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Distributed Systems, What?

1) Multiple computers

2) Connected by a network

3) Doing something together



• How can processes on different cooperating computers 
communicate with each other over the network?

1. Network Communication

2. Remote Procedure Call (RPC)
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Today’s outline



• Process on Host A wants to talk to process on Host B

– A and B must agree on the meaning of the bits being 
sent and received at many different levels, including:

• How many volts is a 0 bit, a 1 bit?

• How does receiver know which is the last bit?

• How many bits long is a number?
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The problem of communication



The problem of communication

• Re-implement every application for every new underlying 
transmission medium?

• Change every application on any change to an 
underlying transmission medium?

• No! But how does the Internet design avoid this?

Applications

Transmission 

media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi



Solution: Layering

• Intermediate layers provide a set of abstractions for 
applications and media

• New applications or media need only implement for 
intermediate layer’s interface

Applications

Transmission

media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers



• Transport: Provide end-to-end 
communication between processes 
on different hosts

• Network: Deliver packets to 
destinations on other 
(heterogeneous) networks

• Link: Enables end hosts to 
exchange atomic messages with 
each other

• Physical: Moves bits between two 
hosts connected by a physical link
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Layering in the Internet

Applications

Transport layer

Network layer

Link layer

Physical layer

Host



Logical communication between layers

• How to forge agreement on the meaning of the bits 
exchanged between two hosts?

• Protocol: Rules that governs the format, contents, and 
meaning of messages

– Each layer on a host interacts with its peer host’s 
corresponding layer via the protocol interface
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Physical communication

• Communication goes down to the physical network

• Then from network peer to peer

• Then up to the relevant application
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Communication between peers

• How do peer protocols coordinate with each other?

• Layer attaches its own header (H) to communicate with peer

– Higher layers’ headers, data encapsulated inside 
message 

• Lower layers don’t generally inspect higher layers’ headers

Application

Transport

Network

Application message

H

H

Transport-layer message body

Network-layer datagram body
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• Socket: The interface the OS provides to the network
– Provides inter-process explicit message exchange

• Can build distributed systems atop sockets: send(), recv()
– e.g.: put(key,value) → message
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Network socket-based communication
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// Create a socket for the client
if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {
perror(”Socket creation");
exit(2);

}

// Set server address and port
memset(&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = inet_addr(argv[1]);
servaddr.sin_port = htons(SERV_PORT); // to big-endian

// Establish TCP connection
if (connect(sockfd, (struct sockaddr *) &servaddr,
       sizeof(servaddr)) < 0) {
perror(”Connect to server");
exit(3);

}

// Transmit the data over the TCP connection
send(sockfd, buf, strlen(buf), 0);
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• Principle of transparency: Hide that resource is 
physically distributed across multiple computers
– Access resource same way as locally

– Users can’t tell where resource is physically located
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Network sockets: not great

Network sockets provide apps with point-to-point 
communication between processes

Sockets don’t provide transparency

Also, lots to deal with, have to worry a lot about the network

• How to separate different requests on the same connection?

• How to write bytes to the network / read bytes from the network?

• What if Host A’s process is in Go and Host B’s process is in C++?

• What to do with those bytes?
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Solution: Another layer!
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1. Network Communication

2. Remote Procedure Call (RPC)
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Today’s outline



• The typical programmer is trained to write single-threaded 
code that runs in one place

• Goal: Easy-to-program network communication that makes 
client-server communication transparent

– Retains the “feel” of writing centralized code 

• Programmer needn’t think about the network
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Why RPC?



• Course programming assignments use RPC

• Google gRPC

• Facebook/Apache Thrift

• Twitter Finagle

• …
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Everyone uses RPCs



What’s the goal of RPC?

• Within a single program, running in a single process, recall 
the well-known notion of a procedure call:
– Caller pushes arguments onto stack,

• jumps to address of callee function

– Callee reads arguments from stack,

• executes, puts return value in register,

• returns to next instruction in caller
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RPC’s Goal: To make communication appear like a 
local procedure call: transparency for procedure calls



• Seems obvious in retrospect, but RPC was only invented in 
the ’80s

• See Birrell & Nelson, “Implementing Remote Procedure 
Call” ... or

• Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University:  
Remote Procedure Call., 1981
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Historical note



1. Heterogeneity
– Client needs to rendezvous with the server
– Server must dispatch to the required function

• What if server is different type of machine?

2. Failure
– What if messages get dropped?
– What if client, server, or network fails?

3. Performance
– Procedure call takes ≈ 10 cycles ≈ 3 ns
– RPC in a data center takes ≈ 10 μs (103× slower)

• In the wide area, typically 106× slower
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RPC issues



• Not an issue for local procedure call

• For a remote procedure call, a remote machine may:

– Run process written in a different language 

– Represent data types using different sizes

– Use a different byte ordering (endianness)

– Represent floating point numbers differently

– Have different data alignment requirements

• e.g., 4-byte type begins only on 4-byte memory boundary
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Problem: Differences in data 
representation



• Mechanism to pass procedure parameters and return values in a 
machine-independent way

• Programmer may write an interface description in the IDL

– Defines API for procedure calls: names, parameter/return types

• Then runs an IDL compiler which generates:

– Code to marshal (convert) native data types into machine-
independent byte streams

• And vice-versa, called unmarshaling

– Client stub: Forwards local procedure call as a request to server

– Server stub: Dispatches RPC to its implementation
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Solution: Interface Description Language



1. Client calls stub function (pushes params onto stack)
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A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)



1. Client calls stub function (pushes params onto stack)

2. Stub marshals parameters to a network message
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A day in the life of an RPC

Client machine

Client process

k = add(3, 5)

Client stub (RPC library)

Client OS

proc: add | int: 3 | int: 5



2. Stub marshals parameters to a network message

3. OS sends a network message to the server
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A day in the life of an RPC
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3. OS sends a network message to the server

4. Server OS receives message, sends it up to stub

26

A day in the life of an RPC
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4. Server OS receives message, sends it up to stub

5. Server stub unmarshals params, calls server function
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A day in the life of an RPC
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5. Server stub unmarshals params, calls server function

6. Server function runs, returns a value
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6. Server function runs, returns a value

7. Server stub marshals the return value, sends msg
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A day in the life of an RPC
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7. Server stub marshals the return value, sends msg

8. Server OS sends the reply back across the network
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A day in the life of an RPC
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8. Server OS sends the reply back across the network

9. Client OS receives the reply and passes up to stub
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A day in the life of an RPC
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9. Client OS receives the reply and passes up to stub

10. Client stub unmarshals return value, returns to client
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A day in the life of an RPC

Client machine
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• Dispatcher

– Receives a client’s RPC request

• Identifies appropriate server-side method to invoke

• Skeleton
– Unmarshals parameters to server-native types

– Calls the local server procedure

– Marshals the response, sends it back to the dispatcher

• All this is hidden from the programmer
– Dispatcher and skeleton may be integrated

• Depends on implementation 
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The server stub is really two parts



1. Network Communication

2. Remote Procedure Call (RPC)

– Heterogeneity – use IDL w/ compiler
– Failure
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Today’s outline



1. Client may crash and reboot

2. Packets may be dropped
– Some individual packet loss in the Internet

– Broken routing results in many lost packets

3. Server may crash and reboot

4. Network or server might just be very slow
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What could possibly go wrong?

All these may look the same to the client…
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Failures, from client’s perspective

Client Server

Time ↓

✘

✘

The cause of the failure is hidden from the client!



• Simplest scheme for handling failures

1. Client stub waits for a response, for a while
– Response takes the form of an acknowledgement 

message from the server stub

2. If no response arrives after a fixed timeout time period, 
then client stub re-sends the request

• Repeat the above a few times

– Still no response?  Return an error to the application
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At-Least-Once scheme



• Client sends a “debit $10 from bank account” RPC
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At-Least-Once and side effects

Client Server

✘

(debit $10)

(debit $10)

Time ↓



• put(x, value), then get(x): expect answer to be value
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At-Least-Once and writes

Client Server

put(x,10)

put(x,20)

x10

Time ↓

Idempotent requests are safe to re-execute, 
causing no side effects…

Idempotent operation is one that has no 

additional effect if it is called more than once 

with the same input parameters



• put(x, value), then get(x): expect answer to be value
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At-Least-Once and writes

Client

get(x)?

x=20

Server

put(x,10)

put(x,20)

x10

x20

Time ↓



• Consider a client storing key-value pairs in a database

– put(x, value), then get(x): expect answer to be value
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At-Least-Once and writes

Client

Time ↓

Server

put(x,10)

put(x,20)
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x=20



• Yes: If they are read-only operations with no side effects

– e.g., read a key’s value in a database 

• Yes: If the application has its own functionality to cope with 
duplication and reordering

– You will need this in Assignments 3
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So is At-Least-Once ever okay?



• Idea: server RPC stub detects duplicate requests 

– Returns previous reply instead of re-running handler 

• How to detect a duplicate request?

– Test: Server sees same function, same arguments twice

• No!  Sometimes applications legitimately submit the 
same function with same augments, twice in a row
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At-Most-Once scheme



• How to detect a duplicate request?

– Client stub includes unique transaction ID (xid) with 
each one of its RPC requests

– Client stub uses same xid for retransmitted requests
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At-Most-Once scheme

At-Most-Once Server
if seen[xid]: 
    retval = old[xid] 
else: 
    retval = handler() 
    old[xid] = retval 
    seen[xid] = true
return retval



• How to ensure that the xid is unique?

1. Combine a unique client ID (e.g., IP address) with the 
current time of day

2. Combine unique client ID with a sequence number

– Suppose the client crashes and restarts.
Can it reuse the same client ID?

3. Big random number (probabilistic, not certain guarantee)
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At Most Once: Providing unique XIDs



• Problem: seen and old arrays will grow without bound

• Observation: By construction, when the client gets a 
response to a particular xid, it will never re-send it

• Client could tell server “I’m done with xid x – delete it”

– Have to tell the server about each and every retired xid

• Could piggyback on subsequent requests
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At-Most-Once: Discarding server state

Significant overhead if many RPCs 
are in flight, in parallel



• Problem: seen and old arrays will grow without bound

• Suppose xid = ⟨unique client id, sequence no.⟩
– e.g. ⟨42, 1000⟩, ⟨42, 1001⟩, ⟨42, 1002⟩

• Client includes “seen all replies ≤ X” with every RPC 

– Much like TCP sequence numbers, acks 

• How does the client know that the server received the 
information about retired RPCs?

– Idea: Each one of these is cumulative: later seen 
messages subsume earlier ones
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At-Most-Once: Discarding server state



• Problem: How to handle a duplicate request while the 
original is still executing?

– Server doesn’t know reply yet.  Also, we don’t want to 
run the procedure twice 

• Idea: Add a pending flag per executing RPC

– Server waits for the procedure to finish, or ignores
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At-Most-Once: Concurrent requests



• Problem: Server may crash and restart

• Does server need to write its state (seen, old) to disk?

• Yes!  On server crash and restart:
– If old[], seen[] arrays are only in memory:

• Server will forget, accept duplicate requests

49

At Most Once: Server crash and restart



• Need retransmission of at least once scheme

• Plus the duplicate filtering of at most once scheme
– To survive client crashes, client needs to record pending 

RPCs on disk

• So it can replay them with the same unique identifier

• Plus story for making server reliable

– Even if server fails, it needs to continue with full state
– To survive server crashes, server should log to disk 

results of completed RPCs (to suppress duplicates)
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Exactly-once?



• Imagine that the remote operation triggers an external 
physical thing
– e.g., dispense $100 from an ATM

• The ATM could crash immediately before or after 
dispensing and lose its state
– Don’t know which one happened

• Can, however, make this window very small

• So can’t achieve exactly-once in general, in the 
presence of external actions

Exactly-once for external actions?



• Layers are our friends!

• RPCs are everywhere

• Necessary issues surrounding 

machine heterogeneity

• Subtle issues around failures

– At-least-once w/ retransmission

– At-most-once w/ duplicate filtering
• Discard server state w/ cumulative acks

– Exactly-once with:
• at-least-once + at-most-once

+ fault tolerance + no external actions
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Summary: RPCs and Net. Comm.
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• Opens a TCP connection and writes the request

– TCP may retransmit but server’s TCP receiver will filter 
out duplicates internally, with sequence numbers

– No retry in Go RPC code (i.e., will not create a second 
TCP connection)

• However: Go RPC returns an error if it doesn’t get a reply

– Perhaps after a TCP timeout
– Perhaps server didn’t see request

– Perhaps server processed request but server/net failed 
before reply came back
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Go’s net/rpc is at-most-once



• Go’s RPC isn’t enough for Assignments 1 and 2 

– It only applies to a single RPC call

– If worker doesn’t respond, master re-sends to another

• Go RPC can’t detect this kind of duplicate 

– Breaks at-most-once semantics

• No problem in Assignments 1 and 2 (handles at 
application level)

• In Assignment 3 you will explicitly detect duplicates 
using something like what we’ve talked about
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RPC and Assignments 1 and 2
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