
Network Communication and 

Remote Procedure Calls

CS 240: Computing Systems and Concurrency

Lecture 2

Marco Canini



2

Distributed Systems, What?

1) Multiple computers

2) Connected by a network

3) Doing something together



• How can processes on different cooperating computers 
communicate with each other over the network?

1. Network Communication

2. Remote Procedure Call (RPC)

3

Today’s outline



• Process on Host A wants to talk to process on Host B

– A and B must agree on the meaning of the bits being 
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?

4

The problem of communication



The problem of communication

• Re-implement every application for every new underlying 
transmission medium?

• Change every application on any change to an 
underlying transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission 

media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi



Solution: Layering

• Intermediate layers provide a set of abstractions for 
applications and media

• New applications or media need only implement for 
intermediate layer’s interface

Applications

Transmission

media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers



• Transport: Provide end-to-end 
communication between processes 
on different hosts

• Network: Deliver packets to 
destinations on other 
(heterogeneous) networks

• Link: Enables end hosts to 
exchange atomic messages with 
each other

• Physical: Moves bits between two 
hosts connected by a physical link

7

Layering in the Internet

Applications

Transport layer

Network layer

Link layer

Physical layer

Host



Logical communication between layers

• How to forge agreement on the meaning of the bits 
exchanged between two hosts?

• Protocol: Rules that governs the format, contents, and 
meaning of messages

– Each layer on a host interacts with its peer host’s 
corresponding layer via the protocol interface

Application

Transport

Network

Link

Physical

Network

Link

Physical

Application

Transport

Network

Link

Physical

Host A Host BRouter
8



Physical communication

• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application

Application

Transport

Network

Link

Physical

Network

Link

Physical

Application

Transport

Network

Link

Physical

Host A Host BRouter

9



Communication between peers

• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate with peer

– Higher layers’ headers, data encapsulated inside 
message 

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body

10



• Socket: The interface the OS provides to the network
– Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), recv()
– e.g.: put(key,value) → message

11

Network socket-based communication

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Socket

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process



// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,
       sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);

12



• Principle of transparency: Hide that resource is 
physically distributed across multiple computers
– Access resource same way as locally

– Users can’t tell where resource is physically located

13

Network sockets: not great

Network sockets provide apps with point-to-point 
communication between processes

Sockets don’t provide transparency

Also, lots to deal with, have to worry a lot about the network

• How to separate different requests on the same connection?

• How to write bytes to the network / read bytes from the network?

• What if Host A’s process is in Go and Host B’s process is in C++?

• What to do with those bytes?



14

Solution: Another layer!

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Socket

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

RPC layer RPC layer



1. Network Communication

2. Remote Procedure Call (RPC)

15

Today’s outline



• The typical programmer is trained to write single-threaded 
code that runs in one place

• Goal: Easy-to-program network communication that makes 
client-server communication transparent

– Retains the “feel” of writing centralized code 

• Programmer needn’t think about the network

16

Why RPC?



• Course programming assignments use RPC

• Google gRPC

• Facebook/Apache Thrift

• Twitter Finagle

• …

17

Everyone uses RPCs



What’s the goal of RPC?

• Within a single program, running in a single process, recall 
the well-known notion of a procedure call:
– Caller pushes arguments onto stack,

• jumps to address of callee function

– Callee reads arguments from stack,

• executes, puts return value in register,

• returns to next instruction in caller

18

RPC’s Goal: To make communication appear like a 
local procedure call: transparency for procedure calls



• Seems obvious in retrospect, but RPC was only invented in 
the ’80s

• See Birrell & Nelson, “Implementing Remote Procedure 
Call” ... or

• Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University:  
Remote Procedure Call., 1981

19

Historical note



1. Heterogeneity
– Client needs to rendezvous with the server
– Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
– What if messages get dropped?
– What if client, server, or network fails?

3. Performance
– Procedure call takes ≈ 10 cycles ≈ 3 ns
– RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower

20

RPC issues



• Not an issue for local procedure call

• For a remote procedure call, a remote machine may:

– Run process written in a different language 

– Represent data types using different sizes

– Use a different byte ordering (endianness)

– Represent floating point numbers differently

– Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary

21

Problem: Differences in data 
representation



• Mechanism to pass procedure parameters and return values in a 
machine-independent way

• Programmer may write an interface description in the IDL

– Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:

– Code to marshal (convert) native data types into machine-
independent byte streams

• And vice-versa, called unmarshaling

– Client stub: Forwards local procedure call as a request to server

– Server stub: Dispatches RPC to its implementation

22

Solution: Interface Description Language



1. Client calls stub function (pushes params onto stack)

23

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)



1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message

24

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5



2. Stub marshals parameters to a network message

3. OS sends a network message to the server

25

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server OS

proc: add | int: 3 | int: 5



3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

26

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function

27

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

Implementation of add

Server stub (RPC library)

Server OS

proc: add | int: 3 | int: 5



5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value

28

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS



6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg

29

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network

30

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub

31

A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS
Result | int: 8



9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client

32

A day in the life of an RPC

Client machine

Client process

k  8

Client stub (RPC library)

Client OS

Server machine

Server process

8  add(3, 5)

Server stub (RPC library)

Server OS

Result | int: 8



• Dispatcher

– Receives a client’s RPC request

• Identifies appropriate server-side method to invoke

• Skeleton
– Unmarshals parameters to server-native types

– Calls the local server procedure

– Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
– Dispatcher and skeleton may be integrated

• Depends on implementation 

33

The server stub is really two parts



1. Network Communication

2. Remote Procedure Call (RPC)

– Heterogeneity – use IDL w/ compiler
– Failure

34

Today’s outline



1. Client may crash and reboot

2. Packets may be dropped
– Some individual packet loss in the Internet

– Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow

35

What could possibly go wrong?

All these may look the same to the client…



36

Failures, from client’s perspective

Client Server

Time ↓

✘

✘

The cause of the failure is hidden from the client!



• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
– Response takes the form of an acknowledgement 

message from the server stub

2. If no response arrives after a fixed timeout time period, 
then client stub re-sends the request

• Repeat the above a few times

– Still no response?  Return an error to the application

37

At-Least-Once scheme



• Client sends a “debit $10 from bank account” RPC

38

At-Least-Once and side effects

Client Server

✘

(debit $10)

(debit $10)

Time ↓



• put(x, value), then get(x): expect answer to be value

39

At-Least-Once and writes

Client Server

put(x,10)

put(x,20)

x10

Time ↓

Idempotent requests are safe to re-execute, 
causing no side effects…

Idempotent operation is one that has no 

additional effect if it is called more than once 

with the same input parameters



• put(x, value), then get(x): expect answer to be value

40

At-Least-Once and writes

Client

get(x)?

x=20

Server

put(x,10)

put(x,20)

x10

x20

Time ↓



• Consider a client storing key-value pairs in a database

– put(x, value), then get(x): expect answer to be value

41

At-Least-Once and writes

Client

Time ↓

Server

put(x,10)

put(x,20)

x10

x10

x20get(x)?

x=20



• Yes: If they are read-only operations with no side effects

– e.g., read a key’s value in a database 

• Yes: If the application has its own functionality to cope with 
duplication and reordering

– You will need this in Assignments 3

42

So is At-Least-Once ever okay?



• Idea: server RPC stub detects duplicate requests 

– Returns previous reply instead of re-running handler 

• How to detect a duplicate request?

– Test: Server sees same function, same arguments twice

• No!  Sometimes applications legitimately submit the 
same function with same augments, twice in a row

43

At-Most-Once scheme



• How to detect a duplicate request?

– Client stub includes unique transaction ID (xid) with 
each one of its RPC requests

– Client stub uses same xid for retransmitted requests

44

At-Most-Once scheme

At-Most-Once Server
if seen[xid]: 
    retval = old[xid] 
else: 
    retval = handler() 
    old[xid] = retval 
    seen[xid] = true
return retval



• How to ensure that the xid is unique?

1. Combine a unique client ID (e.g., IP address) with the 
current time of day

2. Combine unique client ID with a sequence number

– Suppose the client crashes and restarts.
Can it reuse the same client ID?

3. Big random number (probabilistic, not certain guarantee)

45

At Most Once: Providing unique XIDs



• Problem: seen and old arrays will grow without bound

• Observation: By construction, when the client gets a 
response to a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete it”

– Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests

46

At-Most-Once: Discarding server state

Significant overhead if many RPCs 
are in flight, in parallel



• Problem: seen and old arrays will grow without bound

• Suppose xid = ⟨unique client id, sequence no.⟩
– e.g. ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC 

– Much like TCP sequence numbers, acks 

• How does the client know that the server received the 
information about retired RPCs?

– Idea: Each one of these is cumulative: later seen 
messages subsume earlier ones

47

At-Most-Once: Discarding server state



• Problem: How to handle a duplicate request while the 
original is still executing?

– Server doesn’t know reply yet.  Also, we don’t want to 
run the procedure twice 

• Idea: Add a pending flag per executing RPC

– Server waits for the procedure to finish, or ignores

48

At-Most-Once: Concurrent requests



• Problem: Server may crash and restart

• Does server need to write its state (seen, old) to disk?

• Yes!  On server crash and restart:
– If old[], seen[] arrays are only in memory:

• Server will forget, accept duplicate requests

49

At Most Once: Server crash and restart



• Need retransmission of at least once scheme

• Plus the duplicate filtering of at most once scheme
– To survive client crashes, client needs to record pending 

RPCs on disk

• So it can replay them with the same unique identifier

• Plus story for making server reliable

– Even if server fails, it needs to continue with full state
– To survive server crashes, server should log to disk 

results of completed RPCs (to suppress duplicates)

50

Exactly-once?



• Imagine that the remote operation triggers an external 
physical thing
– e.g., dispense $100 from an ATM

• The ATM could crash immediately before or after 
dispensing and lose its state
– Don’t know which one happened

• Can, however, make this window very small

• So can’t achieve exactly-once in general, in the 
presence of external actions

Exactly-once for external actions?



• Layers are our friends!

• RPCs are everywhere

• Necessary issues surrounding 

machine heterogeneity

• Subtle issues around failures

– At-least-once w/ retransmission

– At-most-once w/ duplicate filtering
• Discard server state w/ cumulative acks

– Exactly-once with:
• at-least-once + at-most-once

+ fault tolerance + no external actions

52

Summary: RPCs and Net. Comm.

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host A

Socket

Process

Application layer

Transport layer

Network layer

Link layer

Physical layer

Host B

Socket

Process

RPC layer RPC layer



• Opens a TCP connection and writes the request

– TCP may retransmit but server’s TCP receiver will filter 
out duplicates internally, with sequence numbers

– No retry in Go RPC code (i.e., will not create a second 
TCP connection)

• However: Go RPC returns an error if it doesn’t get a reply

– Perhaps after a TCP timeout
– Perhaps server didn’t see request

– Perhaps server processed request but server/net failed 
before reply came back

53

Go’s net/rpc is at-most-once



• Go’s RPC isn’t enough for Assignments 1 and 2 

– It only applies to a single RPC call

– If worker doesn’t respond, master re-sends to another

• Go RPC can’t detect this kind of duplicate 

– Breaks at-most-once semantics

• No problem in Assignments 1 and 2 (handles at 
application level)

• In Assignment 3 you will explicitly detect duplicates 
using something like what we’ve talked about

54

RPC and Assignments 1 and 2


	Slide 1: Network Communication and  Remote Procedure Calls
	Slide 2: Distributed Systems, What?
	Slide 3: Today’s outline
	Slide 4: The problem of communication
	Slide 5: The problem of communication
	Slide 6: Solution: Layering
	Slide 7: Layering in the Internet
	Slide 8: Logical communication between layers
	Slide 9: Physical communication
	Slide 10: Communication between peers
	Slide 11: Network socket-based communication
	Slide 12
	Slide 13: Network sockets: not great
	Slide 14: Solution: Another layer!
	Slide 15: Today’s outline
	Slide 16: Why RPC?
	Slide 17: Everyone uses RPCs
	Slide 18: What’s the goal of RPC?
	Slide 19: Historical note
	Slide 20: RPC issues
	Slide 21: Problem: Differences in data representation
	Slide 22: Solution: Interface Description Language
	Slide 23: A day in the life of an RPC
	Slide 24: A day in the life of an RPC
	Slide 25: A day in the life of an RPC
	Slide 26: A day in the life of an RPC
	Slide 27: A day in the life of an RPC
	Slide 28: A day in the life of an RPC
	Slide 29: A day in the life of an RPC
	Slide 30: A day in the life of an RPC
	Slide 31: A day in the life of an RPC
	Slide 32: A day in the life of an RPC
	Slide 33: The server stub is really two parts
	Slide 34: Today’s outline
	Slide 35: What could possibly go wrong?
	Slide 36: Failures, from client’s perspective
	Slide 37: At-Least-Once scheme
	Slide 38: At-Least-Once and side effects
	Slide 39: At-Least-Once and writes
	Slide 40: At-Least-Once and writes
	Slide 41: At-Least-Once and writes
	Slide 42: So is At-Least-Once ever okay?
	Slide 43: At-Most-Once scheme
	Slide 44: At-Most-Once scheme
	Slide 45: At Most Once: Providing unique XIDs
	Slide 46: At-Most-Once: Discarding server state
	Slide 47: At-Most-Once: Discarding server state
	Slide 48: At-Most-Once: Concurrent requests
	Slide 49: At Most Once: Server crash and restart
	Slide 50: Exactly-once?
	Slide 51: Exactly-once for external actions?
	Slide 52: Summary: RPCs and Net. Comm.
	Slide 53: Go’s net/rpc is at-most-once
	Slide 54: RPC and Assignments 1 and 2

