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• Traditional state machine replication tolerates 
fail-stop failures:

– Node crashes

– Network breaks or partitions

• State machine replication with N = 2f+1 replicas 
can tolerate f simultaneous fail-stop failures
– Two algorithms: Paxos, RAFT

So far: Fail-stop failures
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• Byzantine fault: Node/component fails arbitrarily

– Might perform incorrect computation

– Might give conflicting information to 
different parts of the system

– Might collude with other failed nodes

• Why might nodes or components fail arbitrarily?

– Software bug present in code

– Hardware failure occurs

– Hack attack on system

Byzantine faults
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• Can we provide state machine replication for a 
service in the presence of Byzantine faults?

• Such a service is called a Byzantine Fault 
Tolerant (BFT) service

• Why might we care about this level of reliability?
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Today: Byzantine fault tolerance



• Triple-redundant, dissimilar 
processor hardware:

1. Intel 80486

2. Motorola

3. AMD

• Each processor runs code 
from a different compiler
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Mini-case-study: Boeing 777 fly-by-wire 
primary flight control system

Simplified design:

• Pilot inputs → three processors

• Processors vote → control surface

Key techniques:

Hardware and software diversity

Voting between components



1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm

3. Performance and Discussion
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Today



• Traditional state machine replication (Paxos) 
requires, e.g., 2f + 1 = three replicas, if f = 1

• Operations are totally ordered → correctness

– A two-phase protocol

• Each operation uses ≥ f + 1 = 2 of them

– Overlapping quorums

• So at least one replica “remembers”
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Review: Tolerating one fail-stop failure



1. Can’t rely on the primary to assign proposal #

– Could assign same proposal # to different requests

2. Can’t use Paxos for view change

– Under Byzantine faults, the intersection of two 
majority (f + 1 node) quorums may be bad node

– Bad node tells different quorums different things!

• e.g. tells N0 accept val1, but N1 accept val2

Use Paxos for BFT?
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Paxos under Byzantine faults   (f = 1)

Prepare(1.N0)

N0 N1

N2

nh=1.N0nh=1.N0

Promise(1.N0, Ø)

OK
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Paxos under Byzantine faults   (f = 1)

N0 N1

N2

nh=1.N0nh=1.N0

Accept(1.N0, xyz)

OK

Decide

xyz

f +1 ✓
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Paxos under Byzantine faults   (f = 1)

N0 N1

N2

nh=1.N2nh=1.N0

Decide

xyz

11



Paxos under Byzantine faults   (f = 1)

N0 N1

N2

nh=1.N2nh=1.N0

Decide

xyz

Decide 

abc

Conflicting decisions!

f +1 ✓
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Theoretical fundamentals:
Byzantine Generals

Result: Using messengers, problem 

solvable iff > ⅔ of the generals are loyal

General #1

General #2

General #3
Unreliable 

messenger



• Clients sign input data before storing it, then verify 
signatures on data retrieved from service

• Example: Store signed file f1=“aaa” with server

– Verify that returned f1 is correctly signed

Put burden on client instead?
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<cryptography in 6 slides>
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κρυπτό + γραφή (Cryptography)

• Greek for “secret writing”

• Confidentiality

– Obscure a message from eavesdroppers

• Integrity

– Assure recipient that the message was not altered

• Authentication

– Verify the identity of the source of a message

• Non-repudiation

– Convince a 3rd party that what was said is accurate
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Terminology

• Encryption algorithm

– Transforms a plaintext into a ciphertext that is unintelligible for
non-authorized parties

– Usually parametrized with a cryptographic key

• Asymmetric (Public) key cryptography

– Crypto system: encryption + decryption algorithms + key 
generation

• Symmetric (Shared) key cryptography

– Cipher/decipher: symmetric-key encryption/decryption algorithms

Encryption Decryption
ciphertext ciphertext plaintextplaintext

Alice Bob
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Symmetric key encryption

E, D:  cipher       k:  secret key (e.g. 128 bits)

m, c:  plaintext,  ciphertext            n:  nonce   (aka IV)

Encryption algorithm is publicly known

• Never use a proprietary cipher   

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce
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Public key encryption

PK: public key , SK: secret key (e.g., 1024 bits)

Example: Bob generates (PKBob, SKBob) and gives PKBob to Alice

E D
E(PKBob,m)=c c D(SKBob,c)=mm

PKBob SKBob

Alice Bob

key pair

19

Gen



Applications

• Public-key encryption

– Alice public key for encryption

– Anyone can send encrypted message

– Only Alice can decrypt messages (with secret key)

• Digital signature scheme

– Alice public key for verifying signatures

– Anyone can check a message signed by Alice

– Only Alice can sign messages (with secret key)
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Establishing a shared secret

Alice Bob

(pk, sk) ⟵ G()

“Alice”,   pk

choose random 

x

“Bob”,   c⟵E(pk,x)

D(sk,c) ⟶ x

x shared secret
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</cryptography in 6 slides>
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• Clients sign input data before storing it, then verify 
signatures on data retrieved from service

• Example: Store signed file f1=“aaa” with server

– Verify that returned f1 is correctly signed

Put burden on client instead?

But a Byzantine node can replay 

stale, signed data in its response

Inefficient: Clients have to perform 

computations and sign data

23



1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm

[Liskov & Castro, 2001]

3. Performance and Discussion
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Today



• Uses 3f+1 replicas to survive f failures

– Shown to be minimal (Lamport)

• Requires three phases (not two)

• Provides state machine replication

– Arbitrary service accessed by operations
• E.g., file system ops read and write files and directories

– Tolerates Byzantine-faulty clients
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Practical BFT: Overview



• Assume operations are deterministic

• Assume replicas start in same state

• If replicas execute same requests in same order:
– Correct replicas will produce identical results

26

Correctness argument

Client

Replicas



• Clients can’t cause replica inconsistencies

• Clients can write bogus data to the system
– Sol’n: Authenticate clients and separate their data

• This is a separate problem
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Non-problem: Client failures

Client

Replicas



1. Send requests to the primary replica

2. Wait for f+1 identical replies
– Note: The replies may be deceptive

• i.e. replica returns “correct” answer, but locally does otherwise!

• But ≥ one reply is actually from a non-faulty replica
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What clients do

Client 3f+1 replicas



• Carry out a protocol that ensures that

– Replies from honest replicas are correct

– Enough replicas process each request to ensure that
• The non-faulty replicas process the same requests 

• In the same order

• Non-faulty replicas obey the protocol
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What replicas do



• Primary-Backup protocol: Group runs in a view

– View number designates the primary replica

• Primary is the node whose id (modulo view #) = 1
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Primary-Backup protocol

Client ViewPrimary Backups



• Primary picks the ordering of requests
– But the primary might be a liar!

• Backups ensure primary behaves correctly
– Check and certify correct ordering
– Trigger view changes to replace faulty primary
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Ordering requests

Client ViewPrimary Backups



• One op’s quorum overlaps with next op’s quorum
– There are 3f+1 replicas, in total

• So overlap is ≥ f+1 replicas

• f+1 replicas must contain ≥ 1 non-faulty replica
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Byzantine quorums             (f = 1)

A Byzantine quorum contains ≥ 2f+1 replicas



• Quorum certificate: a collection of 2f + 1 signed, 
identical messages from a Byzantine quorum

– All messages agree on the same statement
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Quorum certificates

A Byzantine quorum contains ≥ 2f+1 replicas



• Each client and replica has a private-public 
keypair

• Secret keys: symmetric cryptography

– Key is known only to the two communicating parties

– Bootstrapped using the public keys

• Each client, replica has the following secret keys:

– One key per node for sending messages

– One key per node for receiving messages
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Keys



• Client requests operation op with timestamp t

• Primary chooses the request’s sequence number (n)

– Sequence number determines order of execution
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Ordering requests

Primary

Backup 1

Backup 2

Backup 3

m=⟨request,op,t⟩Signed, Client

⟨Let seq(m)=n⟩Signed, Primary



• Backups locally verify they’ve seen ≤ one client 
request for sequence number n
– If local check passes, replica broadcasts accept message

• Each replica makes this decision independently
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Checking the primary’s message

Primary

Backup 1

Backup 2

Backup 3

I accept seq(m)=nSigned, Backup 1

I accept seq(m)=nSigned, Backup 2

Let seq(m)=nSigned, Primary

mSigned, Client



• Backups wait to collect a prepared quorum certificate

• Message is prepared (P) at a replica when it has:
– A message from the primary proposing the seqno

– 2f messages from itself and others accepting the seqno
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Collecting a prepared certificate (f = 1)

Primary

Backup 1

Backup 2

Backup 3

mSigned, Client

I accept seq(m)=nSigned, Backup 1

I accept seq(m)=nSigned, Backup 2

Let seq(m)=nSigned, Primary

Each correct node has a prepared certificate locally, 

but does not know whether the other correct

nodes do too!  So, we can’t commit yet!

P

P

P



• Prepared replicas announce: they know a quorum accepts

• Replicas wait for a committed quorum certificate C: 
2f+1 different statements that a replica is prepared
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Collecting a committed certificate (f = 1)

Primary

Backup 1

Backup 2

Backup 3

mSigned, Client

accept

Let seq(m)=n

P

P

P

—”—Signed, Backup 1

Have cert for 
seq(m)=nSigned, Primary

—”—Signed, Backup 2

C

C

C

Once the request is committed, replicas 

execute the operation and send a reply

directly back to the client.



• The client assigns each request a unique, 
monotonically increasing timestamp t

• Servers track greatest t executed for each client c, 
T(c), and their corresponding reply

– On receiving request to execute with timestamp t:
• If t < T(c), skip the request execution

• If t = T(c), resend the reply but skip execution

• If t > T(c), execute request, set T(c)  t, remember reply
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Byzantine primary: replaying old requests

Malicious primary can invoke t = T(c) 

case but cannot compromise safety



• Recall: To prepare, need primary message and 2f accepts

– Backup 1: Won’t prepare m’

– Backups 2, 3: Will prepare m
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Byzantine primary: Splitting replicas      (f = 1)

Primary

Backup 1

Backup 2

Backup 3

mSigned, Client

accept m’Let seq(m’)=n

Let seq(m)=n

Let seq(m)=n

accept m

Replayed request, 

signed by client



• In general, backups won’t prepare two different 
requests with the same seqno if primary lies

• Suppose they did: two distinct requests m and m′ 
for the same sequence number n

– Then prepared quorum certificates (each of size 
2f+1) would intersect at an honest replica

– So that honest replica would have sent an accept 
message for both m and m′ which can’t happen

• So m = m′

41

Splitting replicas



• If a replica suspects the primary is faulty, it requests a 
view change
– Sends a view change request to all replicas

• Everyone acks the view change request

• New primary collects a quorum (2f+1) of responses
– Sends a new-view message with this certificate

View change

Client ViewPrimary Backups
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• Need committed operations to survive into next view

– Client may have gotten answer

• Need to preserve liveness

– If replicas are too fast to do view change, but really 
primary is okay – then performance problem

– Or malicious replica tries to subvert the system by 
proposing a bogus view change
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Considerations for view change



• Storing all messages and certificates into a log

– Can’t let log grow without bound

• Protocol to shrink the log when it gets too big

– Discard messages, certificates on commit?
• No!  Need them for view change

– Replicas have to agree to shrink the log
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Garbage collection



• What we’ve done so far: good service provided there 
are no more than f failures over system lifetime

– But cannot recognize faulty replicas!

• Therefore proactive recovery:

– Recover the replica to a known good state 
whether faulty or not

• Correct service provided no more than f failures in 
a small time window – e.g., 10 minutes
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Proactive recovery



• Watchdog timer

• Secure co-processor

– Stores node’s private key (of private-public keypair)

• Read-only memory

• Restart node periodically:

– Saves its state (timed operation)

– Reboot, reload code from read-only memory

– Discard all secret keys (prevent impersonation)

– Establishes new secret keys and state
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Recovery protocol sketch



1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm

[Liskov & Castro, 2001]

3. Performance and Discussion
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Today



• BFS filesystem runs atop BFT

– Four replicas tolerating one Byzantine failure

– Modified Andrew filesystem benchmark

• What’s performance relative to NFS?

– Compare BFS versus Linux NFSv2 (unsafe!)

• BFS 15% slower: claim can be used in practice
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File system benchmarks



• Protection is achieved only when at most f nodes fail
– Is one node more or less secure than four?

• Need independent implementations of the 
service

• Needs more messages, rounds than 
conventional state machine replication

• Does not prevent many classes of attacks:
– Turn a machine into a botnet node
– Steal data from servers

Practical limitations of BFT
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• Inspired much follow-on work to address its 
limitations

• The ideas surrounding Byzantine fault 
tolerance have found numerous applications:

– Boeing 777 and 787 flight control computer systems

– Digital currency systems

• Being picked up again in developments of 
permissioned blockchain systems
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Large impact
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