
Replication State Machines via

Primary-Backup

CS 240: Computing Systems and Concurrency

Lecture 5

Marco Canini

1. Introduction to Primary-Backup replication

2. Case study: VMWare’s fault-tolerant virtual
machine

Plan

2

• Mechanism: Replicate and

separate servers

• Goal #1: Reliable despite

individual server failures

• Goal #2: Semantics of a

single server

Primary-Backup Replication

3

Client C

Primary P

Backup B

Primary-Backup Replication

Client C

Primary P

Backup B

• Nominate one replica primary

• Other replicas are backup

– Only one primary at a time

• Clients send all operations to

current primary

• Primary orders clients’ operations

4

Need to keep clients, primary, and backup in sync:

who is primary and who is backup (no Split Brain)

• Insight: A replica is essentially a state machine

– E.g., set of (key, value) pairs is state

– Operations transition between states

• Each operation executed on all replicas, or none at all

– i.e., we need distributed all-or-nothing atomicity

• Key assumption: Operations are deterministic

• If op is deterministic, replicas will end in same state

State machine replication

5

6

More reading: ACM Computing Surveys, Vol. 22, No. 4, December 1990 (pdf)

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf

• Agreement: Every non-faulty state machine
receives every operation

• Order: Every non-faulty state machine
processes the operations it receives in the
same order

Replica coordination

7

All non-faulty state machines receive all

operations in the same order

Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s ops or writes to log

8

put(x,1)

put(x,1)

When does the primary execute ops?

Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary exec’s ops

3. Primary orders ops into log

4. Replicates log of ops to backup

5. Backup exec’s ops or writes to log

9

put(x,1)

put(x,1)

ack

Asynchronous Replication

What can go wrong w/ async replication?

Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s op or writes to log

5. Primary gets ack, execs ops

10

put(x,1)

put(x,1)

ack

ack

Synchronous Replication

If the primary fails? A backup is promoted to new primary

• “Backup exec’s op or writes to log”

• Hot Backups execute operations from the
primary as soon as they receive it

• Cold Backups log operations received from
primary, and execute them only if primary fails

11

Hot vs. Cold backups

Why does this work?

Synchronous Replication

add jmp mov shl

Log

Logging
Module

State
Machine

add jmp mov shl

Log

Logging
Module

State
Machine

Primary

Clients

shl

12

Servers

Backup

• Replicated log => replicated state machine

– All servers execute same commands in same order

• Replicated log => replicated state machine

– All servers execute same commands in same order

Why does this work?

Synchronous Replication

add jmp mov shl

Log

Logging
Module

State
Machine

add jmp mov shl

Log

Logging
Module

State
Machine

add jmp mov shl

Log

Logging
Module

State
Machine

Primary

Clients

shl

13

Servers

BackupBackup

• Operations are deterministic

– No events with ordering based on local clock

• Convert timer, network, user into logged events

– Nothing using random inputs

• Execution order of ops is identical

– e.g. replicated state machines (RSMs) is single threaded

14

Need determinism? Make it so!

15

Example: Make random() deterministic

16

Example: Make random() deterministic

• Primary:

– Initiates PRNG with OS-supplied randomness, gets initial seed

– Sends initial seed to to backup

• Backup

– Initiates PRNG with seed from primary

• First step in our goal of making stateful replicas
fault-tolerant

• Allows replicas to provide continuous service
despite persistent net and machine failures

• Finds repeated application in practical
systems

17

Primary-Backup: Summary

Case study

The design of a practical system for

fault-tolerant virtual machines

D. Scales, M. Nelson, G. Venkitachalam, VMWare

SIGOPS Operating Systems Review 44(4), Dec. 2010 (pdf)

18

http://dl.acm.org/ft_gateway.cfm?id=1899932

• In hardware

– Sensitive to architecture changes

• At the OS level

– State transition are hard to track and
coordinate

• At the application level

– Requires sophisticated application
programmers

19

Where should RSM be implemented?

Goals:

1. Replication of the whole virtual machine

2. Completely transparent to apps and clients

3. High availability for any existing software

20

VMware vSphere Fault Tolerance (VM-FT)

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

21

Overview

• Two virtual machines (primary,

backup) on different bare metal

• Logging channel runs over network

• Shared disk via fiber channel

• VM inputs

– Incoming network packets

– Disk reads

– Keyboard and mouse events

– Clock timer interrupt events

• VM outputs

– Outgoing network packets

– Disk writes
22

Virtual Machine I/O

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

23

Overview

• Primary sends inputs to backup

• Backup outputs dropped

• Primary-backup heartbeats

– If primary fails, backup takes over

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

24

VM-FT: Challenges

• Step 1: Hypervisor at primary logs the causes of

non-determinism

1. Log results of input events

• Including current program counter value for each

2. Log results of non-deterministic instructions

• e.g. log result of timestamp counter read

25

Log-based VM replication

• Step 2: Primary hypervisor sends log entries to

backup hypervisor

• Backup hypervisor replays the log entries

– Stops backup VM at next input event or non-

deterministic instruction

• Delivers same input as primary

• Delivers same non-deterministic instruction

result as primary

26

Log-based VM replication

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

– FT Protocol

3. Avoiding two primaries (Split Brain)

27

VM-FT Challenges

• When backup takes over, non-determinism makes

it execute differently than primary would have

– This is okay!

• Output requirement

– When backup takes over, execution is consistent
with outputs the primary has already sent

28

Primary to backup failover

29

The problem of inconsistency

Primary

Backup

Input Output

Primary fails

• Primary logs each output operation

• Delays sending output until Backup acknowledges it

• But does not need to delay execution

30

VM-FT protocol

Primary

Backup

Input

Duplicate output

• Primary logs each output operation

• Delays sending output until Backup acknowledges it

• But does not need to delay execution

31

VM-FT protocol

Primary

Backup

Input

Duplicate output

Restart execution at an output event

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

– Logging channel may break

32

VM-FT: Challenges

• Primary and backup each run UDP heartbeats,

monitor logging traffic from their peer

• Before “going live” (backup) or finding new backup

(primary), execute an atomic test-and-set on a

variable in shared storage

• If the replica finds variable already set, it aborts

33

Detecting and responding to failures

• Primary-backup replication with whole machines!

• Design for correctness and consistency of replicated
VM outputs despite failures

– Determinism tricky, but doable

– Primary delays output until acked by backup

– Use atomic test-and-set on shared disk to avoid
split brain

34

VM-FT: Summary

• All replicas receive and process the same sequence of
(deterministic) operations

– Clients send all operations to current primary
– Primary orders clients’ ops into a log
– Primary replicates the log to backup
– Backup executes ops

– Async vs Sync replication: when the primary executes

Primary-Backup: Take-away ideas

35

Need to keep clients, primary, and backup in

sync: who is primary and who is backup

	Slide 1: Replication State Machines via Primary-Backup
	Slide 2: Plan
	Slide 3: Primary-Backup Replication
	Slide 4: Primary-Backup Replication
	Slide 5: State machine replication
	Slide 6
	Slide 7: Replica coordination
	Slide 8: Primary-Backup Replication
	Slide 9: Primary-Backup Replication
	Slide 10: Primary-Backup Replication
	Slide 11: Hot vs. Cold backups
	Slide 12: Why does this work? Synchronous Replication
	Slide 13: Why does this work? Synchronous Replication
	Slide 14: Need determinism? Make it so!
	Slide 15: Example: Make random() deterministic
	Slide 16: Example: Make random() deterministic
	Slide 17: Primary-Backup: Summary
	Slide 18
	Slide 19: Where should RSM be implemented?
	Slide 20: VMware vSphere Fault Tolerance (VM-FT)
	Slide 21: Overview
	Slide 22: Virtual Machine I/O
	Slide 23: Overview
	Slide 24: VM-FT: Challenges
	Slide 25: Log-based VM replication
	Slide 26: Log-based VM replication
	Slide 27: VM-FT Challenges
	Slide 28: Primary to backup failover
	Slide 29: The problem of inconsistency
	Slide 30: VM-FT protocol
	Slide 31: VM-FT protocol
	Slide 32: VM-FT: Challenges
	Slide 33: Detecting and responding to failures
	Slide 34: VM-FT: Summary
	Slide 35: Primary-Backup: Take-away ideas

