Time and Logical Clocks 1

alllasc Ellall aealy

'\‘S‘-—_ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 3

Marco Canini

Today

1. The need for time synchronization
2. “Wall clock time” synchronization

3. Logical time: Lamport clocks

A distributed edit-compile workflow

Computer on 2144 2145 2146 2147 <4— Time according
which compiler . | | | to local clock
runs output.o created
Computer on 2142 2143 2144 2145 <«— Time according
which editor | ¢ | - to local clock
runs

output.c created Physical time >

« 2143 < 2144 =» make doesn’t call compiler

What makes time synchronization hard?

1. Quartz oscillator sensitive to temperature,
age, vibration, radiation

— Accuracy ~one part per million
* (one second of clock drift over 12 days)

2. The network is:
» Asynchronous: arbitrary message delays
» Best-effort. messages don’t always arrive

Today

1. The need for time synchronization

2. “Wall clock time” synchronization
— Ciristian’s algorithm

3. Logical time: Lamport clocks

Just use Coordinated Universal Time?

« UTC is broadcast from radio stations on land and satellite
(e.g., the Global Positioning System)

— Computers with receivers can synchronize their clocks
with these timing signals

 Signals from land-based stations are accurate to about
0.1-10 milliseconds

 Signals from GPS are accurate to about one microsecond
— Why can’t we put GPS receivers on all our computers?

Synchronization to a time server

Suppose a server with an accurate clock
(e.g., GPS-receiver)

— Could simply issue an RPC to obtain the time:

Client g u Server
Time Ofday?

2:50 PM
e

Time |

But this doesn’t account for network latency
— Message delays will have outdated server’'s answer

Cristian’s algorithm: Outline

1. Client sends a packet, Client Server
timestamped with its local clock T e
B - v
2. Server timestamps its receipt of T | ques;.
the request T, with its local clock ! \@)
T,
3. Server sends a packet
with its local clock 75 and 7, T,
. /
4. Client locally timestamps its | respon=® -ﬁ
receipt of the server’s response T,

How can the client use these timestamps to
| _Synchronize its local clock to the server’s local clock?

Cristian’s algorithm: Offset sample calculation

 Client samples round frip time 6 =
5req + 5resp (T4 T1) - (T3 - T2)

» But client knows 6, not §,,

Server

Clock synchronization: Take-away points

* Clocks on different systems will always behave differently

— Disagreement between machines can result in
undesirable behavior

* NTP clock synchronization
— Rely on timestamps to estimate network delays
— 100s us—ms accuracy
— Clocks never exactly synchronized

« Often inadequate for distributed systems
— Often need to reason about the order of events
— Might need precision on the order of ns

Today

1. The need for time synchronization

2. “Wall clock time” synchronization
— Cristian’s algorithm

3. Logical time: Lamport clocks

11

Motivation: Multi-site database replication

* A New York-based bank wants to make its transaction
ledger database resilient to whole-site failures

* Replicate the database, keep one copy in SF, one in NYC

12

The consequences of concurrent updates

* Replicate the database, keep one copy in SF, one in NYC
— Client sends query to the nearest copy
— Client sends update to both copies

—— R e S N R R N R R R S N R R R R N

“Def |nconsistent replicas! |
i Updates should have been performed ;

$1¢
I . 000
! in the same order at each co N
$1.¢___ T py___.,_l,o1o
$1,111 “Pay 1%

“ interest”

13

Idea: Logical clocks

« Landmark 1978 paper by Leslie Lamport

* Insight: only the events themselves matter

Idea: Disregard the precise clock time

Instead, capture just a “happens before”
| relatlonshlp between a pair of events i

14

Defining “happens-before” (=)

» Consider three processes: P1, P2, and P3

* Notation: Event a happens before event b (a > b)

P1

P2

P3

Physical time |

15

Defining “happens-before” ()

1.

Can observe event order at a single process

P1

P2

P3

Physical time |

16

Defining “happens-before” ()

1.

If same process and a occurs before b, thena 2> b

P1

P2

P3

Physical time |

17

Defining “happens-before” ()

1. If same process and a occurs before b, thena 2> b

2. Can observe ordering when processes communicate

P1

P2

P3

Physical time |

18

Defining “happens-before”

1.

2.

If same process and a occurs before b, thena 2> b

If ¢ is @ message receipt of b, then b - ¢

P1

P2

P3

Physical time |

19

Defining “happens-before” ()

1. |f same process and a occurs before b, thena 2> b

2. If cis amessage receiptofb,thenb -2 ¢

3. Can observe ordering transitively

P1

P2

P3

Physical time |

20

Defining “happens-before”

1.
2.
3.

If same process and a occurs before b, thena 2> b

If ¢ is a message receipt of b, thenb - ¢

fa—=>bandb—->c,thena—>c¢

P1

P2

P3

Physical time |

21

Concurrent events (||)

* Not all events are related by -

* a, d not related by - so concurrent, writtenas a || d

P1

P2

P3

Physical time |

22

Lamport clocks: Objective

* We seek a a) for every event a

Plan: Tag events with clock times; use clock
times to make distributed system correct

 Clock condition: If a = b, then C(a) < C(b)

The Lamport Clock algorithm

» Each process P; maintains a local clock C;

1. Before executing an event, C; < C; + 1

Physical time |

24

The Lamport Clock algorithm

1. Before executing aneventa, C; < C, + 1:

— Set event time C(a) < C,

Physical time |

25

The Lamport Clock algorithm

1. Before executing aneventb, C; < C; + 1:

— Set event time C(b) € C,

Physical time |

26

The Lamport Clock algorithm

1. Before executinganeventbh, C; < C; + 1

2. Send the local clock in the message m

Physical time |

27

The Lamport Clock algorithm

3. On process P; receiving a message m:

— Set C; and receive event time C(c) <1 + max{ C;, C(m) }

Physical time |

28

Lamport Timestamps: Ordering all events

- Break ties by appending the process number to each event:

1. Process P; timestamps event e with C(e).i

2. C(a).i < C(b))when:
« C(@a)<C(b),orC(a)=C(b)and i<y

* Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
— This is called a total ordering of events

29

Order all these events

P1 P2
C,= C,=0
a @
b Q d
C O 0 e

P3 P4
C3= C4=
f
r h

30

Making concurrent updates consistent

* Recall multi-site database replication:

— San Francisco (P1) deposited $100;
— New York (P2) paid 1% interest:

Could we design a system that uses Lamport Clock i
total order to make multi-site updates consistent? |

Totally-Ordered Multicast

* Client sends update to one replica site j
— Replica assigns it Lamport timestamp C;. j

* Key idea: Place events into a sorted
by increasing Lamport timestamps

Example: P1’s Br 1.1p1.2] < Timestamps
local queue: R

Totally-Ordered Multicast (#/most correct)

1. On receiving an event from client, broadcast to others
(including yourself)

2. On receiving an event from replica:
a) Add it to your local queue

b) Broadcast an acknowledgement message to every
process (including yourself)

3. On receiving an acknowledgement:
— Mark corresponding event acknowledged in your queue

4. Remove and process events everyone has ack'ed from
head of queue

33

Totally-Ordered Multicast (#/most correct

« P1queues $, P2 queues % 1.1[)1.2
37

* P1 queues and ack’s %

(Ack’s to self not shown here)
34

Totally-Ordered Multicast (Correct version)

1. On receiving an update from client, broadcast to others
(including yourself)

(2. On receiving or processing an update:
a) Add it to your local queue, if received update

b) Broadcast an acknowledgement message to every
replica (including yourself) only from head of queue

\. J

3. On receiving an acknowledgement:
— Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack'ed
from head of queue

35

Totally-Ordered Multicast (Correct version)

(AcK's to self not shown here)

36

So, are we done?

* Does totally-ordered multicast solve the problem of
multi-site replication in general?

* Not by a long shot!

1. Our protocol assumed:
— No node failures
— No message loss
— No message corruption
2. All to all communication does not scale
3. Waits forever for message delays (performance?)

37

Take-away points: Lamport clocks

 (Can totally-order events in a distributed system: that's useful!

— We saw an application of Lamport clocks for totally-
ordered multicast

 But: while by construction, a 2 b implies C(a) < C(b),
— The converse is not necessarily true:
* C(a) < C(b) does not imply a - b (possibly, a || b)

Can’t use Lamport clock timestamps to infer
between events

	Slide 1: Time and Logical Clocks 1
	Slide 2: Today
	Slide 3: A distributed edit-compile workflow
	Slide 4: What makes time synchronization hard?
	Slide 5: Today
	Slide 6: Just use Coordinated Universal Time?
	Slide 7: Synchronization to a time server
	Slide 8: Cristian’s algorithm: Outline
	Slide 9: Cristian’s algorithm: Offset sample calculation
	Slide 10: Clock synchronization: Take-away points
	Slide 11: Today
	Slide 12: Motivation: Multi-site database replication
	Slide 13: The consequences of concurrent updates
	Slide 14: Idea: Logical clocks
	Slide 15: Defining “happens-before” ()
	Slide 16: Defining “happens-before” ()
	Slide 17: Defining “happens-before” ()
	Slide 18: Defining “happens-before” ()
	Slide 19: Defining “happens-before”
	Slide 20: Defining “happens-before” ()
	Slide 21: Defining “happens-before”
	Slide 22: Concurrent events (||)
	Slide 23: Lamport clocks: Objective
	Slide 24: The Lamport Clock algorithm
	Slide 25: The Lamport Clock algorithm
	Slide 26: The Lamport Clock algorithm
	Slide 27: The Lamport Clock algorithm
	Slide 28: The Lamport Clock algorithm
	Slide 29: Lamport Timestamps: Ordering all events
	Slide 30: Order all these events
	Slide 31: Making concurrent updates consistent
	Slide 32: Totally-Ordered Multicast
	Slide 33: Totally-Ordered Multicast (Almost correct)
	Slide 34: Totally-Ordered Multicast (Almost correct)
	Slide 35: Totally-Ordered Multicast (Correct version)
	Slide 36: Totally-Ordered Multicast (Correct version)
	Slide 37: So, are we done?
	Slide 38: Take-away points: Lamport clocks

