Replication State Machines via
Primary-Backup

alllasc Sfllall asala
'\\“E King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 5

Marco Canini

Plan

1. Introduction to Primary-Backup replication

2. Case study: VMWare's fault-tolerant virtual
machine

Primary-Backup Replication

 Mechanism: Replicate and
Client C g separate servers

l Goal #1: Reliable despite

_ — individual server failures
Primary P L‘ﬂ

« Goal #2: Semantics of a
l single server

Backup B L‘u

Primary-Backup Replication

 Nominate one replica
Client C % :
« Other replicas are
— Only one primary at a time

Primary P \E’ » Clients send all operations to
current primary

l * Primary orders clients’ operations

Backup B k‘U

Need to keep clients, primary, and backup in sync:
who is primary and who is backup (no Split Brain)

State machine replication

* Insight: A replica is essentially a sfate machine
— E.g., set of (key, value) pairs is state
— Operations transition between states

» Each operation executed on all replicas, or none at all
— I.e., we need distributed all-or-nothing atomicity

« Key assumption: Operations are deterministic

* |f op is deterministic, replicas will end in same state

More reading: ACM Computing Surveys, Vol. 22, No. 4, December 1990 (pdf)

Implementing Fault-Tolerant Services Using the State Machine

Approach: A Tutorial

FRED B. SCHNEIDER

Department of Computer Science, Cornell University, Ithaca, New York 14853

The state machine approach is a general method for implementing fault-tolerant services
in distributed systems. This paper reviews the approach and describes protocols for two
different failure models—Byzantine and fail stop. System reconfiguration techniques for
removing faulty components and integrating repaired components are also discussed.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems— network operating systems; D.2.10 [Software Engineering]:
Design—methodologies; D.4.5 [Operating Systems]: Reliability—fault tolerance; D.4.7
[Operating Systems]: Organization and Design—interactive systems, real-time systems

General Terms: Algorithms, Design, Reliability

Additional Key Words and Phrases: Client-server, distributed services, state machine

approach

INTRODUCTION

Distributed software is often structured in
terms of clients and services. Each service
comprises one or more servers and exports
operations that clients invoke by making
requests. Although using a single, central-
ized, server is the simplest way to imple-

service by replicating servers and coordi-
nating client interactions with server rep-
licas.! The approach also provides a
framework for understanding and design-
ing replication management protocols.
Many protocols that involve replication of
data or software—be it for masking failures
or simnlv ta facilitate cooneration without

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf

Replica coordination

i All non-faulty state machines receive all
| . .
] operations in the same order

+ Agreement: Every non-faulty state machine
receives every operation

* Order: Every non-faulty state machine
processes the operations it receives in the
same order

Primary-Backup Replication

Client C g

put(x,1)l 1. Primary gets operations

Primary P \ﬂ

put(x,1)l

Backup B L‘u

When does the primary execute ops?

Primary orders ops into log

Replicates log of ops to backup

s W DN

Backup exec’s ops or writes to log

Primary-Backup Replication

Client C g Asynchronous Replication

put(x,1)lT ack 1. Primary gets operations

Primary P L‘U 2. Primary exec’s ops
put(x,1)l 3. Primary orders ops into log
v 4. Replicates log of ops to backup
Backup B L‘U 5. Backup exec’s ops or writes to log

What can go wrong w/ async replication?

Primary-Backup Replication

Client C % Synchronous Replication

put(x,1)lT ack 1. Primary gets operations

Primary P iﬂ 2. Primary orders ops into log
lT 3. Replicates log of ops to backup
put(x,1) ack
vi 4. Backup exec’s op or writes to log
Backup B
aeKHp RU 5. Primary gets ack, execs ops

If the primary fails? A backup is promoted to new primary

10

Hot vs. Cold backups

“Backup exec's op or writes to log”

Hot Backups execute operations from the
primary as soon as they receive it

» Cold Backups log operations received from
primary, and execute them only if primary fails

Why does this work?
Synchronous Replication

CEEEEE . o
'\

(Logging Lo in te)
Module achine uIe Madghine

Log
add jmp|mov add|jmpm

Servers

Backup Primary

* Replicated log => replicated state machine

— All servers execute same commands in same order

12

Why does this work?

Synchronous Replication

@iﬁiﬂiiﬂﬂi

)

4 I

Log\
add jmp|mov S

J

Backup

J

Backup

%\

(Logging Logging Loggin t
Module achine Module achine uIe Ma ine

o

add|jmpm

e)

Primary

* Replicated log => replicated state machine

Clients

Servers

— All servers execute same commands in same order

13

Need determinism? Make it so!

« Operations are deterministic

— No events with ordering based on local clock
» Convert timer, network, user into logged events

— Nothing using random inputs

« Execution order of ops is identical

— e.g. replicated state machines (RSMs) is single threaded

Example: Make random() deterministic

Almost all module functions depend on the basic function random(), which generates a
random float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne
Twister as the core generator. It produces 53-bit precision floats and has a period of
2**19937-1. The underlying implementation in C is both fast and threadsafe. The
Mersenne Twister is one of the most extensively tested random number generators in
existence. However, being completely deterministic, it is not suitable for all purposes, and
is completely unsuitable for cryptographic purposes.

random. seed(a=None)
Initialize internal state of the random number generator.

None Or no argument seeds from current time or from an operating system specific
randomness source if available (see the os.urandom() function for details on
availability).

random. getstate()
Return an object capturing the current internal state of the generator. This object can
be passed to setstate() t0 restore the state.

Example: Make random() deterministic

* Primary:
— Initiates PRNG with OS-supplied randomness, gets initial seed
— Sends initial seed to to backup

« Backup
— Initiates PRNG with seed from primary

random. seed(a=None)
Initialize internal state of the random number generator.

None Or no argument seeds from current time or from an operating system specific
randomness source if available (see the os.urandom() function for details on

availability).

random. getstate()
Return an object capturing the current internal state of the generator. This object can

be passed to setstate() t0 restore the state.

Primary-Backup: Summary

First step in our goal of making stateful replicas
fault-tolerant

Allows replicas to provide continuous service
despite persistent net and machine failures

Finds repeated application in practical
systems

17

Case study

The design of a practical system for
fault-tolerant virtual machines

D. Scales, M. Nelson, G. Venkitachalam, VMWare
SIGOPS Operating Systems Review 44(4), Dec. 2010 (

18

http://dl.acm.org/ft_gateway.cfm?id=1899932

Where should RSM be implemented?

* In hardware
— Sensitive to architecture changes

 Atthe OS level

— State transition are hard to track and
coordinate

* At the application level

— Requires sophisticated application
programmers

VMware vSphere Fault Tolerance (VM-FT)

Goals:
1. Replication of the whole virtual machine
2. Completely transparent to apps and clients

3. High availability for any existing software

Overview

» Two virtual machines (primary,
backup) on different bare metal

» Logging channel runs over network ﬁ

« Shared disk via fiber channel

\Shared Disk/

Virtual Machine 1/O

VM inputs
— Incoming network packets
— Disk reads
— Keyboard and mouse events
— Clock timer interrupt events

* VM outputs
— Outgoing network packets
— Disk writes

Overview

* Primary sends inputs to backup
« Backup outputs dropped

* Primary-backup heartbeats
— If primary fails, backup takes over

Prlmary Backup

\Shared Disk

&=

Loggln
chann

Q o3

\

VM-FT: Challenges

1. Making the backup an exact replica of primary
2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

Log-based VM replication

« Step 1: Hypervisor at primary logs the causes of
non-determinism

1. Log results of input events
 Including current program counter value for each

2. Log results of non-deterministic instructions
* e.g. log result of timestamp counter read

25

Log-based VM replication

« Step 2: Primary hypervisor sends log entries to
backup hypervisor

« Backup hypervisor replays the log entries

— Stops backup VM at next input event or non-
deterministic instruction

 Delivers same input as primary

* Delivers same non-deterministic instruction
result as primary

26

VM-FT Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server
— FT Protocol

3. Avoiding two primaries (Split Brain)

27

Primary to backup failover

* When backup takes over, non-determinism makes
it execute differently than primary would have

— This is okay!

* Output requirement

— When backup takes over, execution is consistent
with outputs the primary has already sent

28

The problem of inconsistency

Primary fails

29

VM-FT protocol

* Primary logs each output operation
* Delays sending output until Backup acknowledges it
» But does not need to delay execution

3 {a\®
Input\ O\)“)\)

N\

A pix™

’

Primary

Backup |\—>

Duplicate output

30

VM-FT protocol

* Primary logs each output operation
* Delays sending output until Backup acknowledges it
» But does not need to delay execution

\S
Input ul o\
P \\ O\)\Q A ?(-\«\QN
Primary
Backup |\—>
R

Duplicate output

Restart execution at an output event 31

VM-FT: Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
— Logging channel may break

32

Detecting and responding to failures

* Primary and backup each run UDP heartbeats,
monitor logging traffic from their peer

« Before “going live” (backup) or finding new backup
(primary), execute an atomic test-and-set on a
variable in shared storage

* |f the replica finds variable already set, it aborts

VM-FT: Summary

* Primary-backup replication with whole machines!

 Design for correctness and consistency of replicated
VM outputs despite failures

— Determinism tricky, but doable
— Primary delays output until acked by backup

— Use atomic test-and-set on shared disk to avoid
split brain

Primary-Backup: Take-away ideas

* All replicas receive and process the same sequence of
(deterministic) operations

— Clients send all operations to current primary
— Primary orders clients’ ops into a log

— Primary replicates the log to backup

— Backup executes ops

— Async vs Sync replication: when the primary executes

ir Need to keep clients, primary, and backup in
' sync: who is primary and who is backup

	Slide 1: Replication State Machines via Primary-Backup
	Slide 2: Plan
	Slide 3: Primary-Backup Replication
	Slide 4: Primary-Backup Replication
	Slide 5: State machine replication
	Slide 6
	Slide 7: Replica coordination
	Slide 8: Primary-Backup Replication
	Slide 9: Primary-Backup Replication
	Slide 10: Primary-Backup Replication
	Slide 11: Hot vs. Cold backups
	Slide 12: Why does this work? Synchronous Replication
	Slide 13: Why does this work? Synchronous Replication
	Slide 14: Need determinism? Make it so!
	Slide 15: Example: Make random() deterministic
	Slide 16: Example: Make random() deterministic
	Slide 17: Primary-Backup: Summary
	Slide 18
	Slide 19: Where should RSM be implemented?
	Slide 20: VMware vSphere Fault Tolerance (VM-FT)
	Slide 21: Overview
	Slide 22: Virtual Machine I/O
	Slide 23: Overview
	Slide 24: VM-FT: Challenges
	Slide 25: Log-based VM replication
	Slide 26: Log-based VM replication
	Slide 27: VM-FT Challenges
	Slide 28: Primary to backup failover
	Slide 29: The problem of inconsistency
	Slide 30: VM-FT protocol
	Slide 31: VM-FT protocol
	Slide 32: VM-FT: Challenges
	Slide 33: Detecting and responding to failures
	Slide 34: VM-FT: Summary
	Slide 35: Primary-Backup: Take-away ideas

