
Concurrency and RPCs in Go

CS 240: Computing Systems and Concurrency

Lab 2

Jihao Xin

Jihao.xin@kaust.edu.sa

1

mailto:Jihao.xin@kaust.edu.sa

2

Concurrency

3

Sequential, Concurrent, Parallel

4

5

Concurrent ≠ Parallel

6

Parallel → Concurrent

Parallel is more strict

7

Why Concurrent?

May end at same time

8

● Running of multiple applications

“Pretend” to be parallel to user

● Better utilization & performance

With OS support, when A use CPU, B can use NIC

● Better average response time

If A waiting a TCP package, B does not need to wait

Why Concurrent?

9

Concurrency Issue

10

Concurrency Issue

11

Concurrency Issue

12

Concurrency Issue

13

Concurrency Issue

14

Concurrency Issue

15

Concurrency Issue

16

Concurrency Issue

17

Concurrency Issue

18

Concurrency Issue

19

Concurrency Issue

● Deadlock

● Race condition

● Starvation

Threads are:

Mutually dependent

Execute simultaneously

Access shared resource

20

Synchronization

● Locks

Limit access using shared memory

● Channels

Pass information using a queue

A nice concurrency visualization:

https://divan.dev/posts/go_concurrency_visualize/

https://divan.dev/posts/go_concurrency_visualize/

21

Threads

● What is a Thread?

● How many threads can we create?

● How many threads can run in parallel?

Multi-cores

Hyper-Threading

Pipeline Execution

Task-Level Parallelism

…

22

Thread Switching

Large overhead!

How do we improve?

23

Thread Switching

● Can we switch “thread” in user space?

24

Goroutines

● In Go, let’s call it “routines”

25

Goroutines

● How does the Binding work?

1:1 M:1

26

Goroutines

● Go does the “Thread Switching” by user-space scheduler.

● $GOMAXPROCS - By default your core numbers.

M:N

27

Goroutines

● How to launch a Go routine？
Just Go!

func say(s string) {

for i := 0; i < 5; i++ {

time.Sleep(100 *

time.Millisecond)

fmt.Println(s)

}

}

func main() {

go say("world")

say("hello")

}

28

Go Channels

● The way routines communicate

● “A typed conduit through which can send and receive values”

func sum(s []int, c chan int) {

sum := 0

for _, v := range s {

sum += v

}

c <- sum // send sum to c

}

func main() {

s := []int{7, 2, 8, -9, 4,

0}

c := make(chan int)

go sum(s[:len(s)/2], c)

go sum(s[len(s)/2:], c)

x, y := <-c, <-c //

receive from c

fmt.Println(x, y, x+y)

}

29

RPC

30

Practice

31

Recall

RPC (Remote Procedure Call)
A client will execute some function on a remote server

● Client makes local requests with parameters

● RPC library encodes the request,& parameters

● Send to server

● Server decodes the request & parameters

● Procedure is executed on the server

● Server sends reply back to the client

32

gRPC

● Go net/rpc by default uses gob to encode

● Client and server may use different encoding scheme

● Communication needs a “common language”

● Protobuf - data struct serialization (the common language translator)

● gRPC: Protobuf + RPC

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

