
Time and Logical Clocks 1

CS 240: Computing Systems and Concurrency

Lecture 3

Marco Canini

Today

1. The need for time synchronization

2. “Wall clock time” synchronization

3. Logical time: Lamport clocks

2

A distributed edit-compile workflow

• 2143 < 2144 ➔ make doesn’t call compiler

3

Physical time →

Lack of time synchronization result

– a possible object file mismatch

1. Quartz oscillator sensitive to temperature,
age, vibration, radiation

– Accuracy ~one part per million
• (one second of clock drift over 12 days)

2. The network is:

• Asynchronous: arbitrary message delays

• Best-effort: messages don’t always arrive

4

What makes time synchronization hard?

Today

1. The need for time synchronization

2. “Wall clock time” synchronization

– Cristian’s algorithm

3. Logical time: Lamport clocks

5

• UTC is broadcast from radio stations on land and satellite
(e.g., the Global Positioning System)

– Computers with receivers can synchronize their clocks

with these timing signals

• Signals from land-based stations are accurate to about

0.1−10 milliseconds

• Signals from GPS are accurate to about one microsecond

– Why can’t we put GPS receivers on all our computers?

6

Just use Coordinated Universal Time?

• Suppose a server with an accurate clock
(e.g., GPS-receiver)
– Could simply issue an RPC to obtain the time:

• But this doesn’t account for network latency

– Message delays will have outdated server’s answer

7

Synchronization to a time server

Client Server

Time ↓

1. Client sends a request packet,
timestamped with its local clock T1

2. Server timestamps its receipt of
the request T2 with its local clock

3. Server sends a response packet
with its local clock T3 and T2

4. Client locally timestamps its
receipt of the server’s response T4

8

Cristian’s algorithm: Outline

Client Server

Time ↓

T1

T2

T4

T3

How can the client use these timestamps to

synchronize its local clock to the server’s local clock?

• Client samples round trip time 𝛿 =
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

• But client knows 𝛿, not 𝛿resp

9

Cristian’s algorithm: Offset sample calculation

Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Assume: 𝛿req ≈ 𝛿resp

Goal: Client sets clock  T3 + 𝛿resp

Client sets clock  T3 + ½𝛿

• Clocks on different systems will always behave differently

– Disagreement between machines can result in
undesirable behavior

• NTP clock synchronization

– Rely on timestamps to estimate network delays

– 100s 𝝁s−ms accuracy

– Clocks never exactly synchronized

• Often inadequate for distributed systems

– Often need to reason about the order of events

– Might need precision on the order of ns

10

Clock synchronization: Take-away points

Today

1. The need for time synchronization

2. “Wall clock time” synchronization

– Cristian’s algorithm

3. Logical time: Lamport clocks

11

• A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

• Replicate the database, keep one copy in SF, one in NYC

Motivation: Multi-site database replication

New York
San

Francisco

12

• Replicate the database, keep one copy in SF, one in NYC

– Client sends query to the nearest copy

– Client sends update to both copies

The consequences of concurrent updates

“Deposit

$100”

“Pay 1%

interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed

in the same order at each copy

13

Idea: Logical clocks

• Landmark 1978 paper by Leslie Lamport

• Insight: only the events themselves matter

14

Idea: Disregard the precise clock time
Instead, capture just a “happens before”

relationship between a pair of events

• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a → b)

Defining “happens-before” (→)

Physical time ↓

P1 P2
P3

15

1. Can observe event order at a single process

Defining “happens-before” (→)

Physical time ↓

P1 P2
P3

a

b

16

1. If same process and a occurs before b, then a → b

Defining “happens-before” (→)

Physical time ↓

P1 P2
P3

a

b

17

1. If same process and a occurs before b, then a → b

2. Can observe ordering when processes communicate

Defining “happens-before” (→)

P1 P2
P3

a

b
c

18

Physical time ↓

1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

Defining “happens-before”

P1 P2
P3

a

b
c

19

Physical time ↓

1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

3. Can observe ordering transitively

Defining “happens-before” (→)

P1 P2
P3

a

b
c

20

Physical time ↓

1. If same process and a occurs before b, then a → b

2. If c is a message receipt of b, then b → c

3. If a → b and b → c, then a → c

Defining “happens-before”

P1 P2
P3

a

b
c

21

Physical time ↓

• Not all events are related by →

• a, d not related by → so concurrent, written as a || d

Concurrent events (||)

22

P1

a

b
c

P2
P3

Physical time ↓

d

• We seek a clock time C(a) for every event a

• Clock condition: If a → b, then C(a) < C(b)

Lamport clocks: Objective

23

Plan: Tag events with clock times; use clock
times to make distributed system correct

• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci  Ci + 1

The Lamport Clock algorithm

P1
C1=0

a

b
c

P2
C2=0 P3

C3=0

24

Physical time ↓

1. Before executing an event a, Ci  Ci + 1:

– Set event time C(a)  Ci

The Lamport Clock algorithm

P1
C1=1

a

b
c

P2
C2=0 P3

C3=0C(a) = 1

25

Physical time ↓

1. Before executing an event b, Ci  Ci + 1:

– Set event time C(b)  Ci

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=0 P3

C3=0

C(b) = 2

C(a) = 1

26

Physical time ↓

1. Before executing an event b, Ci  Ci + 1

2. Send the local clock in the message m

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=0 P3

C3=0

C(b) = 2

C(a) = 1

C(m) = 2

27

Physical time ↓

3. On process Pj receiving a message m:

– Set Cj and receive event time C(c) 1 + max{ Cj, C(m) }

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=3 P3

C3=0

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3

28

Physical time ↓

Lamport Timestamps: Ordering all events

• Break ties by appending the process number to each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)

– This is called a total ordering of events

29

30

Order all these events

P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

P4
C4=0

d

e

f

g

h

i

• Recall multi-site database replication:

– San Francisco (P1) deposited $100:

– New York (P2) paid 1% interest:

Making concurrent updates consistent

P1
P2

$

%

31

Could we design a system that uses Lamport Clock

total order to make multi-site updates consistent?

We reached an inconsistent state

• Client sends update to one replica site j

– Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue

– Sorted by increasing Lamport timestamps

Totally-Ordered Multicast

P1

%
1.2

$
1.1Example: P1’s

local queue:

32

Goal: All sites apply updates in (same) Lamport clock order

 Timestamps

1. On receiving an event from client, broadcast to others
(including yourself)

2. On receiving an event from replica:
a) Add it to your local queue

b) Broadcast an acknowledgement message to every
process (including yourself)

3. On receiving an acknowledgement:
– Mark corresponding event acknowledged in your queue

4. Remove and process events everyone has ack’ed from
head of queue

Totally-Ordered Multicast (Almost correct)

33

• P1 queues $, P2 queues %

• P1 queues and ack’s %

– P1 marks % fully ack’ed

• P2 marks % fully ack’ed

Totally-Ordered Multicast (Almost correct)

P1
P2

$
1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

(Ack’s to self not shown here)

34

✘ P2 processes %

1. On receiving an update from client, broadcast to others
(including yourself)

2. On receiving or processing an update:
a) Add it to your local queue, if received update

b) Broadcast an acknowledgement message to every
replica (including yourself) only from head of queue

3. On receiving an acknowledgement:
– Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed
from head of queue

Totally-Ordered Multicast (Correct version)

35

36

Totally-Ordered Multicast (Correct version)

P1
P2

$
1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$

%
%

$

(Ack’s to self not shown here)

$
1.1

• Does totally-ordered multicast solve the problem of
multi-site replication in general?

• Not by a long shot!

1. Our protocol assumed:

– No node failures

– No message loss

– No message corruption

2. All to all communication does not scale

3. Waits forever for message delays (performance?)

So, are we done?

37

• Can totally-order events in a distributed system: that’s useful!

– We saw an application of Lamport clocks for totally-
ordered multicast

• But: while by construction, a → b implies C(a) < C(b),

– The converse is not necessarily true:

• C(a) < C(b) does not imply a → b (possibly, a || b)

38

Take-away points: Lamport clocks

Can’t use Lamport clock timestamps to infer

causal relationships between events

	Slide 1: Time and Logical Clocks 1
	Slide 2: Today
	Slide 3: A distributed edit-compile workflow
	Slide 4: What makes time synchronization hard?
	Slide 5: Today
	Slide 6: Just use Coordinated Universal Time?
	Slide 7: Synchronization to a time server
	Slide 8: Cristian’s algorithm: Outline
	Slide 9: Cristian’s algorithm: Offset sample calculation
	Slide 10: Clock synchronization: Take-away points
	Slide 11: Today
	Slide 12: Motivation: Multi-site database replication
	Slide 13: The consequences of concurrent updates
	Slide 14: Idea: Logical clocks
	Slide 15: Defining “happens-before” ()
	Slide 16: Defining “happens-before” ()
	Slide 17: Defining “happens-before” ()
	Slide 18: Defining “happens-before” ()
	Slide 19: Defining “happens-before”
	Slide 20: Defining “happens-before” ()
	Slide 21: Defining “happens-before”
	Slide 22: Concurrent events (||)
	Slide 23: Lamport clocks: Objective
	Slide 24: The Lamport Clock algorithm
	Slide 25: The Lamport Clock algorithm
	Slide 26: The Lamport Clock algorithm
	Slide 27: The Lamport Clock algorithm
	Slide 28: The Lamport Clock algorithm
	Slide 29: Lamport Timestamps: Ordering all events
	Slide 30: Order all these events
	Slide 31: Making concurrent updates consistent
	Slide 32: Totally-Ordered Multicast
	Slide 33: Totally-Ordered Multicast (Almost correct)
	Slide 34: Totally-Ordered Multicast (Almost correct)
	Slide 35: Totally-Ordered Multicast (Correct version)
	Slide 36: Totally-Ordered Multicast (Correct version)
	Slide 37: So, are we done?
	Slide 38: Take-away points: Lamport clocks

