiya Welch 94]
	Slide 20
	Slide 21: PRAM [Lipton Sandberg 88] [Attiya Welch 94]
	Slide 22: “FLP” result
	Slide 23: FLP is the original impossibility result for distributed systems!
	Slide 24: FLP’s weak assumptions
	Slide 25: FLP’s strong assumptions
	Slide 26: Main technical approach
	Slide 27: Main technical approach
	Slide 28: Main technical approach
	Slide 29: Main technical approach
	Slide 30: Staying bi-valent forever
	Slide 31: Consensus is impossible
	Slide 32: FLP’s strong assumptions

