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ABSTRACT
Population Based Training (PBT) is a recent approach that jointly
optimizes neural network weights and hyperparameters which
periodically copies weights of the best performers and mutates
hyperparameters during training. Previous PBT implementations
have been synchronized glass-box systems. We propose a general,
black-box PBT framework that distributes many asynchronous
“trials” (a small number of training steps with warm-starting) across
a cluster, coordinated by the PBT controller. The black-box design
does not make assumptions on model architectures, loss functions
or training procedures. Our system supports dynamic hyperparam-
eter schedules to optimize both differentiable and non-differentiable
metrics. We apply our system to train a state-of-the-art WaveNet
generative model for human voice synthesis. We show that our PBT
system achieves better accuracy and faster convergence compared
to existing methods, given the same computational resource.

KEYWORDS
neural networks, black-box optimization, population based training,
speech synthesis, evolutionary algorithms, wavenet.

1 INTRODUCTION
Neural network training typically employs a two-stage procedure,
i.e., hyperparameter tuning followed by model training. Although
there have been systems that enable automatic optimization of the
hyperparameters, the gap between the two stages relies heavily on
human engineering which results in a lengthy and often inefficient
model development cycle. Deep neural networks are especially
powerful with large scale data, however the labor costs in model
training and tuning on large datasets are becoming more expensive
at the same time. Nowadays, machine learning professionals spend
a majority of their time tuning model-related parameters. Effec-
tively automating the neural network training procedure becomes
an important yet challenging problem to address. A promising direc-
tion is to build an end-to-end machine learning system that merges
the two-stage learning process and reduces human engineering.

Population Based Training (PBT) has recently emerged and
opened up a new direction in neural network training which jointly
optimizes the hyperparameters while training the network weights
at the same time [8]. The core idea is to repeatedly replace a poorly
performing model with a better performer and continue training

Population

… …Controller

Figure 1: Black-box Service for Population Based Training
based on a Worker-Controller framework. Each solid blue
circle represents a training trial. A black arrow represents a
trial dependency (usually for warm-starting themodel from
a parent’s checkpoint) and a gray arrow represents an un-
selected parent trial which loses in a tournament and fails
to reproduce. The PBT controller oversees the progress of
the whole population and decides training actions.

with hyperparameters mutated from the better one. The mutation
is an important procedure that allows the hyperparameters to dy-
namically change over time, which is difficult to achieve by any
conventional hyperparameter tuning method.

A natural way to design a PBT system is to allow every worker
access to the information of all other workers in a shared data-
base and all of the workers progress at the same pace. However,
this implementation approach typically requires continuous and
simultaneous training of all workers and may encounter issues
when the workers could be preempted by other higher priority jobs
in a real distributed working environment. In addition, existing
implementations of PBT are mostly glass-box approaches, which
introduces additional restrictions on how the neural network model
is implemented. The trainer has to know information about other
parallel workers and performs weight copying and hyperparameter
changes. The hyperparameters, for example, in TensorFlow [1] may
have to be defined in the computation graph in order to be changed
efficiently every so often.

We propose a generalized Population Based Training frame-
work to improve training extensibility and scalability. The pro-
posed framework is based on the idea of decomposing the whole
model training into multiple trials, where in each trial a worker

1

ar
X

iv
:1

90
2.

01
89

4v
1 

 [
cs

.A
I]

  5
 F

eb
 2

01
9



Li et al.

only trains for a limited amount of time. Figure 1 illustrates the
high-level controller-worker framework adopted by the proposed
system. An important notion of the system is that each trial is de-
pendent on one or more other trials, e.g., the initial checkpoint can
be the last checkpoint of another trial and the hyperparameters can
be decided based on other trials’ final measurements. A population
controller is introduced into the system to oversee the whole pop-
ulation of trials. The controller also decides the hyperparameters
and the checkpoint for warm-starting a worker in a new trial.

This paper introduces the system design of a black-box PBT
service and evaluates the accuracy, performance and scalability of
the proposed system by case study on the real world application
of human speech synthesis using WaveNet [15], where we show
improved performance, in terms of both accuracy and convergence,
compared to existing hyperparameter optimization methods [6].

2 PRELIMINARY
The proposed PBT service framework is inspired by the design of
Vizier hyperparameter tuning service [6]. This section introduces
the concepts of both Population Based Training and the Vizier
hyperparameter tuning service.

2.1 Vizier Service
Vizier is a black-box hyperparameter optimization service devel-
oped by Golovin et al. [6]. Compared to other systems for hyperpa-
rameter tuning, the major advantage of Vizier is that a black-box
service could significantly reduce the effort required for setting
up a hyperparameter tuning experiment. In addition, a black-box
service allows the highest flexibility in the setup of the training
procedure in the client side, i.e., it can be easily applied to different
types of machine learning models and model training libraries.

2.2 Population Based Training
Population Based Training (PBT) was proposed by Jaderberg et al.
[8]; it is an asynchronous optimization algorithm that effectively
utilizes a fixed amount of computational budget to jointly optimize
a population of models and their hyperparameters. PBT is related
to evolutionary strategies, however it differs from conventional
evolution in that PBT employs an idea called warm-starting, i.e.,
initializing a model training session using a checkpoint saved from
another model’s training.

The reason why PBT performs efficient hyperparameter search
is because PBT makes decisions based on incomplete observations
(non-converged objective values). Most traditional hyperparameter
tuning methods require training until near convergence and use
the final performance measurement to guide the following search.
Those processes could be extremely lengthy especially in the large
scale deep learning scenarios.

Glass-Box Implementation. All of the existing implementations
of PBT are glass-box approaches where the parallel workers read
and write to the same database and decide whether to warm start
from another worker’s checkpoint. The glass-box implementations
have following limitations:

• Any changes made to the computation graph can be compli-
cated. So the hyperparameters often need to be defined in
the computation graph.
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Figure 2: PBT Service System Diagram. The PBT service is
composed of a controller, a tuner API layer and a persistent
database. Tuner API and the database are similar to the de-
sign of the Vizier service. The major information container
about model training is called Trial, defined using a proto-
col buffer, which is passed between PBT controller, Tuner
API, persistent database and the workers in the client. PBT
controller may suggest two kinds of actions to the client, i.e.,
suggest a new trial or early-stop a trial.

• In a distributed setting, the glass-box approach does not
gracefully handle the case of a worker job being preempted
by another worker job.

• The glass-box framework is not extendable to advanced evo-
lution or mutation decisions that need to be made based on a
global assessment of all the workers’ performance measures.

We propose a black-box service based solution to PBT training.
We show that our black-box design can address the above issues
encountered by the glass-box approaches.

3 PBT SERVICE FRAMEWORK
3.1 Overview
The proposed PBT service is a stateless service, by which we mean
each of the requests to the service does not depend on any other.
This generally follows the design of the Vizier hyperparameter
tuning service and allows the service to be highly scalable. Figure
2 shows a system diagram of the proposed PBT service.

The PBT service is a black-box model training service which
jointly optimizes hyperparameters and model parameters. Instead
of asking a worker to make decisions on its own, we turn over all
the decision making to a central controller. The workload assigned
to each trial becomes a relatively smaller number of training steps
and the workers always send requests to the controller (or service)
for their next moves. Our PBT service has the following advantages:

• Allows for tuning hyperparameters no matter whether they
are defined in the computation graph or not.

• Allows for training a model with both differentiable and
non-differentiable objectives.

• Allows all hyperparameters to be dynamic over time.
• Sufficient scalability and flexibility in using low priority
workers.
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• Maximizes flexibility with the machine learning model train-
ing frameworks.

We introduce the concepts and major components of the pro-
posed PBT service in the rest of this section.

3.2 Trial
A trial represents a continuous training session. The configuration
of a trial is defined using a protocol buffer (protobuf), which is
a critical piece of information exchanged frequently among PBT
controller, tuner API and the workers.

The main fields in the trial protobuf are parameters and metadata
where metadata contains information that should not be regarded
as hyperparameters. Parameters contain all the hyperparameters
of a trial and the metadata stores PBT algorithm related messages.
So a trial typically contains the following fields:

• hparams: The hyperparameters of the training session.
• warm_start_checkpoint_path: An optional field indicating
which checkpoint path the training session should start with.

• parent_trial_id: An optional field indicating the trial ID of
the current trial’s parent (where the warm start checkpoint
comes from).

• initiator_parent_trial_id: An optional field indicating the trial
that initiated the reproduction that results in the current trial.
The initiator may not be the real parent of the current trial.

3.3 Parameters
The PBT system supports four types of parameters: integer, floating
point, discrete and categorical values. A user should specify flexible
hyperparameters at the beginning of a training study. They could
also disable the evolution (or mutation) of some parameters. The
mutator in the evolution engine refers to this field and skips the
mutation of any parameters specified in it.

It is possible some parameters are dependent on other param-
eters, e.g., learning rate is dependent on the type of optimizer. So
essentially, all the parameters are represented using a directed
acyclic graph (DAG).

3.4 Controller
We follow the algorithm playground design in Vizier and define
the following two functions for the population controller, which
are elaborated below.

• GetNewSuggestion(trials, k): Return a list of k new trials
given all the existing trials. The trials returned from this
method are basically determined by the reproduction proce-
dure in the evolution engine. Please see the next section for
more details.

• GetEarlyStoppingTrials(trials): Return a list of trials that
need to be stopped immediately given all existing trials. This
function is useful when we want to kill some running trials
and free the resources for other trials. Although not a neces-
sary component, it allows for a more generalized evolution
framework.

3.5 Initiator Based Evolution
Evolution algorithms have been extensively studied over the past
decades. While there are numerous strategies in the evolution liter-
ature, we introduce an initiator based evolution framework. The
framework is well aligned with the original PBT algorithm [8]
which implements the explore/exploit operations. Our proposed
framework is generic and can be extended to many other evolution
approaches. A major advantage of such initiator based approach
is that every trial is guaranteed to participate in at least one re-
production procedure. We believe such guarantee is important for
evolution with a small population size such as 20. We follow the
popular evolution design choice by formulating the fitness of each
trial, and defining the reproduction strategy.

3.5.1 Fitness representation. The fitness of a trial represents how
well a trial performs. A higher fitness leads to higher chance of
survival in evolution. We represent the fitness of a trial as a tuple

f (t) = [f1(t), f2(t), . . . , fk (t)] (1)

where t is a trial and fi is the i-th fitness evaluation function.
The reason for defining such generalized tuple representation is

because many real world applications contain multiple objectives
and it is often the case that some objectives (fitnesses) are missing
due to noisy or missing data. Representing all objectives into the
fitness allows a thorough and robust comparison between trials.

The comparison of two fitness tuples can be defined in different
ways for different applications. For multi-objective optimization,
a fitness fa is better than fb if and only if all elements in fa are
larger than their correspondences in fb . However, the fitness can
also be compared with priority, e.g., first compare the first element
and then compare the rest only if the first elements are equivalent.

3.5.2 Reproduction Strategy. The main reproduction concepts in
the proposed initiator based evolution is described as follows.

Initiator. We define the concept of an initiator, which represents
a trial that initiates the current reproduction. This is an asymmetric
evolution, i.e., when a trial completes, it sends a request to the
server to initiate a competition with other population members to
decide its next move.

Opponent Selection. Not every member of the remaining popula-
tion participates in the competition. We define a selection process
which selects the population members in the last k generation as
the potential opponents. The value k is empirically set default to
2. However, it is often the case that the devices in a distributed
setting are not homogeneous, i.e., different workers may perform
differently. In addition, some parameters of the model may also
affect the training and evaluation speed. To relieve such effect, we
restrict every trial to only compete with trials in the past k genera-
tions (including earlier generations and the same generation as the
initiator trial). We justify this design choice through a comparative
experiment, which will be described in Section 4.8.

Parent. The initiator competes against another trial randomly
sampled from the survival pool. The winner is chosen as the par-
ent for the current reproduction. So essentially every population
member participates in a binary tournament once and only once.
This is also known as binary tournament selection.
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Figure 3: System diagram of a worker. Aworker is composed
of a trainer and an evaluator which are synchronized. The
trainer receives messages such as warm start checkpoint
path and hyperparameters from the PBT service and the
evaluator sends messages about the measurements (objec-
tive values) and checkpoint paths back to the service.

Reproduction. A new trial (or child) is generated based on the
selected parent through a procedure called reproduction. A typical
reproduction procedure contains crossover (aka. recombination)
and mutation. However, the vanilla PBT algorithm is essentially
a single parent evolution without a crossover. The mutation for
scalar hyperparameters is to choose a random multiplier, either 0.8
or 1.2. In addition, we also implement mutations for categorical and
discrete parameters. For categorical parameters, the mutation is
equivalent to random sampling. For discrete parameters, we restrict
the parameter to mutate to either the lowest larger element or the
largest lower element w.r.t. the current value.

3.6 Worker
A worker represents one training process that is composed of a
trainer and an evaluator. Figure 3 shows an illustration of how
the worker works. After a worker finishes its job, i.e., when the
evaluator has evaluated the final checkpoint in the model directory,
a worker will request a new trial suggestion from the PBT server.

3.6.1 Trainer. The trainer receives a parent checkpoint path and
hyperparameters from the PBT service. The trainer constructs the
model architecture using the given hyperparameters as if it were
a vanilla training session. The parent checkpoint is restored into
the corresponding variables when the model is constructed. This is
why the PBT service design is a black-box approach – the model
training procedure does not require knowledge of PBT and the PBT
system does not need to know about the internals of model training.
The only addition to the trainer is the checkpoint warm starting
before the training session starts.

3.6.2 Warm-start. In usual cases, the warm-starting procedure can
be done using checkpoint restoring such as tf.train.Saver.restore1

1https://www.tensorflow.org/guide/saved_model

Algorithm 1 PBT trial suggestion GetNewSuggestion function.
Input: population size population_size , all completed and pend-
ing trials trials .
if LastCompleteGeneration(trials) == 0 then
child = SampleTrial();

else
initiator = GetOldestUninitated(trials);
opponents = SelectOpponents(initiator , trials);
child = Reproduce(initiator ,opponents);

end if
return child ;

in TensorFlow. However, there are cases where a hyperparameter
affects the architecture of the neural network and a typical check-
point restore method usually does not support. In those cases, we
use a smart saver2 which analyzes the correspondence between a
checkpoint and the model architecture using their variable names
and only restores matched variables.

3.6.3 Evaluator. The evaluator conducts continuous evaluation of
the checkpoints in the model directory of the corresponding trial.
Every checkpoint evaluation will report a measurement back to the
PBT service, together with the checkpoint path. A final checkpoint
has to be kept because it may serve for warm starting a future child
trial.

3.7 Garbage Collection
A potential issue of large population based training is the explod-
ing size of saved checkpoints. Although one training session can
specify automatic garbage collection, as the total number of parallel
workers increases, the total number of checkpoints can still be a
significant number. We implement a global garbage collection as an
option to work together with training jobs. It periodically reads all
trial protobufs from the tuner’s database, identifies all checkpoints
that have already been evaluated and removes these checkpoints
from the storage. The client can optionally keep the last checkpoint
in every training job since they might be used for serving purposes.

3.8 Budget Mode
The PBT algorithm requires a number of parallel workers to perform
model training at the same time. However, it is often difficult to
obtain sufficient devices available for a large number of workers
at the same time. The proposed service also handles such cases by
simulating the evolution with a large generation size using a small
number of workers. This is called the budget mode.

The budget mode is implemented in a straightforward way by
always picking the oldest trial that has not yet initiated any re-
production and only starting a reproduction when the initiator’s
generation has reached the specified population size. Please note
that the budget mode will also be a synchronized evolution when
there is only one worker.

2A similar implementation example can be found in https://github.com/yk/
tensorflow-optimistic-restore-saver
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3.9 Training Replay
Population based training is more effective when using a large pop-
ulation size, which results in a large number of model snapshots
with their hyperparameter trajectories. The best performing snap-
shot is often used for serving purpose. However, there is often a
need to re-train the same model on a slightly different set of data.
Re-training using a large population again and again may not be
the optimal choice. We implement a feature called training replay,
which extracts and performs the same training procedure (trial
dependency and hyperparameter trajectory).

3.9.1 Subset Training Replay. The PBT training replay also allows
to replay a set of trials in any existing training study. This feature
can be useful when a user wants to extract multiple models from
the whole population. A particular use case is for model ensemble.

3.9.2 Trial Dependency Graph. All the trials are dependent on each
other except the initial ones. The training replay requires to extract
the dependency graph of a certain final trial in order to perform
the same training procedure. This dependency graph is directed
acyclic because all the trials are trained over time – it is impossible
for old trials to warm start from a new trial’s checkpoint. So the
dependency graph can be extracted by traversing the final trial
node to an ancestor. A topological sort is performed to enforce the
trial dependency into the execution order.

3.10 Training Recovery
The PBT service is a stateless service which allows to seamlessly
recover a paused or faulty training procedure. The status of all
pending trials should be marked as stopped before resuming the
PBT training. All of the trial information is passed into the controller
as usual and the controller can return new trial suggestions for those
trials that have not initiated a reproduction.

4 CASE STUDY: WAVENET
While the effectiveness of Population Based Training has been
demonstrated by Jaderberg et al. [8] with a variety of applications
such as neural machine translation, generative adversarial networks
and reinforcement learning in DM-Lab, Starcraft, etc, we present
in this paper a new application of PBT on speech synthesis using
WaveNet, to conduct analysis on both accuracy and performance
of the proposed PBT system.

4.1 WaveNet for Human Voice Synthesis
WaveNet is the state-of-the-art deep generative neural network in
modeling raw audio waveforms [15]. The basic building block of a
WaveNet is dilated causal convolution. A dilated convolution layer
applies convolution with skipped input units which leads to an
increased reception field of the convolution without any additional
computation costs.

4.1.1 Dataset. Weevaluate our system using a public speech dataset,
namely LibriSpeech [10]. The dataset contains 1000 hours of English
reading speech and is split into training, validation and evaluation
sets. We use the training and validation set for all model training.

4.1.2 Setup. We train all models using Tesla P100 GPU cards. Each
worker contains one trainer and one evaluator where the evaluator

continuously evaluates the latest checkpoints in the trial’s directory
and reports the objective values to the PBT service. All trainers
have 1 chief GPU worker, 16 GPU workers and 2 parameter servers.
The model uses Adam optimizer with exponential moving average
on the model weights. The only flexible parameter is learning rate.

4.2 Approaches
We compare our PBT service against several popular hyperparame-
ter tuning approaches on the LibriSpeech dataset. All approaches
are summarized below:

• Grid Search: 5 parallel trainers covering a discrete set of
learning rates [0.1, 0.01, 0.001, 0.0001, 0.00001]. Each one is
trained with 1000000 steps.

• GP-Bandit [14]: Gaussian Process Bandit with 5 parallel train-
ers covering a continuous range of learning rate [10−5, 10−1]
with logarithm scale. Each trial is trained with 10000 steps.

• CMA-ES [7]: A method based on covariance matrix adap-
tation evolution strategy with 5 parallel trainers covering
a continuous range of learning rate [10−5, 10−1] with loga-
rithm scale. Each trial is trained with 10000 steps. However,
this method does not utilize warm-starting like PBT.

• PBT-5x5: 5 parallel trainers for a population of size 5, cov-
ering a continuous range of learning rate [10−5, 10−1] with
logarithm scale. Each trial is trained with 1000 steps.

• PBT-5x20: 5 parallel trainers using the budget mode simulat-
ing a population of size 20, covering a continuous range of
learning rate [10−5, 10−1] with logarithm scale. Each trial is
trained with 1000 steps.

4.3 Convergence
4.3.1 Resource vs. accuracy. To perform a fair comparison among
different methods, we plot the objective values on different com-
putation resources (total number of workers times the number of
steps per worker). Please note each worker contains a trainer using
17 GPUs and an evaluator using another single GPU which adds up
to a total of 18 GPUs. We did not use the actual time since there is
variability in the time consumption due to factors such as disk and
CPU congestion. We show the comparison in Figure 4. Interestingly,
PBT-5x5 outperforms all other methods including PBT-5x20. The
reason why PBT-5x5 converges faster than PBT-5x20 is because
using 5 workers to simulate a population size of 20 slows down
the progress of generation by a factor of around 4. So the actual
number of model training steps given the same resource limit is
much lower in PBT-5x20. Please see Section 4.5 for more details on
the performance.

4.3.2 Continuing the training. One often uses a fixed computa-
tional budget to perform hyperparameter tuning and pick the best
set of hyperparameters to continue training the model. We show in
this section that PBT can also be effective in a similar fashion, i.e.,
performing an initial joint optimization with a dynamic schedule
of parameters and extend the training with the last (or best) set
of hyperparameters. Specifically, we continue the training for all
methods by taking the best checkpoint at resource 200K from Figure
4 and its corresponding hyperparameters. The best found learning
rate in Grid search is 0.0001, GP-Bandit 0.000329653 and CMA-ES
0.000266482. The learning rate at the best checkpoint in PBT-5x5
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Figure 4: Objective value vs. Resource: Resources are defined
as the number of workers (each uses 18 GPUs) times the
number of training steps performed on each worker. All
methods use 5 parallel workers. Lower objective values are
better.

Figure 5: Continue training on a single worker after 200000
resources exhausted, starting with the best checkpoint and
its corresponding hyperparameters. Lower objective values
are better.

is 0.000114267 and in PBT-5x20 is 0.000293463. The comparison is
shown in Figure 5. All methods are trained using a single worker
so they are essentially still utilizing the same computation budget.
It is interesting to observe that although grid search outperforms
Bandit, CMA-ES and PBT-5x20 within the initial 200k resource,
its objective values quickly lift the highest during the continual
training stage. PBT-5x5 consistently outperforms all other methods
while PBT-5x20 catches up to second place.

Figure 6: Objective Value vs. Training Step: PBTwith 20 pop-
ulation size outperforms all other methods. PBT with 5 pop-
ulation size performs in the second place, which shows that
bigger population benefits themodel accuracy. Lower values
of the objective are better.

4.3.3 Step vs. accuracy. One may also want to reuse the discovered
hyperparameters to re-train their models on a same or different
dataset. The computation budget of re-training is solely dependent
on the training steps. So we also plot the minimum objective values
found within a certain number of training steps for all methods.
The comparison is shown in Figure 6. We can see that PBT-5x20
outperforms all other methods including PBT-5x5. The reason why
20 population performs better than 5 population is because a larger
population can achieve a higher coverage in the hyperparameter
search space. PBT-5x5 is comparable to GP-Bandit while CMA-ES
performs slightly worse. Grid search is significantly worse than
all other approaches and it fails to find a better hyperparameter.
However, it can achieves a larger number of training steps within a
fixed budget. That is why grid search performs well in Figure 4.

The above results suggest that (1) given a fixed computation
budget, a user should use a small population in order to see fast
training progress for one-time training scenarios such as model
development and debugging; (2) when the initial training budget is
flexible and especially when a user expects to re-train the model in
future occasions, one should consider using a large population to
find an efficient hyperparameter schedule that could be reused.

4.4 Dynamic hyperparameters
An important property of population based training is its ability
to discover a dynamic set of hyperparameters and train the model
with such dynamic schedule at the same time. We extract the best
learning rate schedule discovered by all methods for the first 10000
steps, shown in Figure 7. We notice that PBT-5x20 finds a more
dynamic schedule than PBT-5x5 which implies the fact that large
population has better coverage in the hyperparameter search space.
Also interestingly, the learning rate in PBT-5x20went up to 0.000459
in the first 6 generations (5000 steps) and then gradually decreated
to 0.00029. The phenomenon in the first 6 generations is similar

6
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Figure 7: Learning rate schedules found by different ap-
proaches.

Time Cost Breakdown

RPC Service RPC Setup Warmup Training

RPC Service RPC Setup Training Finish

Finish

RPC Service RPC Setup Training FinishGrid search

CMA-ES / 
GP-Bandit

PBT

Figure 8: Time cost breakdown for different methods.

to the known “learning rate warm-up”, also used in training the
Transformer network [16].

4.5 Performance
We analyze the performance for different methods in this section.
We first show in Figure 8 an illustration about the processes that
every method needs to go through.

4.5.1 Computation breakdown. The grid search approach needs
(1) the worker to do a Remote Procedure Call (RPC) to the server,
(2) the service to pick one discrete hyperparameter, (3) the service
to return the hyperparameter to the worker through RPC, (4) the
worker to setup training, (5) the worker to perform training and (6)
the last finish-up procedure.

The GP-Bandit, CMA-ES and PBT methods need an additional
process which returns the evaluation measurements to the service
through RPC. And the PBT approach needs one more procedure
which is the worker to warm start from a given checkpoint spec-
ified by the PBT service. So essentially, the PBT service has little
additional computation on the worker side.

4.5.2 Overhead. It is important to notice that the PBT method uses
1000 steps for each trial, which can produce overhead in the other
components. So we compare the performance using the averaged
time cost per step. The result is shown in Figure 9. The figure shows
that the per-step time decreases as the number of steps of a trial

Figure 9: The average time (seconds) per step varies when
the number of steps per trial increases. PBT is slightly more
expensive than GP-Bandit at the same number of steps
(+0.023s @ 1K and +0.028s @10K), probably due to the ex-
tra warm-starting. The shaded area represents the 95% con-
fidence interval.

increases. This implies that the initialization of a trial is the most
expensive part. We found that PBT is slightly more costly (roughly
+0.025 seconds) than GP-Bandit in every configuration. This is
probably due to the additional warm starting at the beginning.

4.6 Sensitivity
Another important aspect of model training is its sensitivity to
randomization. The same model can be trained multiple times. A
stable performance is often desirable.We compare PBTwith random
search on their performance stability across different runs. Random
search can also be seen as a special case of PBT where the number
of training steps in each trial is infinite.

Figure 10 shows the standard errors of the mean (SEM) objective
values at different resource level. The results are computed over five
runs of either methods. The figure suggests that PBT is consistently
more stable than random search across different runs.

4.7 Scalability
As we mentioned above, the population size can affect accuracy and
performance in PBT.We conducted a study on how the performance
varies with a different population size. We show in Figure 11 the
average time (hours) for PBT to reach a certain generation number.
The result shows that PBT with population size 20 costs roughly
3x the computation of PBT with population size 5 (theoretically it
should be 4x but there are some variation in the real cluster environ-
ment). We further plot the number of generations progressed per
hour under different population sizes in Figure 12(a) and different
number of workers in Figure 12(b). Both results suggest a nearly
linear scalability of our system.
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rors of the mean objective between random search and PBT.
The results are computed over 5 runs for each method.
Lower value means less sensitivity.

Figure 11: Population size vs. the average time (hours) to
reach a certain generation in the budgetmode of population
based training. The number of real workers for both is 5.

(a) (b)

Figure 12: Scalability: The number of progressed genera-
tions per hour vs (a) varying population size or (b) vary-
ing worker number of population based training. In (a), the
number of (real) workers is 5. In (b), the population size is
20. The error represents the 95% confidence interval.

Past 
Generation

Same 
Generation

Any 
Generation

Objective Value
5.59 5.603 5.615 5.628 5.64

Figure 13: Comparison of opponent selection strategies us-
ing the objective values at resource 200K. Lower is better.

4.8 Opponent Selection Strategy
To justify the design choice in the proposed evolution framework,
we perform a comparison among three opponent selection strate-
gies. The objective values at resource 200K are compared in Figure
13. “Past generation” is our design choice which means competing
with trials in the earlier generations and same generation. “Same
generation” means only competing with trials in the same gen-
eration. “Any generation” allows a trial to compete with future
generations. The result suggests that “past generation” results in
the best performance. A possible reason is because this method
relieve the effect of the speed differences in different workers.

5 RELATEDWORK
5.1 Hyperparameter Optimization
Hyperparameter optimization is a critical step in most machine
learning systems [4]. Over the past years, there have been a variety
of algorithms proposed to automatically tune hyperparameters of
a machine learning model including Grid search, Random search
[3], Bayesian optimization [13], Gradient-based optimization [2],
Bandits [9] and Evolutionary algorithms [7].

Population based training [8] is the core algorithm of our service.
Our implementation is different from the original paper in that
the workers are not allowed to access the measurements of other
workers and mutation decisions are not made inside the worker
process. The advantage of our black-box design is that it allows a
user to train using PBT with minimal infrastructure changes.

Google Vizier [6] is the most related system which is a hyper-
parameter tuning service. A user receives trial information from
the Vizier service, training with the specified hyperparameters and
returning the measurements to the service. PBT service inherits the
service design from Vizier while exntending to require the trainers
to always warm start from a given checkpoint path.

In addition, the PBT service is a distributed model training ser-
vice whose purpose is broader than just hyperparameter tuning.
PBT is a joint learning process that combines both hyperparameter
search and model training into one single loop. So the outcome
of PBT is not only a hyperparameter schedule but also a set of
high performing models. A user can either choose the existing best
model checkpoint for serving or extract the best hyperparameter
schedule to perform other training procedures.

8
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5.2 AutoML via Asynchronous Evolution
Evolution algorithms, naturally distributed, have been widely ap-
plied to a variety of applications at scale. For hyperparameter tun-
ing in machine learning models, the covariance matrix adaptation
evolution strategy (CMA-ES) has been popular [5, 7].

Recently, large scale distributed evolution has proven effective in
the neural architecture search problem. Real et al. [12] is probably
the first to apply the evolution framework into large scale neural
architecture search. More recently, Real et al. [11] introduced a sim-
ple regularization to the asynchronous evolution framework, which
removes population members according to their ages and produces
appealing results in searching image classifier architectures.

Most of the existing evolution basedmachine learning systems do
not full exploit the idea of warm-starting which is a core component
in the PBT system design. Warm-starting a model training allows
for the transfer of existing knowledge gained in previously trained
models and enables efficient hyperparameter search.

6 CONCLUSION
We presented a black-box service framework for Population Based
Training. The proposed service design allows clients to train their
models using PBT with minimal infrastructure effort, i.e., the only
requirement of applying PBT to an existing training framework is
to warm start the model from a checkpoint and report the measure
back to the PBT server. We discussed several useful features in our
PBT system such as training replay, training recovery, garbage col-
lection, and budget mode. We conducted a case study of our system
in WaveNet human speech synthesis and demonstrated that our
PBT system produces superior accuracy and performance compared
to other popular hyperparameter tuning methods. Moreover, the
PBT system is able to directly train a model using the discovered
dynamic set of hyperparameters while traditional methods can only
tune static parameters. In addition, we show that the proposed PBT
framework is feasible for large scale deep neural network training.
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