View Change Protocols and
Reconfiguration

alllausc Ellall asala

‘\\“E King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 6

Marco Canini

Today

1. More primary-backup replication
2. View changes

3. Reconfiguration

Review: primary-backup replication

* Nominate one replica primary

— Clients send all requests to primary

— Primary orders clients’ requests

CEEEEEE

4
X

add jmp mov| s

shl
4 Logging Logging te)
Module achine Movule Madchine

4 I

add/jmp mov| s

Clients

Servers

From two to many replicas

@iﬁiﬂiiﬂﬂi

.

)
sﬁci%b

add jmp|mov

J

.

4 I

add jmp|mov

J

Clients

4 Logging Logging Lo
achine Module achine

Module

.

%\

t

in
uIe Ma ine

T

add

jmp|m

e)

Servers

* Primary-Backup with many replicas
— Primary waits for acknowledgement from all backups

— All updates to set of replicas needs to update shared
disk (recall VM-FT)

What else can we do with more replicas?

* Viewstamped Replication:

— State Machine Replication for any number of
replicas

— Replica group: Group of 2f + 1 replicas
 Protocol can tolerate freplica crashes

 Differences with primary-backup
— No shared disk (no reliable failure detection)
— Don’t need to wait for all replicas to reply

— Need more replicas to handle f failures
(2f+1 vs f+1)

With multiple replicas, don’t need to wait
for all...

* Viewstamped Replication:

— State Machine Replication for any number of
replicas

— Replica group: Group of 2f + 1 replicas
 Protocol can tolerate freplica crashes

* Assumptions:

1. Handles crash failures only: Replicas fail only by
completely stopping

2. Unreliable network: Messages might be lost,
duplicated, delayed, or delivered out-of-order

Replica state

1. configuration: identities of all 2f + 1 replicas

2. In-memory log with clients’ requests in assigned order

(op1, args1) |(op2, args2)| (op3, args3) |(op4, args4)| s m =

Normal operation (F=1)

Request : Prepare : PrepareOK : Reply

Client i 1 I
\ | 1 | Execute /

A (Primary) I : Lye

I I]

B ! i i

L\ | '

0

C I i I

Time =2
1. Primary adds request to end of its log

2. Replicas add requests to their logs in primary’s log order

3. Primary waits for f PrepareOKs - request is committed
— Makes up-call to execute the operation ¢

8

Normal operation: Key points (F=1)

Req uest Prepare PrepareOK Reply

Client

Execute

A (Primary)
C

* Protocol guarantees state machine replication

Time 2

* On execute, primary knows request in f + 1 = 2 nodes’ logs
— Even if f=1then crash, 2 1 retains request in log

Piggybacked commits (F=1)

Req uest Prepare PrepareOK Reply

Client +Commit previous Execute

A (Primary)
C

Commit Time~>

* Previous Request's commit piggybacked on current Prepare

* No client Request after a timeout period?
— Primary sends Commit message to all backup replicas

10

The need for a view change

« So far: Works for f failed backup replicas
« But what if the ffailures include a failed primary?

— All clients’ requests go to the failed primary
— System halts despite merely ffailures

CEEEEEE

11

Today

1. More primary-backup replication

2. View changes
— With Viewstamped Replication
— Using a View Server

3. Reconfiguration

12

Views

 Let different replicas assume role of primary over time

« System moves through a sequence of views
— View = (view number, primary id, backup id, ...)

CEEEEEL

CEEEEEE
i X

—~ A View #1, #4, ...
e [H

View #2, #5, ...

13

View change protocol

« Backup replicas monitor primary

* If primary seems faulty (no Prepare/Commit):

— Backups execute the view change protocol to
select new primary

* View changes execute automatically, rapidly

* Need to keep clients and replicas in sync: same
local state of the current view
« Same local state at clients
« Same local state at replicas

14

Making the view change correct

* View changes happen locally at each replica

« Old primary executes requests in the old view, new
primary executes requests in the new view

* Want to ensure state machine replication
* So correctness condition: Committed requests

1. Survive in the new view
2. Retain the same order in the new view

Replica state (for view change)

1.

2.

configuration: sorted identities of all 2f + 1 replicas
In-memory log with clients’ requests in assigned order
view-number: identifies primary in configuration list

stafus: normal or in a view-change

16

View change protocol (F=1)

Start-View- : Do-View- : St art
_ - Ch Ch Vie
B (New Primary) — W ? {?ge O
view # " Iog
C @ ! /9
! ' Time >

1. B notices A has failed, sends Start-View-Change
2. Creplies Do-View-Change to new primary, with its log
3. B waits for freplies, then sends Start-View
4. On receipt of Start-View, C replays log, accepts new ops

17

View change protocol: Correctness =1

Execute

A (Old Primary) ¥ Start-View- Do-View- Start.
_ Change Change View

B (New Primary) Y l0g

C log \

PrepareOK Time >

Executed request,
previous view

* Old primary A must have received one or two PrepareOK
replies for that request (why?)

* Requestisin B's or C’s log (or both): so it will survive
iInto new view

18

Principle: Quorums

(F=1)

et ceftera...

* Any group of f+ 1 replicas is called a quorum

* Quorum intersection property: Two quorums in
2f + 1 replicas must intersect at at least one replica

19

Applying the quorum principle

Normal Operation:

* Quorum that processes one request: Q1
— ...and 2" request: Q2

Q1 N Q2 has at least one replica 2>
— Second request reads first request’s effects

20

Applying the quorum principle

View Change:

* Quorum processes previous (committed) request: Q1
— ...and that processes Start-View-Change: Q2

* Q1 N Q2 has at least one replica >
— View Change contains committed request

21

Split Brain (not all protocol messages shown)

Request Request

Client 1
\ *Execute \ ‘A’Execute
N

A (Primary)

Network partition
. Execute ‘A7Execute
B (New Primary) : X
- Start. A‘ /\ Start-View
Request | Request
Client 2

« What's undesirable about this sequence of events?

« Why won't this ever happen? What happens instead?

22

Today

1. More primary-backup replication
2. View changes
— With Viewstamped Replication
— Using a View Server

3. Reconfiguration

23

A
Would centralization simplify design? I

* Asingle View Server could decide who is primary
— Clients and servers depend on view server
* Don’t decide on their own (might not agree)

* (Goal in designing the VS:

— Only one primary at a time for correct state
machine replication

24

{

View Server protocol operation

 For now, assume VS never fails

« Each replica now periodically pings the VS
— VS declares replica dead if missed N pings in a row
— Considers replica alive after a single ping received

* Problem: Replica can be alive but because of
network connectivity, be declared “dead”

25

View Server: Split Brain

Client

One possibility: S, in old view

View Server

al\’

I | ! .
(1,8, ;) *

(2, S, -) ﬂv’

N

Client

27

Also possible: S, in new view

{

View Server

Client

28

Split Brain and view changes

Take-away points:

Split Brain problem can be avoided both:
— In a decentralized design (VR)
— With centralized control (VS)

But protocol must be designed carefully so that
replica state does not diverge

29

Today

1. More primary-backup replication
2. View changes

3. Reconfiguration

30

The need for reconfiguration

What if we want to replace a faulty replica with a
different machine?

— For example, one of the backups may fail

What if we want to change the replica group size?
— Decommission a replica
— Add another replica (increase f, possibly)

* Protocol that handles these possibilities is called the
reconfiguration protocol

31

Replica state (for reconfiguration)

1.

2.

3.

configuration: sorted identities of all 2f + 1 replicas
In-memory log with clients’ requests in assigned order
view-number: identifies primary in configuration list
status: normal or in a view-change

epoch-number: indexes configurations

32

Reconfiguration (1) (F=1)

Reconﬁguration: Prepare PrepareOK

B

Client : I
new-conflg\

A (Primary)
* Primary immediately stops accepting new requests

C (remove)

D (add)

Time =2

33

Reconfiguration (2) (F=1)

Reconfiguration 1 Reply
Client : ;
new-conflg\ :
A (Primary) S 4
14N
B om [
voa | !
Ao
C (remove) o —:
D (add) E

Time =2

* Primary immediately stops accepting new requests

* No up-call to RSM for executing this request

34

Reconfiguration (3) (F=1)

Reconfiguration Reply

Client .
| newreon 'g\ v StartEpoch
A (Primary) d’_;%
B 8 5
E% Commit

C (remove) R
D (add)

Time =2

* Primary sends Commit messages to old replicas

* Primary sends StartEpoch message to new replica(s)

35

Reconfiguration in new group {A, B, D}

Reconfiguration Reply : EpochStarted

Client . I
| newreon 'g\ « StartEpoch :
A (Primary) a’_;% !
|
B 8 5 i
Q| Commit |
ol |
C (remove) o I

[
D (add) !

Time >
1. Update state with new epoch-number

2. Fetch state from old replicas, update log

3. Send EpochStarted msgs to replicas being removed

36

Reconfiguration at replaced replicas {C}

Reconfiguration Reply

Client :
new-conflg\ StartEpoch

EpochStarted

Prepare,
PrepareOK

Iw

~—

A (Primary)

Commlx
C (remove
D (add)

1. Respond to state transfer requests from others

— Waits until it receives f + 1 EpochStarted msgs, f' is fault tolerance of
new epoch

2. Send StartEpoch messages to new replicas if they don’t hear
EpochStarted (not shown above)

Time =2

37

Shutting down old replicas

 |f admin doesn’t wait for reconfiguration to complete,
may cause > f failures in old group

— Can’t shut down replicas on receiving Reply at client

* Must ensure committed requests survive
reconfiguration!

* Fix: A new type of request CheckEpoch reports the
current epoch

— Goes thru normal request processing (no up-call)
— Return indicates reconfiguration is complete

38

VR: Take-away ideas

* Viewstamped Replication is a state machine
replication protocol that tolerates f crash failures in a
replica group of 2f + 1 replicas

* The protocol uses replicated state to provide
persistence without any use of disk

* f+ 1 replicas serve as a quorum that ensures
correctness; in every step of the protocol there is at
least one replica that knows about the request

* There’s actually sub-protocols that operate to address
distinct concerns (see next slide)

What’s useful when

« Backups fail or has network connectivity problems?
* Minority partitioned from primary??
- Quorums allow primary to continue

* Primary fails or has network connectivity problems?
Maijority partitioned from primary?
- Rapidly execute view change

Replica permanently fails or is removed?
Replica added?
-> Administrator initiates reconfiguration protocol

40

	Slide 1: View Change Protocols and Reconfiguration
	Slide 2: Today
	Slide 3: Review: primary-backup replication
	Slide 4: From two to many replicas
	Slide 5: What else can we do with more replicas?
	Slide 6: With multiple replicas, don’t need to wait for all…
	Slide 7: Replica state
	Slide 8: Normal operation
	Slide 9: Normal operation: Key points
	Slide 10: Piggybacked commits
	Slide 11: The need for a view change
	Slide 12: Today
	Slide 13: Views
	Slide 14: View change protocol
	Slide 15: Making the view change correct
	Slide 16: Replica state (for view change)
	Slide 17: View change protocol
	Slide 18: View change protocol: Correctness
	Slide 19: Principle: Quorums (f = 1)
	Slide 20: Applying the quorum principle
	Slide 21: Applying the quorum principle
	Slide 22: Split Brain
	Slide 23: Today
	Slide 24: Would centralization simplify design?
	Slide 25: View Server protocol operation
	Slide 26: View Server: Split Brain
	Slide 27: One possibility: S2 in old view
	Slide 28: Also possible: S2 in new view
	Slide 29: Split Brain and view changes
	Slide 30: Today
	Slide 31: The need for reconfiguration
	Slide 32: Replica state (for reconfiguration)
	Slide 33: Reconfiguration (1)
	Slide 34: Reconfiguration (2)
	Slide 35: Reconfiguration (3)
	Slide 36: Reconfiguration in new group {A, B, D}
	Slide 37: Reconfiguration at replaced replicas {C}
	Slide 38: Shutting down old replicas
	Slide 39: VR: Take-away ideas
	Slide 40: What’s useful when

