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Network partitions divide systems
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Network partitions divide systems
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• Totally-ordered Multicast?

• Bayou?

• Dynamo?

• Chord?

• Paxos?

• RAFT?

How can we handle partitions?
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How about this set of partitions?
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• Replicas appear to be a single machine, 

but lose availability during a network partition

OR

• All replicas remain available during a network 

partition but do not appear to be a single machine

Fundamental trade-off?
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• You cannot achieve all three of:

1. Consistency

2. Availability

3. Partition-Tolerance

• Partition Tolerance => Partitions Can Happen

• Availability => All Sides of Partition Continue

• Consistency => Replicas Act Like Single Machine

– Specifically, Linearizability

CAP theorem preview

7



Impossibility Results Useful!!!!

• Fundamental tradeoff in design space

– Must make a choice

• Avoids wasting effort trying to achieve the 
impossible

• Tells us the best-possible systems we can build!
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• From keynote lecture by Eric Brewer (2000)

– History:  Eric started Inktomi, early Internet search site based 
around “commodity” clusters of computers

– Using CAP to justify “BASE” model:  Basically Available, Soft-
state services with Eventual consistency

• Popular interpretation: 2-out-of-3

– Consistency (Linearizability)

– Availability

– Partition Tolerance:  Arbitrary crash/network failures

CAP conjecture [Brewer 00]
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CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Client 1 Client 1
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CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Client 1 Client 1
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CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns

(from A)

Client 1

w(x=1)

ok

Client 1
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CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns

(from A)

Client 1

w(x=1)

ok

Client 1
r(x)

x=0

Read begins after write completes

Read eventually returns (from A)
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CAP theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Partition Possible (from P)

Write eventually returns

(from A)

Client 1

w(x=1)

ok

Client 1
r(x)

x=0

Read begins after write completes

Read eventually returns (from A)

Not consistent (C) => contradiction! 

14



CAP Interpretation Part 1

• Cannot “choose” no partitions

– 2-out-of-3 interpretation doesn’t make sense

– Instead, availability OR consistency?

• i.e., fundamental trade-off between availability and 

consistency

– When designing system must choose one or the 
other, both are not possible
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CAP Interpretation Part 2

• Cannot “beat” CAP theorem

• Can engineer systems to make partitions 

extremely rare, however, and then just take the 

rare hit to availability (or consistency)
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More trade-offs L vs. C

• Low-latency:  Speak to fewer than quorum of nodes?

– 2PC:  write N, read 1

– RAFT:   write ⌊N/2⌋ + 1,  read ⌊N/2⌋ + 1

– General:  |W| + |R| > N

• L and C are fundamentally at odds

– “C” = linearizability, sequential, serializability (more later)
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PACELC

• If there is a partition (P):

– How does system tradeoff  A and C?

• Else (no partition)

– How does system tradeoff  L and C?

• Is there a useful system that switches?

– Dynamo:  PA/EL

– “ACID” dbs:  PC/EC

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
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PRAM [Lipton Sandberg 88] [Attiya Welch 94]

• d is the worst-case delay in the network over all 

pairs of processes [datacenters]

• Sequentially consistent system

• read time + write time ≥ d

19



PRAM Theorem: 

Impossible for sequentially consistent 

system to always provide low latency
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PRAM [Lipton Sandberg 88] [Attiya Welch 94]

• Fundamental tradeoff between consistency and latency!

• Proof intuition (see papers for details)

• Let P1 and P2 be the 2 furthest away processes; 
assume 2 objects: x, y

• Assume to contradict read time + write time < d

• Thus the following executions are possible because P1’s 
Write can’t be seen at P2 Read:

• P1: |--W(x=1)--| |--R(y)=0--|

• P2: |--W(y=1)--| |--R(x)=0--|

• But there is no total order of these operations, so does not 
provide sequential consistency
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• No deterministic      
1-crash-robust 
consensus algorithm 
exists with 
asynchronous 
communication

“FLP” result
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• Useful interpretation: no consensus algorithm can 

always reach consensus with an asynchronous 

network

– Do not believe such claims!

• Led to lots and lots of theoretical work

– (Consensus is possible when the network is 
reasonably well-behaved)

FLP is the original impossibility 
result for distributed systems!
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• Only 1 failure

– Also impossible for more failures

• For “weak” consensus (only some process needs to decide)

– Also impossible for real consensus

• For reliable communication

– Also impossible for unreliable communication

• For only two states: 0 and 1

– Also impossible for more failures

• For crash failures

– Also impossible for Byzantine failures

FLP’s weak assumptions
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• Deterministic actions at each node

• Asynchronous network communication

• All “runs” must eventually achieve consensus

FLP’s strong assumptions
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• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state

[ 1,1,1,1,1 ]   →  1 

[ 1,1,1,1,0 ]   →  ? 

[ 1,1,1,0,0 ]   →  ? 

[ 1,1,0,0,0 ]   →  ? 

[ 1,0,0,0,0 ]   →  0 

Main technical approach

Must exist two 

configurations 

here which differ 

in decision
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• Initial state of system can end in decision “0” or “1”

• Consider 5 processes, each in some initial state

[ 1,1,1,1,1 ]   →  1 

[ 1,1,1,1,0 ]   →  1 

[ 1,1,1,0,0 ]   →  1

[ 1,1,0,0,0 ]   →  0 

[ 1,0,0,0,0 ]   →  0 

Main technical approach

Assume decision differs 

between these two processes
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• Goal:  Consensus holds in face of 1 failure

 

[ 1,1,0,0,0 ]   → 

[ 1,1,1,0,0 ]   →   

 

Main technical approach

One of these configurations must be “bi-valent” 

(i.e., undecided): 

Both futures possible

1 | 0

0
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• Goal:  Consensus holds in face of 1 failure

 

[ 1,1,0,0,0 ]   →  

[ 1,1,1,0,0 ]   →

• Inherent non-determinism from asynchronous network

• Key result:  All bi-valent states can remain in bi-valent 

states after performing some work

Main technical approach

1

0 | 1

One of these configurations must be “bi-valent” 

(i.e., undecided): 

Both futures possible
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1. System thinks process p failed, adapts to it…

2. But no, p was merely slow, not failed…
(Can’t tell the difference between slow and failed.)

3. System think process q failed, adapts to it…

4. But no, q was merely slow, not failed…

5. Repeat ad infinitum …

Staying bi-valent forever
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Consensus is 

impossible

But, we achieve consensus all the time…
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• Deterministic actions at each node

– Randomized algorithms can achieve consensus

• Asynchronous network communication

– Synchronous or even partial synchrony is sufficient

• All “runs” must eventually achieve consensus

– In practice, many “runs” achieve consensus quickly

– In practice, “runs” that never achieve consensus happen 
vanishingly rarely

• Both are true with good system designs

FLP’s strong assumptions
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