Byzantine Fault Tolerance

alllasc Ellall aealy

'\\‘-‘-__ King Abdullah University of

Science and Technology

CS 240: Computing Systems and Concurrency
Lecture 9

Marco Canini

So far: Fail-stop failures

Traditional state machine replication tolerates
fail-stop failures:

—Node crashes
—Network breaks or partitions

State machine replication with N = 2f+1 replicas
can tolerate f simultaneous fail-stop failures

— Two algorithms: Paxos, RAFT

Byzantine faults

Byzantine fault: Node/component fails arbitrarily
—Might perform incorrect computation

— M#;ht give conflicting information to
different parts of the system

—Might collude with other failed nodes

Why might nodes or components fail arbitrarily?
— Software bug present in code

—Hardware failure occurs

—Hack attack on system

Today: Byzantine fault tolerance

« Can we provide state machine replication for a
service in the presence of Byzantine faults?

» Such a service is called a Byzantine Fault
Tolerant (BFT) service

» Why might we care about this level of reliability?

4

Mini-case-study: Boeing 777 fly-by-wire
primary flight control system

* Triple-redundant, dissimilar
processor hardware:

1. Intel 80486
2. Motorola

.0 Key techniques:
. Eaci Hardware and software diversity

fron]__Voting between components |

Simplified design: A
« Pilot inputs > three processors >
* Processors vote - control surface | | —

LEFT ELEVATOR

Today

1. Traditional state-machine replication for BFT?
2. Practical BFT replication algorithm

3. Performance and Discussion

Review: Tolerating one fail-stop failure

Traditional state machine replication (Paxos)
requires, e.qg., 2f + 1 = three replicas, if f= 1

Operations are totally ordered - correctness
— A two-phase protocol

Each operation uses = f+ 1 = 2 of them
—Overlapping quorums
* So at least one replica "remembers”

Use Paxos for BFT?

1. Can’t rely on the primary to assign proposal #
— Could assign same proposal # to different requests

2. Can’t use Paxos for view change

— Under Byzantine faults, the intersection of two
majority (f + 1 node) quorums may be bad node

— Bad node tells different quorums different things!
* e.g. tells NO accept val1, but N1 accept val2

Paxos under Byzantine faults (F=1)

N1
n,=1.NO

Paxos under Byzantine faults

(F=1)

TS

Vs

Noﬁ Decide]
n,=1.N0 (__ Xxyz

N1
n,=1.NO

10

Paxos under Byzantine faults

(F=1)

ﬂ

NO<[Decide]
n=1.N0 {_ Xxyz

n,=1.N2

11

Paxos under Byzantine faults (F=1)

NO /‘Decide] [Decide% Nl,/
n,=1.NO l XyZz abc n,=1.N2

Conflicting decisions!

12

Theoretical fundamentals:
Byzantine Generals

General #1 >
Unreliable X
messenger

Result: Using messengers, problem
solvable iff > % of the generals are loyal

13

Put burden on client instead?

 Clients sign input data before storing it, then verify
signatures on data retrieved from service

« Example: Store signed file f1="aaa” with server
— Verify that returned 1 is correctly signed

<cryptography in 6 slides>

KpuTrTO + Ypa®n (Cryptography)

 Greek for “secret writing”

Confidentiality
— Obscure a message from eavesdroppers

Integrity
— Assure recipient that the message was not altered

Authentication

— Verify the identity of the source of a message
Non-repudiation

— Convince a 3" party that what was said is accurate

Terminology

Alice

, Bob :
ciphertext plaintext

v

plaintext cipherte
I Encryption ﬁ

* Encryption algorithm

— Transforms a plaintext into a ciphertext that is unintelligible for
non-authorized parties

— Usually parametrized with a cryptographic key
« Asymmetric (Public) key cryptography

— Crypto system: encryption + decryption algorithms + key
generation

« Symmetric (Shared) key cryptography
— Cipher/decipher: symmetric-key encryption/decryption algorithms

ﬁ e Decryption e d i

17

Symmetric key encryption

nonce

Bob
ﬁgj
E(k, [Vo {L‘ ¢, h D(k,c,n)=m
(k,m,n)=c . ‘éﬁhh _,n >

|

K

Alice
m, n
- 5 E
k

E, D: cipher k: secretkey (e.g. 128 bits)
m, c. plaintext, ciphertext N: nonce (akalV)

Encryption algorithm is publicly known

* Never use a proprietary cipher
18

Public key encryption

Gen

(/key pair\>

PKBOb @ mowreree o S W EEer-e - S ™™y > SKBOb

l

C D(SKg,p,C)=m
1 o B

Bob

PK: public key , SK: secret key (e.g., 1024 bits)
Example: Bob generates (PKg,,, SKg,,) and gives PKg,, to Alice

19

Applications

* Public-key encryption
— Alice public key for encryption
— Anyone can send encrypted message
— Only Alice can decrypt messages (with secret key)

 Digital signature scheme

— Alice public key for verifying signatures
— Anyone can check a message signed by Alice
— Only Alice can sign messages (with secret key)

Establishing a shared secret

O

Alice 0
(Pk, sk) < G()
“Alice”, pk

>
choose random

X

“‘Bob”, c<—E(pk,x)

D(sk,c) — X

X shared secret

21

</cryptography in 6 slides>

Put burden on client instead?

Clients sign input data before storing it, then verify
signatures on data retrieved from service

Example: Store signed file f1="aaa” with server
— Verify that returned 1 is correctly signed

But a Byzantine node can
sighed in its response

Clients have to perform
computations and sign data

23

Today

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm
[Liskov & Castro, 2001]

3. Performance and Discussion

24

Practical BFT: Overview

Uses 3f+1 replicas to survive f failures
— Shown to be minimal (Lamport)

Requires three phases (not two)

Provides state machine replication

— Arbitrary service accessed by operations
* E.g., file system ops read and write files and directories

— Tolerates Byzantine-faulty clients

25

Correctness argument

« Assume operations are deterministic
« Assume replicas start in same state

* |f replicas execute same requests in same order:
— Correct replicas will produce identical results

Replicas

26

Non-problem: Client failures

» Clients can’t cause replica inconsistencies

* Clients can write bogus data to the system

— Sol’n: Authenticate clients and separate their data
* This is a separate problem

CHenﬁ’i;’

(f.‘.t & aj &b é:égp

Y I GV

\ _

Replicas

What clients do

1. Send requests to the primary replica

2. Wait for 41 identical replies

— Note: The replies may be deceptive
* j.e. replica returns “correct” answer, but locally does otherwise!

« But 2 one reply is actually from a non-faulty replica

)
0

=
Q\i
O]

(&%)

7

o

T

S

7

28

What replicas do

 Carry out a protocol that ensures that
— Replies from honest replicas are correct

— Enough replicas process each request to ensure that

* The non-faulty replicas process the same requests
* In the same order

» Non-faulty replicas obey the protocol

Primary-Backup protocol

* Primary-Backup protocol: Group runs in a view
— View number designates the primary replica

-

Client View

* Primary is the node whose id (modulo view #) = 1

Ordering requests

* Primary picks the ordering of requests
— But the primary might be a liar!

Client View

-

» Backups ensure primary behaves correctly
— Check and certify correct ordering

— Trigger view changes to replace faulty primary

Byzantine quorums (F=1)

A Byzantine quorum contains 2 2f+1 replicas

N N N NN NN NN NN NN BN NN BN BN BN BN BN B B

* One op’s quorum overlaps with next op's quorum
— There are 3f+1 replicas, in total

* So overlap is 2 f+1 replicas

 f+1 replicas must contain = 1 non-faulty replica

32

Quorum certificates

A Byzantine quorum contains 2 2f+1 replicas

o e e

* Quorum certificate: a collection of 2f + 1 signed
identical messages from a Byzantine quorum

— All messages agree on the same statement

)

33

Keys

« Each client and replica has a private-public
keypair

« Secret keys: symmetric cryptography
— Key is known only to the two communicating parties

— Bootstrapped using the public keys

» Each client, replica has the following secret keys:
— One key per node for sending messages
— One key per node for receiving messages

Ordering requests

m=(req ueStsopst)Signed, Client

o _
rimary (Let seq(m)=n)signed, Primary

Backup 1 \

Backup 2 \
8

Backup 3

* Client requests operation op with timestamp t

 Primary chooses the request’s sequence number (n)
— Sequence number determines order of execution

35

Checking the primary’s message

Msigned, Client
Let Seq(m)=nSigned, Primary

Primary

I accept Seq(rn)=nSigned, Backup 1

| accept Seq(m)=nSigned, Backup 2

Backup 1 \

Backup 2 \
8

Backup 3 ﬁ

* Backups locally verify they've seen < one client
request for sequence number n

— If local check passes, replica broadcasts accepf message
« Each replica makes this decision independently

36

Collecting a prepared certificate (=1

Msigned, Client
Let seq(rn)=nSigned, Primary

P >

[
I {iCCGPt Seq(m)=n8igned, Backup 1

Primary

Backup 1 \

[hccept Seq(m)=nSigned, Backup 2

P

Each correct node has a prepared certificate locally,

but does not know whether the other correct
nodes do too! So, we can’t commit yet!

Collecting a committed certificate (r=1)

Msigned, Client _ Have cert for
Let seq(m)—n Seﬂ(m)=n3igned, Primary

Primary

3

— Signed, Backup 1

B k 1 bk
dCcKup \ — T Signed, Backup 2
- >
Backup 2 \ & .
& "
Backup 3

Once the request is committed, replicas
. execute the operation and send a reply
i directly back to the client.

o o o o o - -

Byzantine primary: replaying old requests

* The client assigns each request a unique,
monotonically increasing t

» Servers track greatest t executed for each client ¢,
and their corresponding reply

— On receiving request to execute with timestamp ft:
* Ift < T(c), skip the request execution
* [ft=T(c), resend the reply but skip execution
* [ft>T(c), execute request, set T(c) < t, remember reply

Malicious primary can invoke t = T(c)
case but cannot compromise safety

Byzantine primary: Splitting replicas (F=1)

signhed by client

Prima
e Let seq(rr%‘n/ f

Backup 1
\ Let seq(m)=n /

Backup 2
\ Let seq(m)=n

Backup 3 accept m

———————————————

mSigned, Client t'eplayed request,]

v~-

—————————————

« Recall: To prepare, need primary message and 2f accepts
— Backup 1: Won’t prepare m’
— Backups 2, 3: Will prepare m

40

Splitting replicas

* In general, backups won’t prepare two different
requests with the same seqgno if primary lies

* Suppose they did: two distinct requests m and m’
for the same sequence number n

— Then prepared quorum certificates (each of size
2f+1) would intersect at an honest replica

— So that honest replica would have sent an accept
message for both m and m' which can’t happen

eSom=m’

41

View change

Client

o

Backups View

AN BN BN BN BN BN BN BN BN BN NN NN NN NN NN BN BN BN BN BN BN BN BN BN BN SN SN BN B

* If a replica suspects the primary is faulty, it requests a
viewg ange P P i Y a

— Sends a view change request to all replicas
» Everyone acks the view change request

* New primary collects a quorum (2f+1) of responses
— Sends a new-view message with this certificate

42

Considerations for view change

Need committed operations to survive into next view
— Client may have gotten answer

Need to preserve liveness

— If replicas are too fast to do view change, but really
primary is okay — then performance problem

— Or malicious replica tries to subvert the system by
proposing a bogus view change

43

Garbage collection

Storing all messages and certificates into a log
— Can't let log grow without bound

Protocol to shrink the log when it gets too big

— Discard messages, certificates on commit?
* No! Need them for view change
— Replicas have to agree to shrink the log

Proactive recovery

What we've done so far: good service provided there
are no more than ffailures over system lifetime

— But cannot recognize faulty replicas!

Therefore proactive recovery:

— Recover the replica to a known good state
whether faulty or not

Correct service provided no more than ffailures in
a small time window — e.g., 10 minutes

45

Recovery protocol sketch

» Watchdog timer

* Secure co-processor
— Stores node’s private key (of private-public keypair)

» Read-only memory

» Restart node periodically:
— Saves its state (timed operation)
— Reboot, reload code from read-only memory
— Discard all secret keys (prevent impersonation)
— Establishes new secret keys and state

Today

1. Traditional state-machine replication for BFT?

2. Practical BFT replication algorithm
[Liskov & Castro, 2001]

3. Performance and Discussion

47

File system benchmarks

» BFS filesystem runs atop BFT
— Four replicas tolerating one Byzantine failure
— Modified Andrew filesystem benchmark

* What's performance relative to NFS?
— Compare BFS versus Linux NFSv2 (unsafe!)
* BFS 15% slower: claim can be used in practice

48

Practical limitations of BFT

Protection is achieved only when at most f nodes fall
— |Is one node more or less secure than four?

* Need independent implementations of the
service

Needs more messages, rounds than
conventional state machine replication

Does not prevent many classes of attacks:
— Turn a machine into a botnet node
— Steal data from servers

49

Large impact

Inspired much follow-on work to address its
limitations

* The ideas surrounding Byzantine fault
tolerance have found numerous applications:

— Boeing 777 and 787 flight control computer systems
— Digital currency systems

* Being picked up again in developments of
permissioned blockchain systems

50

	Slide 1: Byzantine Fault Tolerance
	Slide 2: So far: Fail-stop failures
	Slide 3: Byzantine faults
	Slide 4: Today: Byzantine fault tolerance
	Slide 5: Mini-case-study: Boeing 777 fly-by-wire primary flight control system
	Slide 6: Today
	Slide 7: Review: Tolerating one fail-stop failure
	Slide 8: Use Paxos for BFT?
	Slide 9: Paxos under Byzantine faults (f = 1)
	Slide 10: Paxos under Byzantine faults (f = 1)
	Slide 11: Paxos under Byzantine faults (f = 1)
	Slide 12: Paxos under Byzantine faults (f = 1)
	Slide 13: Theoretical fundamentals: Byzantine Generals
	Slide 14: Put burden on client instead?
	Slide 15: <cryptography in 6 slides>
	Slide 16: κρυπτό + γραφή (Cryptography)
	Slide 17: Terminology
	Slide 18: Symmetric key encryption
	Slide 19: Public key encryption
	Slide 20: Applications
	Slide 21: Establishing a shared secret
	Slide 22: </cryptography in 6 slides>
	Slide 23: Put burden on client instead?
	Slide 24: Today
	Slide 25: Practical BFT: Overview
	Slide 26: Correctness argument
	Slide 27: Non-problem: Client failures
	Slide 28: What clients do
	Slide 29: What replicas do
	Slide 30: Primary-Backup protocol
	Slide 31: Ordering requests
	Slide 32: Byzantine quorums (f = 1)
	Slide 33: Quorum certificates
	Slide 34: Keys
	Slide 35: Ordering requests
	Slide 36: Checking the primary’s message
	Slide 37: Collecting a prepared certificate (f = 1)
	Slide 38: Collecting a committed certificate (f = 1)
	Slide 39: Byzantine primary: replaying old requests
	Slide 40: Byzantine primary: Splitting replicas (f = 1)
	Slide 41: Splitting replicas
	Slide 42: View change
	Slide 43: Considerations for view change
	Slide 44: Garbage collection
	Slide 45: Proactive recovery
	Slide 46: Recovery protocol sketch
	Slide 47: Today
	Slide 48: File system benchmarks
	Slide 49: Practical limitations of BFT
	Slide 50: Large impact

