
Byzantine Fault Tolerance

CS 240: Computing Systems and Concurrency

Lecture 9

Marco Canini

• Traditional state machine replication tolerates
fail-stop failures:

– Node crashes

– Network breaks or partitions

• State machine replication with N = 2f+1 replicas
can tolerate f simultaneous fail-stop failures
– Two algorithms: Paxos, RAFT

So far: Fail-stop failures

2

• Byzantine fault: Node/component fails arbitrarily

– Might perform incorrect computation

– Might give conflicting information to
different parts of the system

– Might collude with other failed nodes

• Why might nodes or components fail arbitrarily?

– Software bug present in code

– Hardware failure occurs

– Hack attack on system

Byzantine faults

3

• Can we provide state machine replication for a
service in the presence of Byzantine faults?

• Such a service is called a Byzantine Fault
Tolerant (BFT) service

• Why might we care about this level of reliability?

4

Today: Byzantine fault tolerance

• Triple-redundant, dissimilar
processor hardware:

1. Intel 80486

2. Motorola

3. AMD

• Each processor runs code
from a different compiler

5

Mini-case-study: Boeing 777 fly-by-wire
primary flight control system

Simplified design:

• Pilot inputs → three processors

• Processors vote → control surface

Key techniques:

Hardware and software diversity

Voting between components

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm

3. Performance and Discussion

6

Today

• Traditional state machine replication (Paxos)
requires, e.g., 2f + 1 = three replicas, if f = 1

• Operations are totally ordered → correctness

– A two-phase protocol

• Each operation uses ≥ f + 1 = 2 of them

– Overlapping quorums

• So at least one replica “remembers”

7

Review: Tolerating one fail-stop failure

1. Can’t rely on the primary to assign proposal #

– Could assign same proposal # to different requests

2. Can’t use Paxos for view change

– Under Byzantine faults, the intersection of two
majority (f + 1 node) quorums may be bad node

– Bad node tells different quorums different things!

• e.g. tells N0 accept val1, but N1 accept val2

Use Paxos for BFT?

8

Paxos under Byzantine faults (f = 1)

Prepare(1.N0)

N0 N1

N2

nh=1.N0nh=1.N0

Promise(1.N0, Ø)

OK

9

Paxos under Byzantine faults (f = 1)

N0 N1

N2

nh=1.N0nh=1.N0

Accept(1.N0, xyz)

OK

Decide

xyz

f +1 ✓

10

Paxos under Byzantine faults (f = 1)

N0 N1

N2

nh=1.N2nh=1.N0

Decide

xyz

11

Paxos under Byzantine faults (f = 1)

N0 N1

N2

nh=1.N2nh=1.N0

Decide

xyz

Decide

abc

Conflicting decisions!

f +1 ✓

12

13

Theoretical fundamentals:
Byzantine Generals

Result: Using messengers, problem

solvable iff > ⅔ of the generals are loyal

General #1

General #2

General #3
Unreliable

messenger

• Clients sign input data before storing it, then verify
signatures on data retrieved from service

• Example: Store signed file f1=“aaa” with server

– Verify that returned f1 is correctly signed

Put burden on client instead?

14

<cryptography in 6 slides>

15

κρυπτό + γραφή (Cryptography)

• Greek for “secret writing”

• Confidentiality

– Obscure a message from eavesdroppers

• Integrity

– Assure recipient that the message was not altered

• Authentication

– Verify the identity of the source of a message

• Non-repudiation

– Convince a 3rd party that what was said is accurate

16

Terminology

• Encryption algorithm

– Transforms a plaintext into a ciphertext that is unintelligible for
non-authorized parties

– Usually parametrized with a cryptographic key

• Asymmetric (Public) key cryptography

– Crypto system: encryption + decryption algorithms + key
generation

• Symmetric (Shared) key cryptography

– Cipher/decipher: symmetric-key encryption/decryption algorithms

Encryption Decryption
ciphertext ciphertext plaintextplaintext

Alice Bob

17

Symmetric key encryption

E, D: cipher k: secret key (e.g. 128 bits)

m, c: plaintext, ciphertext n: nonce (aka IV)

Encryption algorithm is publicly known

• Never use a proprietary cipher

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

18

Public key encryption

PK: public key , SK: secret key (e.g., 1024 bits)

Example: Bob generates (PKBob, SKBob) and gives PKBob to Alice

E D
E(PKBob,m)=c c D(SKBob,c)=mm

PKBob SKBob

Alice Bob

key pair

19

Gen

Applications

• Public-key encryption

– Alice public key for encryption

– Anyone can send encrypted message

– Only Alice can decrypt messages (with secret key)

• Digital signature scheme

– Alice public key for verifying signatures

– Anyone can check a message signed by Alice

– Only Alice can sign messages (with secret key)

20

Establishing a shared secret

Alice Bob

(pk, sk) ⟵ G()

“Alice”, pk

choose random

x

“Bob”, c⟵E(pk,x)

D(sk,c) ⟶ x

x shared secret

21

</cryptography in 6 slides>

22

• Clients sign input data before storing it, then verify
signatures on data retrieved from service

• Example: Store signed file f1=“aaa” with server

– Verify that returned f1 is correctly signed

Put burden on client instead?

But a Byzantine node can replay

stale, signed data in its response

Inefficient: Clients have to perform

computations and sign data

23

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm

[Liskov & Castro, 2001]

3. Performance and Discussion

24

Today

• Uses 3f+1 replicas to survive f failures

– Shown to be minimal (Lamport)

• Requires three phases (not two)

• Provides state machine replication

– Arbitrary service accessed by operations
• E.g., file system ops read and write files and directories

– Tolerates Byzantine-faulty clients

25

Practical BFT: Overview

• Assume operations are deterministic

• Assume replicas start in same state

• If replicas execute same requests in same order:
– Correct replicas will produce identical results

26

Correctness argument

Client

Replicas

• Clients can’t cause replica inconsistencies

• Clients can write bogus data to the system
– Sol’n: Authenticate clients and separate their data

• This is a separate problem

27

Non-problem: Client failures

Client

Replicas

1. Send requests to the primary replica

2. Wait for f+1 identical replies
– Note: The replies may be deceptive

• i.e. replica returns “correct” answer, but locally does otherwise!

• But ≥ one reply is actually from a non-faulty replica

28

What clients do

Client 3f+1 replicas

• Carry out a protocol that ensures that

– Replies from honest replicas are correct

– Enough replicas process each request to ensure that
• The non-faulty replicas process the same requests

• In the same order

• Non-faulty replicas obey the protocol

29

What replicas do

• Primary-Backup protocol: Group runs in a view

– View number designates the primary replica

• Primary is the node whose id (modulo view #) = 1

30

Primary-Backup protocol

Client ViewPrimary Backups

• Primary picks the ordering of requests
– But the primary might be a liar!

• Backups ensure primary behaves correctly
– Check and certify correct ordering
– Trigger view changes to replace faulty primary

31

Ordering requests

Client ViewPrimary Backups

• One op’s quorum overlaps with next op’s quorum
– There are 3f+1 replicas, in total

• So overlap is ≥ f+1 replicas

• f+1 replicas must contain ≥ 1 non-faulty replica

32

Byzantine quorums (f = 1)

A Byzantine quorum contains ≥ 2f+1 replicas

• Quorum certificate: a collection of 2f + 1 signed,
identical messages from a Byzantine quorum

– All messages agree on the same statement

33

Quorum certificates

A Byzantine quorum contains ≥ 2f+1 replicas

• Each client and replica has a private-public
keypair

• Secret keys: symmetric cryptography

– Key is known only to the two communicating parties

– Bootstrapped using the public keys

• Each client, replica has the following secret keys:

– One key per node for sending messages

– One key per node for receiving messages

34

Keys

• Client requests operation op with timestamp t

• Primary chooses the request’s sequence number (n)

– Sequence number determines order of execution

35

Ordering requests

Primary

Backup 1

Backup 2

Backup 3

m=⟨request,op,t⟩Signed, Client

⟨Let seq(m)=n⟩Signed, Primary

• Backups locally verify they’ve seen ≤ one client
request for sequence number n
– If local check passes, replica broadcasts accept message

• Each replica makes this decision independently

36

Checking the primary’s message

Primary

Backup 1

Backup 2

Backup 3

I accept seq(m)=nSigned, Backup 1

I accept seq(m)=nSigned, Backup 2

Let seq(m)=nSigned, Primary

mSigned, Client

• Backups wait to collect a prepared quorum certificate

• Message is prepared (P) at a replica when it has:
– A message from the primary proposing the seqno

– 2f messages from itself and others accepting the seqno
37

Collecting a prepared certificate (f = 1)

Primary

Backup 1

Backup 2

Backup 3

mSigned, Client

I accept seq(m)=nSigned, Backup 1

I accept seq(m)=nSigned, Backup 2

Let seq(m)=nSigned, Primary

Each correct node has a prepared certificate locally,

but does not know whether the other correct

nodes do too! So, we can’t commit yet!

P

P

P

• Prepared replicas announce: they know a quorum accepts

• Replicas wait for a committed quorum certificate C:
2f+1 different statements that a replica is prepared

38

Collecting a committed certificate (f = 1)

Primary

Backup 1

Backup 2

Backup 3

mSigned, Client

accept

Let seq(m)=n

P

P

P

—”—Signed, Backup 1

Have cert for
seq(m)=nSigned, Primary

—”—Signed, Backup 2

C

C

C

Once the request is committed, replicas

execute the operation and send a reply

directly back to the client.

• The client assigns each request a unique,
monotonically increasing timestamp t

• Servers track greatest t executed for each client c,
T(c), and their corresponding reply

– On receiving request to execute with timestamp t:
• If t < T(c), skip the request execution

• If t = T(c), resend the reply but skip execution

• If t > T(c), execute request, set T(c)  t, remember reply

39

Byzantine primary: replaying old requests

Malicious primary can invoke t = T(c)

case but cannot compromise safety

• Recall: To prepare, need primary message and 2f accepts

– Backup 1: Won’t prepare m’

– Backups 2, 3: Will prepare m

40

Byzantine primary: Splitting replicas (f = 1)

Primary

Backup 1

Backup 2

Backup 3

mSigned, Client

accept m’Let seq(m’)=n

Let seq(m)=n

Let seq(m)=n

accept m

Replayed request,

signed by client

• In general, backups won’t prepare two different
requests with the same seqno if primary lies

• Suppose they did: two distinct requests m and m′
for the same sequence number n

– Then prepared quorum certificates (each of size
2f+1) would intersect at an honest replica

– So that honest replica would have sent an accept
message for both m and m′ which can’t happen

• So m = m′

41

Splitting replicas

• If a replica suspects the primary is faulty, it requests a
view change
– Sends a view change request to all replicas

• Everyone acks the view change request

• New primary collects a quorum (2f+1) of responses
– Sends a new-view message with this certificate

View change

Client ViewPrimary Backups

42

• Need committed operations to survive into next view

– Client may have gotten answer

• Need to preserve liveness

– If replicas are too fast to do view change, but really
primary is okay – then performance problem

– Or malicious replica tries to subvert the system by
proposing a bogus view change

43

Considerations for view change

• Storing all messages and certificates into a log

– Can’t let log grow without bound

• Protocol to shrink the log when it gets too big

– Discard messages, certificates on commit?
• No! Need them for view change

– Replicas have to agree to shrink the log

44

Garbage collection

• What we’ve done so far: good service provided there
are no more than f failures over system lifetime

– But cannot recognize faulty replicas!

• Therefore proactive recovery:

– Recover the replica to a known good state
whether faulty or not

• Correct service provided no more than f failures in
a small time window – e.g., 10 minutes

45

Proactive recovery

• Watchdog timer

• Secure co-processor

– Stores node’s private key (of private-public keypair)

• Read-only memory

• Restart node periodically:

– Saves its state (timed operation)

– Reboot, reload code from read-only memory

– Discard all secret keys (prevent impersonation)

– Establishes new secret keys and state

46

Recovery protocol sketch

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm

[Liskov & Castro, 2001]

3. Performance and Discussion

47

Today

• BFS filesystem runs atop BFT

– Four replicas tolerating one Byzantine failure

– Modified Andrew filesystem benchmark

• What’s performance relative to NFS?

– Compare BFS versus Linux NFSv2 (unsafe!)

• BFS 15% slower: claim can be used in practice

48

File system benchmarks

• Protection is achieved only when at most f nodes fail
– Is one node more or less secure than four?

• Need independent implementations of the
service

• Needs more messages, rounds than
conventional state machine replication

• Does not prevent many classes of attacks:
– Turn a machine into a botnet node
– Steal data from servers

Practical limitations of BFT

49

• Inspired much follow-on work to address its
limitations

• The ideas surrounding Byzantine fault
tolerance have found numerous applications:

– Boeing 777 and 787 flight control computer systems

– Digital currency systems

• Being picked up again in developments of
permissioned blockchain systems

50

Large impact

	Slide 1: Byzantine Fault Tolerance
	Slide 2: So far: Fail-stop failures
	Slide 3: Byzantine faults
	Slide 4: Today: Byzantine fault tolerance
	Slide 5: Mini-case-study: Boeing 777 fly-by-wire primary flight control system
	Slide 6: Today
	Slide 7: Review: Tolerating one fail-stop failure
	Slide 8: Use Paxos for BFT?
	Slide 9: Paxos under Byzantine faults (f = 1)
	Slide 10: Paxos under Byzantine faults (f = 1)
	Slide 11: Paxos under Byzantine faults (f = 1)
	Slide 12: Paxos under Byzantine faults (f = 1)
	Slide 13: Theoretical fundamentals: Byzantine Generals
	Slide 14: Put burden on client instead?
	Slide 15: <cryptography in 6 slides>
	Slide 16: κρυπτό + γραφή (Cryptography)
	Slide 17: Terminology
	Slide 18: Symmetric key encryption
	Slide 19: Public key encryption
	Slide 20: Applications
	Slide 21: Establishing a shared secret
	Slide 22: </cryptography in 6 slides>
	Slide 23: Put burden on client instead?
	Slide 24: Today
	Slide 25: Practical BFT: Overview
	Slide 26: Correctness argument
	Slide 27: Non-problem: Client failures
	Slide 28: What clients do
	Slide 29: What replicas do
	Slide 30: Primary-Backup protocol
	Slide 31: Ordering requests
	Slide 32: Byzantine quorums (f = 1)
	Slide 33: Quorum certificates
	Slide 34: Keys
	Slide 35: Ordering requests
	Slide 36: Checking the primary’s message
	Slide 37: Collecting a prepared certificate (f = 1)
	Slide 38: Collecting a committed certificate (f = 1)
	Slide 39: Byzantine primary: replaying old requests
	Slide 40: Byzantine primary: Splitting replicas (f = 1)
	Slide 41: Splitting replicas
	Slide 42: View change
	Slide 43: Considerations for view change
	Slide 44: Garbage collection
	Slide 45: Proactive recovery
	Slide 46: Recovery protocol sketch
	Slide 47: Today
	Slide 48: File system benchmarks
	Slide 49: Practical limitations of BFT
	Slide 50: Large impact

