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1. Introduction to Primary-Backup replication

2. Case study: VMWare’s fault-tolerant virtual 
machine

Plan

2



• Mechanism:  Replicate and 

separate servers

• Goal #1:  Reliable despite 

individual server failures

• Goal #2:  Semantics of a 

single server

Primary-Backup Replication

3

Client C

Primary P

Backup B



Primary-Backup Replication

Client C

Primary P

Backup B

• Nominate one replica primary

• Other replicas are backup

– Only one primary at a time

• Clients send all operations to 

current primary

• Primary orders clients’ operations
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Need to keep clients, primary, and backup in sync: 

who is primary and who is backup (no Split Brain)



• Insight: A replica is essentially a state machine

– E.g., set of (key, value) pairs is state

– Operations transition between states

• Each operation executed on all replicas, or none at all

– i.e., we need distributed all-or-nothing atomicity

• Key assumption: Operations are deterministic

• If op is deterministic, replicas will end in same state

State machine replication
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More reading:  ACM Computing Surveys, Vol. 22, No. 4, December 1990 (pdf)

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf


• Agreement: Every non-faulty state machine 
receives every operation

• Order: Every non-faulty state machine 
processes the operations it receives in the 
same order

Replica coordination
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All non-faulty state machines receive all 

operations in the same order



Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s ops or writes to log
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put(x,1)

put(x,1)

When does the primary execute ops?



Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary exec’s ops

3. Primary orders ops into log

4. Replicates log of ops to backup

5. Backup exec’s ops or writes to log
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put(x,1)

put(x,1)

ack

Asynchronous Replication

What can go wrong w/ async replication?



Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s op or writes to log

5. Primary gets ack, execs ops
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put(x,1)

put(x,1)

ack

ack

Synchronous Replication

If the primary fails? A backup is promoted to new primary



• “Backup exec’s op or writes to log”

• Hot Backups execute operations from the 
primary as soon as they receive it

• Cold Backups log operations received from 
primary, and execute them only if primary fails
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Hot vs. Cold backups



Why does this work?

Synchronous Replication
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Servers

Backup

• Replicated log => replicated state machine

– All servers execute same commands in same order



• Replicated log => replicated state machine

– All servers execute same commands in same order

Why does this work?
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Servers

BackupBackup



• Operations are deterministic

– No events with ordering based on local clock

• Convert timer, network, user into logged events

– Nothing using random inputs

• Execution order of ops is identical

– e.g. replicated state machines (RSMs) is single threaded
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Need determinism?  Make it so!



15

Example:  Make random() deterministic
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Example:  Make random() deterministic

• Primary: 

– Initiates PRNG with OS-supplied randomness, gets initial seed 

– Sends initial seed to to backup

• Backup

– Initiates PRNG with seed from primary



• First step in our goal of making stateful replicas 
fault-tolerant

• Allows replicas to provide continuous service 
despite persistent net and machine failures

• Finds repeated application in practical 
systems
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Primary-Backup: Summary



Case study

The design of a practical system for 

fault-tolerant virtual machines

D. Scales, M. Nelson, G. Venkitachalam, VMWare

SIGOPS Operating Systems Review 44(4), Dec. 2010 (pdf)
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http://dl.acm.org/ft_gateway.cfm?id=1899932


• In hardware

– Sensitive to architecture changes

• At the OS level

– State transition are hard to track and 
coordinate

• At the application level

– Requires sophisticated application 
programmers
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Where should RSM be implemented?



Goals:

1. Replication of the whole virtual machine

2. Completely transparent to apps and clients

3. High availability for any existing software
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VMware vSphere Fault Tolerance (VM-FT)
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Backup 
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2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation
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Overview

• Two virtual machines (primary, 

backup) on different bare metal

• Logging channel  runs over network

• Shared disk  via fiber channel



• VM inputs

– Incoming network packets

– Disk reads

– Keyboard and mouse events

– Clock timer interrupt events

• VM outputs

– Outgoing network packets

– Disk writes
22

Virtual Machine I/O
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Overview

• Primary sends inputs to backup

• Backup outputs dropped

• Primary-backup heartbeats 

– If primary fails, backup takes over



1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
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VM-FT: Challenges



• Step 1: Hypervisor at primary logs the causes of     

non-determinism

1. Log results of input events

• Including current program counter value for each

2. Log results of non-deterministic instructions 

• e.g. log result of timestamp counter read 
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Log-based VM replication



• Step 2: Primary hypervisor sends log entries to  

backup hypervisor

• Backup hypervisor replays the log entries

– Stops backup VM at next input event or non-

deterministic instruction

• Delivers same input as primary

• Delivers same non-deterministic instruction 

result as primary
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Log-based VM replication



1. Making the backup an exact replica of primary

2. Making the system behave like a single server

– FT Protocol

3. Avoiding two primaries (Split Brain)
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VM-FT Challenges



• When backup takes over, non-determinism makes 

it execute differently than primary would have

– This is okay!

• Output requirement

– When backup takes over, execution is consistent 
with outputs the primary has already sent
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Primary to backup failover
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The problem of inconsistency

Primary

Backup

Input Output

Primary fails



• Primary logs each output operation

• Delays sending output until Backup acknowledges it

• But does not need to delay execution

30

VM-FT protocol

Primary

Backup

Input

Duplicate output



• Primary logs each output operation

• Delays sending output until Backup acknowledges it

• But does not need to delay execution
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VM-FT protocol

Primary

Backup

Input

Duplicate output

Restart execution at an output event



1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

– Logging channel may break
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VM-FT: Challenges



• Primary and backup each run UDP heartbeats, 

monitor logging traffic from their peer

• Before “going live” (backup) or finding new backup 

(primary), execute an atomic test-and-set on a 

variable in shared storage

• If the replica finds variable already set, it aborts
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Detecting and responding to failures



• Primary-backup replication with whole machines!

• Design for correctness and consistency of replicated 
VM outputs despite failures

– Determinism tricky, but doable

– Primary delays output until acked by backup

– Use atomic test-and-set on shared disk to avoid 
split brain
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VM-FT: Summary



• All replicas receive and process the same sequence of 
(deterministic) operations

– Clients send all operations to current primary
– Primary orders clients’ ops into a log
– Primary replicates the log to backup
– Backup executes ops

– Async vs Sync replication: when the primary executes

Primary-Backup: Take-away ideas
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Need to keep clients, primary, and backup in 

sync: who is primary and who is backup
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