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Concurrency
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Sequential, Concurrent, Parallel
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Concurrent ≠ Parallel
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Parallel → Concurrent 

Parallel is more strict
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Why Concurrent?

May end at same time
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● Running of multiple applications

“Pretend” to be parallel to user

● Better utilization & performance

With OS support, when A use CPU, B can use NIC

● Better average response time

If A waiting a TCP package, B does not need to wait

Why Concurrent?
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Concurrency Issue
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Concurrency Issue

● Deadlock

● Race condition

● Starvation

Threads are:

Mutually dependent

Execute simultaneously

Access shared resource
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Synchronization

● Locks

Limit access using shared memory

● Channels 

Pass information using a queue

A nice concurrency visualization:

https://divan.dev/posts/go_concurrency_visualize/

https://divan.dev/posts/go_concurrency_visualize/
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Threads

● What is a Thread?

● How many threads can we create?

● How many threads can run in parallel?

Multi-cores

Hyper-Threading

Pipeline Execution

Task-Level Parallelism

…
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Thread Switching

Large overhead!

How do we improve?
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Thread Switching

● Can we switch “thread” in user space?
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Goroutines

● In Go, let’s call it “routines”
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Goroutines

● How does the Binding work?

1:1 M:1
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Goroutines

● Go does the “Thread Switching” by user-space scheduler.

● $GOMAXPROCS - By default your core numbers.

M:N
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Goroutines

● How to launch a Go routine？
Just Go!

func say(s string) {

for i := 0; i < 5; i++ {

time.Sleep(100 * 

time.Millisecond)

fmt.Println(s)

}

}

func main() {

go say("world")

say("hello")

}
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Go Channels

● The way routines communicate

● “A typed conduit through which can send and receive values”

func sum(s []int, c chan int) {

sum := 0

for _, v := range s {

sum += v

}

c <- sum // send sum to c

}

func main() {

s := []int{7, 2, 8, -9, 4, 

0}

c := make(chan int)

go sum(s[:len(s)/2], c)

go sum(s[len(s)/2:], c)

x, y := <-c, <-c // 

receive from c

fmt.Println(x, y, x+y)

}
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RPC
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Practice
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Recall

RPC (Remote Procedure Call)
A client will execute some function on a remote server

● Client makes local requests with parameters

● RPC library encodes the request,& parameters

● Send to server

● Server decodes the request & parameters

● Procedure is executed on the server

● Server sends reply back to the client
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gRPC

● Go net/rpc by default uses gob to encode

● Client and server may use different encoding scheme

● Communication needs a “common language”

● Protobuf - data struct serialization (the common language translator)

● gRPC: Protobuf + RPC
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