
Supporting Very Large Models using Automatic

Dataflow Graph Partitioning

Minjie Wang
New York University

Chien-chin Huang
New York University

Jinyang Li
New York University

Abstract

This paper presents Tofu, a system that partitions very

large DNN models across multiple GPU devices to re-

duce per-GPU memory footprint. Tofu is designed to

partition a dataflow graph of fine-grained tensor opera-

tors used by platforms like MXNet and TensorFlow. In

order to automatically partition each operator, we pro-

pose to describe the semantics of an operator in a simple

language inspired by Halide. To optimally partition dif-

ferent operators in a dataflow graph, Tofu uses a recursive

search algorithm that minimizes the total communica-

tion cost. Our experiments on an 8-GPU machine show

that Tofu enables the training of very large CNN and

RNN models. It also achieves 25% - 400% speedup over

alternative approaches to train very large models.

CCS Concepts • Computer systems organization →
Neural networks; Data flow architectures.

ACM Reference Format:

Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Sup-

porting Very Large Models using Automatic Dataflow Graph

Partitioning. In Fourteenth EuroSys Conference 2019 (EuroSys

’19), March 25–28, 2019, Dresden, Germany. ACM, New York,

NY, USA, 17 pages. https://doi.org/10.1145/3302424.3303953

1 Introduction

The deep learning community has been using larger deep

neural network (DNN) models to achieve higher accuracy

on more complex tasks over the past few years [1, 2].

Empirical evidence shows that, since the 80s, the number

of parameters in the state-of-the-art neural network has

doubled roughly every 2.4 years [3], enabled by hardware

improvements and the availability of large datasets. As

deployed DNN models remain many orders of magnitude

smaller than that of a mammalian brain, there remains

much room for growth. However, the size of a DNN

model that can be explored today is constrained by the

limited GPU device memory.

There have been many efforts to tackle the problem of

limited GPU device memory. Some proposals try to fit

larger models into a single GPU, e.g. by using the much

larger CPU memory as a swap area for the GPU [4] or

by discarding intermediate results to save memory at the

cost of re-computation [5–7]. Another promising solu-

tion is to partition a DNN model across multiple GPU

devices. Doing so reduces per-GPU memory footprint

and comes with the additional benefit of parallel speedup.

This is commonly referred to as “model parallelism” in

the literature.

A DNN model consists of a large number of layers,

each parameterized by its own weights. There are two

approaches to realize model parallelism. One approach is

to assign the computation of different layers to different

devices. The second approach is to partition the tensors

to parallelize each layer across devices. For very large

DNN models, tensor partitioning is the better approach;

not only it results in balanced per-GPU memory usage

but also it necessary for speeding up popular models such

as CNNs.

Tensor partitioning has been explored by existing work

as a means for achieving parallel speedup [8–10] or

saving memory access energy [11, 12]. Recent propos-

als [13–15] support partitioning a tensor along multiple

dimensions and can automatically search for the best

partition dimensions. The major limitation is that these

proposals partition at the coarse granularity of individual

DNN layers, such as fully-connected and 2D convolution

layers. As such, they either develop specialized imple-

mentation for specific models [9, 13] or allow only a

composition of common DNN layers [8, 10, 14, 15].

However, the vast majority of DNN development and

deployment today occur on general-purpose deep learn-

ing platforms such as TensorFlow [16], MXNet [17],

PyTorch [18]. These platforms represent computation as

a dataflow graph of fine-grained tensor operators, such

as matrix multiplication, various types of convolution

and element-wise operations etc. Can we support tensor

partitioning on one of these general-purpose platforms?

To do so, we have built the Tofu system to automatically

partition the input/output tensors of each operator in the

MXNet dataflow system. This approach, which we call

operator partitioning, is more fine-grained than layer

partitioning. While we have built Tofu’s prototype to

work with MXNet, Tofu’s solution is general and could

potentially be applied to other dataflow systems such as

TensorFlow.

In order to partition a dataflow graph of operators,

Tofu must address two challenges. 1) How to partition

the input/output tensors and parallelize the execution an

individual operator? What are the viable partition dimen-

sions? 2) how to optimize the partitioning of different

1

operators for the overall graph? Both challenges are made

difficult by the fine-grained approach of partitioning op-

erators instead of layers. For the first challenge, existing

work [13–15] manually discover how to partition a few

common layers. However, a dataflow framework sup-

ports a large and growing collection of operators (e.g.

139 in MXNet), intensifying the manual efforts. Man-

ual discovery is also error-prone, and can miss certain

partition strategies. For example, [14] misses a crucial

partition strategy that can significantly reduce per-worker

memory footprint (Sec 7.3). For the second challenge,

existing proposals use greedy or dynamic-programming

based algorithms [13, 14] or stochastic searches [15]. As

the graph of operators is more complex and an order of

magnitude larger than the graph of layers (e.g. the graph

for training a 152-layer ResNet has >1500 operators in

MXNet), these algorithms become inapplicable or run

too slowly (Sec 5, Table 1).

Tofu introduces novel solutions to address the above

mentioned challenges. To enable the automatic discovery

of an operator’s partition dimensions, Tofu requires de-

velopers to specify what the operator computes using a

lightweight description language called TDL. Inspired by

Halide [19], TDL describes tensor computation by speci-

fying the output tensor value at each index with simple

expressions on the input tensors. The Halide-style de-

scription is useful because it makes explicit which input

tensor regions are needed in order to compute a specific

output tensor region. Thus, Tofu can statically analyze an

operator’s TDL description using symbolic execution to

determine what input regions must be transferred among

GPUs when tensors are divided along a specific parti-

tion dimension. To partition each tensor in the overall

dataflow graph, we propose several techniques to shrink

the search space. These include a recursive search algo-

rithm which partitions the graph among only two workers

at each recursive step, and graph coarsening by grouping

related operators.

We have implemented a prototype of Tofu in MXNet

and evaluated its performance on a single machine with

eight GPUs. Our experiments use large DNN models

including Wide ResNet [1] and Multi-layer Recurrent

Neural Networks [20], most of which do not fit in a single

GPU’s memory. Compared with other approaches to train

large models, Tofu’s training throughput is 25% - 400%

higher.

To the best of our knowledge, Tofu is the first system to

automatically partition a dataflow graph of fine-grained

tensor operators. Though promising, Tofu has several lim-

itations (Sec 9). Some operators (e.g. Cholesky) cannot

be expressed in TDL and thus cannot be automatically

partitioned. The automatically discovered partition strate-

gies do not exploit the underlying communication topol-

ogy. Tofu is also designed for very large DNN models.

For moderately sized models that do fit in the memory

of a single GPU, Tofu’s approach of operator partition-

ing are likely no better than the much simpler approach

of data parallelism. Removing these limitations requires

further research.

2 Background

The problem. Training very large DNN models is lim-

ited by the size of GPU device memory today. Com-

pared with CPU memory, GPU memory has much higher

bandwidth but also smaller capacity, ranging from 12GB

(NVIDIA K80) to 16GB (NVIDIA Tesla V100). Google’s

TPU hardware has similar limitations, with 8GB attached

to each TPU core [21].

Partitioning each tensor in the DNN computation across

multiple devices can lower per-GPU memory footprint,

thereby allowing very large models to be trained. When

partitioning across k devices, each device roughly con-

sumes 1

k
times the total memory required to run the

computation on one device. Furthermore, partitioning

also has the important benefit of performance speedup

via parallel execution. As most DNN development to-

day is done on dataflow platforms such as TensorFlow

and MXNet, our goal is to automatically partition the

tensors and parallelize the operators in a dataflow graph

to enable the training of very large DNN models. The

partitioning should be completely transparent to the user:

the same program written for a single device can also be

run across devices without changes.

System setting. When tensors are partitioned, work-

ers must communicate with each other to fetch the data

needed for computation. The amount of bytes transferred

divided by the computation time forms a lower bound

of the communication bandwidth required to achieve

competitive performance. For training very large DNNs

on fast GPUs, the aggregate bandwidth required far ex-

ceeds the network bandwidth in deployed GPU clusters

(e.g. Amazon’s EC2 GPU instances have only 25Gbps

aggregate bandwidth). Thus, for our implementation and

evaluation, we target a single machine with multiple GPU

devices.

3 Challenges and our approach

In order to partition a dataflow graph of operators, we

must tackle the two challenges mentioned in Sec 1. We

discuss these two challenges in details and explain at a

high level how Tofu solves them.

2

def conv1d(data, filters):

for b in range(output.shape[0]): #b is batch dimension

for co in range(output.shape[1]): #co is output channel

for x in range(output.shape[2]): #x is output pixel

for ci in range(filters.shape[0]): #di is input channel

for dx in range(filters.shape[2]): #dx is filter window

output[b, co, x] += data[b, ci, x+dx]

* filters[ci, co, dx]

Figure 1. The naive implementation of conv1d in

Python.

3.1 How to partition a single operator?

To make the problem of automatic partitioning tractable,

we consider only a restricted parallelization pattern, which

we call “partition-n-reduce”. Suppose operator c com-

putes output tensor O. Under partition-n-reduce, c can be

parallelized across two workers by executing the same

operator on each worker using smaller inputs. The final

output tensor O can be obtained from the output ten-

sors of both workers (O1, and O2) in one of the two

ways. 1) O is the concatenation of O1 and O2 along

some dimension. 2) O is the element-wise reduction of

O1 and O2. Partition-n-reduce is crucial for automatic

parallelization because it allows an operator’s existing

single-GPU implementation to be re-used for parallel ex-

ecution. Such implementation often belongs to a highly

optimized closed-source library (e.g. cuBLAS, cuDNN).

Partition-n-reduce is not universally applicable, e.g.

Cholesky [22] cannot be parallelized this way. Nor is

partition-n-reduce optimal. One can achieve more effi-

cient communication with specialized parallel algorithms

(e.g. Cannon’s algorithm [23] for matrix multiplication)

than with partition-n-reduce. Nevertheless, the vast ma-

jority of operators can be parallelized using partition-n-

reduce (Sec 4.1) and have good performance.

Tensors used in DNNs have many dimensions so there

are potentially many different ways to parallelize an oper-

ator. Figure 1 shows an example operator, conv1d, which

computes 1-D convolution over data using filters. The

3-D data tensor contains a batch (b) of 1-D pixels with

ci input channels. The 3-D filters tensor contains a

convolution window for each pair of ci input and co

output channel. The 3-D output tensor contains the con-

volved pixels for the batch of data on all output channels.

There are many ways to parallelize conv1d using partition-

n-reduce; Figure 2 shows two of them. In Figure 2(a), the

final output is a concatenation (along the b dimension)

of output tensors computed by each worker. Each worker

reads the entire filters tensor and half of the data ten-

sor. In Figure 2(b), the final output is a reduction (sum) of

each worker’s output. Figure 1 shows what input tensor

region each work reads from. If tensors are partitioned,

workers must perform remote data fetch.

ci

conv

1d

conv

1d

{
{

}
}

data

filters

output

(a) b

b
co

conv

1d

conv

1d

{
{

data

filters

output

with reduction

(b)

{ {

+

b

co

ci

ci

ci

co

Figure 2. Two of several ways to parallelize conv1d

according to partition-n-reduce. Each 3D tensor is repre-

sented as a 2D matrix of vectors. Different stripe patterns

show the input tensor regions required by different work-

ers.

Prior work [13–15] manually discovers the partition

strategies for a few common DNN layers. Some [14,

15] have ignored the strategy that uses output reduction

(i.e. Figure 2(b)), which we show to have performance

benefits later (Sec 7.3). Manual discovery is tedious for

a dataflow system with a large number of operators (341

and 139 in TensorFlow and MXNet respectively). Can

one support automatic discovery instead?

Our approach. Tofu analyzes the access pattern of an

operator to determine all viable partition strategies. As

such, we require the developer of operators to provide

a succinct description of what each operator computes

in a light-weight language called TDL (short for Tensor

Description Language). An operator’s TDL description is

separate from its implementation. The description speci-

fies at a high-level how the output tensor is derived from

its inputs, without any concern for algorithmic or archi-

tectural optimization, which are handled by the operator’s

implementation. We can statically analyze an operator’s

TDL description to determine how to partition it along

different dimensions. Sec 4 describes this part of Tofu’s

design in details.

3.2 How to optimize partitioning for a graph?

As each operator has several partition strategies, there are

combinatorially many choices to partition each tensor in

the dataflow graph, each of which has different execution

time and per-GPU memory consumption.

It is a NP-hard problem to partition a general dataflow

graph for optimal performance [24–27]. Existing propos-

als use greedy or dynamic-programming algorithm to

optimize a mostly linear graph of layers [13, 14], or per-

form stochastic searches [15, 28, 29] for general graphs.

The former approach is faster, but still impractical when

applied on fine-grained dataflow graphs. In particular, its

running time is proportional to the number of ways an

operator can be partitioned. When there are 2m GPUs,

3

@tofu.op

def conv1d(data, filters):

return lambda b, co, x:

Sum(lambda ci, dx: data[b, ci, x+dx]*filters[ci, co, dx])

@tofu.op

def batch_cholesky(batch_mat):

Cholesky = tofu.Opaque()

return lambda b, i, j: Cholesky(batch_mat[b, :, :])[i,j]

Figure 3. Example TDL descriptions.

each input/output tensor of an operator can be partitioned

along a combination of any 1, 2, ..., or m dimensions,

thereby dramatically increasing the number of partition

strategies and exploding the search time.

Our approach. We use an existing dynamic program-

ming (DP) algorithm [14] in our search and propose

several key techniques to make it practical. First, we

leverage the unique characteristics of DNN computation

to “coarsen” the dataflow graph and shrink the search

space. These include grouping the forward and backward

operations, and coalescing element-wise or unrolled oper-

ators. Second, to avoid blowing up the search space in the

face of many GPUs, we apply the basic search algorithm

recursively. In each recursive step, the DP algorithm only

needs to partition each tensor in the coarsened graph

among two “groups” (of GPUs). Sec 5 describes this part

of Tofu’s design in details.

4 Partitioning a single operator

This section describes TDL (Sec 4.1) and its analysis

(Sec 4.2).

4.1 Describing an operator

Our Tensor Description Language (TDL) is inspired by

Halide[19]. The core idea is “tensor-as-a-lambda”, i.e.

we represent tensors as lambda functions that map from

coordinates (aka index variables) to values, expressed as

a TDL expression. TDL expressions are side-effect free

and include the following:

• Index variables (i.e. arguments of the lambda function).

• Tensor elements (e.g. filters[ci, co, dx]).

• Arithmetic operations involving constants, index vari-

ables, tensor elements or TDL expressions.

• Reduction over a tensor along one or more dimensions.

Reducers are commutative and associative functions

that aggregate elements of a tensor along one or more

dimensions. Tofu supports Sum, Max, Min and Prod as

built-in reducers. It is possible to let programmers define

custom reducers, but we have not encountered the need

to do so.

We implemented TDL as a DSL using Python. As

an example, Figure 3 shows the description of conv1d,

whose output is a 3D tensor defined by lambda b, co,

x: ... Each element of the output tensor is the result of

reduction (Sum) over an internal 2D tensor (lambda ci,

dx: ...) over both ci and dx dimensions.

Opaque function. We have deliberately designed TDL

to be simple and not Turing-complete. For example, TDL

does not support loops or recursion, and thus cannot

express sophisticated computation such as Cholesky de-

composition. In such cases, we represent the computa-

tion as an opaque function. Sometimes, such an operator

has a batched-version that can be partitioned along the

batch dimension. Figure 3 shows the TDL description of

the operator batch_cholesky. The output is a 3-D ten-

sor (lambda b,i,j:...) where the element at (b, i, j) is

defined to be the (i, j) element of the matrix obtained

from performing Cholesky on the b-th slice of the input

tensor. Note that, batch_mat[b, :, :] represents the

bth slice of the batch_mat tensor. It is syntactic sugar

for the lambda expression lambda r, c: batch_mat[b,

r, c].

Describing MXNet operators in TDL. Ideally, op-

erator developers should write TDL descriptions. As

Tofu is meant to work with an existing dataflow system

(MXNet), we have written the descriptions ourselves as

a way to bootstrap. We found that TDL can describe 134

out of 139 MXNet v0.11 operators. Out of these, 77 are

simple element-wise operators; 2 use the opaque func-

tion primitive, and 11 have output reductions. It takes

one of the authors one day to write all these descriptions;

most of them have fewer than three LoC. Although we

did not build Tofu’s prototype for TensorFlow, we did

investigate how well TDL can express TensorFlow oper-

ators. We found that TDL can describe 257 out of 341

TensorFlow operators. Out of these, 140 are element-

wise operators; 22 use the opaque function. For those

operators that cannot be described by TDL, they belong

to three categories: sparse tensor manipulations, opera-

tors with dynamic output shapes and operators requiring

data-dependent indexing. MXNet has no operators in the

latter two categories.

TDL vs. other Halide-inspired language. Concur-

rent with our work, TVM [30] and TC [31] are two

other Halide-inspired DSLs. Compared to these DSLs,

TDL is designed for a different purpose. Specifically,

we use TDL to analyze an operator’s partition strategies

while TVM and TC are designed for code generation to

different hardware platforms. The different usage sce-

narios lead to two design differences. First, TDL does

not require users to write intricate execution schedules –

code for describing how to perform loop transformation,

caching, and mapping to hardwares, etc. Second, TDL

supports opaque functions that let users elide certain de-

tails of the computation that are not crucial for analyzing

how the operator can be partitioned.

4

4.2 Analyzing TDL Descriptions

Tofu analyzes the TDL description of an operator to

discover its basic partition strategies. A basic partition

strategy parallelizes an operator for 2 workers only. Our

search algorithm uses basic strategies recursively to opti-

mize partitioning for more than two workers (Sec 5.2).

A partition strategy can be specified by describing the

input tensor regions required by each worker to perform

its “share” of the computation. This information is used

later by our search algorithm to optimize partitioning for

the dataflow graph and to generate the partitioned graph

in which required data is fetched from different workers.

Obtaining input regions from a TDL description is

straightforward if tensor shapes are known. For example,

consider the following simple description:

def shift_two(A): B = lambda i : A[i+2]; return B

Suppose we want to partition along output dimension i.

Given i’s concrete range, say [0, 9], we can compute that

the worker needs A’s data over range [2, 6] (or [7, 11]) in

order to compute B over range [0, 4] (or [5, 9]).
Analyzing with concrete ranges is hugely inefficient

as a dataflow graph can contain thousands of opera-

tors, many of which are identical except for their ten-

sor shapes (aka index ranges). Therefore, we perform

TDL analysis in the abstract domain using symbolic in-

terval analysis, a technique previously used for program

variable analysis[32], boundary checking[33], parameter

validation[34].

Symbolic interval analysis. Suppose the output ten-

sor of an operator has n dimensions and is of the form

lambda x1, ..., xn : We consider the range of

index variable xi to be [0, Xi], where Xi is a symbolic

upper bound. We then symbolically execute the lambda

function to calculate the symbolic intervals indicating

the range of access on the operator’s input tensors.

Symbolic execution should keep the range as precise

as possible. To do so, we represent symbolic interval (I)

as an affine transformation of all symbolic upper bounds,

I ≜ [ΣiliXi + c, ΣiuiXi + c], li, ui, c ∈ R (1)

In equation 1, li, ui and c are some constants. Thus,

we can represent I as a vector of 2 ∗ n + 1 real values

⟨l1, ..., ln, u1, ..., un, c⟩. Let ZV[ui = a] denote a vector

of all 0s except for the position corresponding to ui which

has value a. By default, lambda variable xi for dimension

i is initialized to ZV[ui = 1].
Our representation can support affine transformation

on the intervals, as shown by the allowed interval arith-

metic in Figure 4. Product or comparison between two

intervals are not supported and will raise an error. We

did not encounter any such non-affine operations among

MXNet operators.

TDL description: lambda x1, ..., xi, ..., xn: ...

I ≜ ⟨l1, ..., ln, u1, ..., un, c⟩
I ± k, k ∈ R = ⟨l1, ..., ln, u1, ..., un, c± k⟩
I × k, k ∈ R = ⟨l1k, ..., lnk, u1k, ..., unk, c ∗ k⟩
I/k, k ∈ R = ⟨l1/k, ..., ln/k, u1/k, ..., un/k, c/k⟩

I ± I ′ = ⟨l1 ± l′1, ..., u1 ± u′

1, ..., c± c′⟩

Figure 4. Tofu’s symbolic interval arithmetic.

Discover operator partition strategies. Using the

symbolic interval analysis, we infer the input regions

required by each of the 2 workers for every partitionable

dimension. There are two cases.

Case-1 corresponds to doing partition-n-reduce with-

out the reduction step. In this case, each partition strat-

egy corresponds to some output dimension. Suppose

we are to partition conv1d’s output tensor along dimen-

sion b. We use two different initial intervals for lambda

variable b, ZV[ub = 1

2
] and ZV[lb = 1

2
, ub = 1], in

two separate analysis runs. Each run calculates the in-

put regions needed to compute half of the output tensor.

The result shows that that each worker reads half of the

data tensor partitioned on the b dimension and all of

the filter tensor, as illustrated in Figure 2(a). Similarly,

the analysis shows how to partition the other output di-

mensions, co and x. Partitioning along dimension x is

commonly referred to as parallel convolution with “halo

exchange” [9, 12, 13].

Case-2 corresponds to doing partition-n-reduce with

the reduction step. In this case, we partition along a reduc-

tion dimension. In the example of Figure 3, the reduction

dimensions corresponding to ci and dx in Sum(lambda

ci, dx: ...). The analysis will determine that, when

partitioning along ci, each partially reduced tensor will

require half of the data tensor partitioned on the sec-

ond dimension and half of the filter tensor partitioned

on the first dimension, as shown in Figure 2(b). Similar

analysis is also done for dimension dx. Out of 47 non-

element-wise MXNet operators describable by TDL, 11

have at least one reduction dimension.

5 Partitioning the dataflow graph

To partition a dataflow graph, one needs to specify which

partition strategy to use for each operator. This section

describes how Tofu finds the best partition plan for a

dataflow graph.

Different plans result in different running time and per-

worker memory consumption, due to factors including

communication, GPU kernel efficiency and synchroniza-

tion. Finding the best plan is NP-hard for an arbitrary

dataflow graph [35]. Recent work has proposed an algo-

rithm based on dynamic programming (DP) for partition-

ing a certain type of graphs. Sec 5.1 presents techniques

5

 …

 …

(a)

(b)

layer0

data

layer1 layer2

 …

(c)

Figure 5. (a) Layer graph of a MLP model. (b) Its

dataflow graph including forward and backward com-

putation (in grey). (c) Coarsened graph. For cleanness,

we only illustrate one operator group, one group for acti-

vation tensors and one group for weight tensor (dashed

lines).

to make a dataflow graph applicable to DP, and Sec 5.2

improves search time via recursion.

Optimization goal. Ideally, our optimization goal should

consider both the end-to-end execution time of the parti-

tioned dataflow graph and the per-worker memory con-

sumption. Unfortunately, neither metric can be optimized

perfectly. Prior work [15] optimizes the approximate end-

to-end execution time by minimizing the sum of total

GPU kernel execution time and total data transfer time.

In Tofu, we choose to minimize the total communi-

cation cost based on two observations. First, the GPU

kernels for very large DNN models process large tensors

and thus have similar execution time no matter which di-

mension its input/output tensors are partitioned on. Con-

sequently, a partition plan with lower communication

cost tends to result in lower end-to-end execution time.

Second, the memory consumed at each GPU worker is

used in two areas: (1) for storing a worker’s share of

tensor data, (2) for buffering data for communication be-

tween GPUs. The memory consumed for (1) is the same

for every partition plan: for k GPUs, it is always 1/k
times the memory required to run the dataflow graph on

one GPU. The memory consumed for (2) is proportional

to the amount of communication. Therefore, a partition

plan with lower communication cost results in a smaller

per-worker memory footprint.

5.1 Graph coarsening

The algorithm in [14] is only applicable for linear graphs1,

such as the graph of DNN layers shown in Figure 5(a).

Dataflow graphs of fine-grained operators are usually

non-linear. For example, Figure 5(b) is the non-linear

1We say a graph G is linear if it is homeomorphic to a chain graph G′,

meaning there exists a graph isomorphism from some subdivision of G

to some subdivision of G′ [36]. Note that a “fork-join” style graph is

linear by this definition.

dataflow graph of the same DNN represented by Fig-

ure 5(a). Here, we propose to “coarsen” a dataflow graph

into a linear one by grouping or coalescing multiple op-

erators or tensors.

Grouping forward and backward operations. Al-

most all DNN models are trained using gradient-based

optimization method. The training includes a user-written

forward propagation phase to compute the loss function

and a system-generated backward propagation phase to

compute the gradients using the chain rule. Thus, we

coarsen as follows:

• Each forward operator (introduced by the user) and

its auto-generated backward operators (could be more

than one) to form a group.

• Each forward tensor (e.g. weight or intermediate ten-

sors) and its gradient tensor form a group. If a (weight)

tensor is used by multiple operators during forward

propagation and thus has multiple gradients computed

during backward propagation, the chain rule requires

them to be summed up and the summation operator is

added to the group as well.

Figure 5(c) shows the coarsened dataflow graph for a

MLP model. As forward and backward operators for the

same layer are grouped together, the resulting graph be-

comes isomorphic to the forward dataflow graph. For

MLPs and CNNs, their coarsened graphs become linear.

We perform the DP-based algorithm [14] on the coars-

ened graph. When the algorithm adds a group in its next

DP step, we perform a brute-force combinatorial search

among all member operators/tensors within the group to

find the minimal cost for adding the group.This allows

tensors involved in the forward and backward operators

to be partitioned differently, while [14] forces them to

share the same partition configurations. As there are only

a few operators (typically 2) in each group, the cost of

combinatorial search is very low.

Coalescing operators. In DNN training, it makes sense

for some operators to share the same partition strategy.

These operators can be merged into one in the coarsened

dataflow graph. There are two cases:

• Merging consecutive element-wise operators, because

the input and output tensors of an element-wise opera-

tor should always be partitioned identically. We ana-

lyze the TDL description to determine if an operator is

element-wise. Consecutive element-wise operators are

very common in DNN training. For instance, almost

all gradient-based optimizers (e.g. SGD, Adam, etc.)

are composed of only element-wise operators.

• Merging unrolled timesteps. Recurrent neural networks

(RNNs) process a variable sequence of token over mul-

tiple timesteps. RNN has the key property that differ-

ent time steps share the same computation logic and

6

Search Time

WResNet-152 RNN-10

Original DP [14] n/a n/a

DP with coarsening 8 hours >24 hours

Using recursion 8.3 seconds 66.6 seconds

Table 1. Time to search for the best partition for 8 work-

ers. WRestNet-152 and RNN-10 are two large DNN

models described in Sec 7.

weight tensors. Thus, they should be coalesced to share

the same partition strategy. As a result, the dataflow

graph of a multi-layer RNN becomes a chain of coa-

lesced and grouped operators. To detect operators that

belong to different timesteps of the same computation,

we utilize how RNN is programmed in DNN frame-

works. For example, systems like MXNet and PyTorch

call a built-in function to unroll a basic unit of RNN

computation into many timesteps, allowing Tofu to

detect and merge timesteps.

5.2 Recursive partitioning

When there are more than two workers, each operator can

be partitioned along multiple dimensions. This drastically

increases the number of partition strategies available to

each operator and explodes the running time of the DP-

based search algorithm.To see this, consider the coars-

ened graph of Figure 5(b). Every operator group has two

input tensor groups and one output tensor group. Each

tensor group contains one forward tensor and one gradi-

ent tensor. At each step, the DP algorithm needs to con-

sider all the possible configurations of an operator group

including different ways to partition the six input/output

tensors. For each 4D tensor used in 2D-convolution, there

are in total 20 different ways to partition it evenly across

8 workers. Hence, the number of possible configurations

of 2D-convolution’s operator group is 206 = 6.4× 107.

Although not all the dimensions are available for parti-

tion in practice (e.g. the convolution kernel dimension

is usually very small) , the massive search space still

results in 8 hours of search time when partitioning the

WResNet-152 model (Table 1).

Our insight is that the basic DP search algorithm can

be recursively applied. For instance, a matrix, after be-

ing first partitioned by row, can be partitioned again. If

the second partition is by column, the matrix is parti-

tioned into a 2×2 grid; if the second partition is by row,

the matrix is partitioned into four parts along the row

dimension.

This observation inspires our recursive optimization

algorithm to handle k = 2m GPUs:

1. Given a dataflow graph G, run the DP algorithm with

coarsening to partition G for two worker groups, each

consisting of 2m−1 workers. Note that each tensor is

only partitioned along one dimension.

2. Consider the partitioned dataflow graph as consist-

ing of two halves: G0 for worker group#0 and G1

for worker group#1. Each half also contains the data

fetched from the other group as extra input tensors.

3. Repeat step 1 on G0 and apply the partition result to

G1 until there is only one worker per group.

This recursive algorithm naturally supports partitioning

along multiple dimensions. Figure 6 illustrates two recur-

sive steps using an example dataflow graph (for brevity,

we only show one matrix multiplication operator in the

graph). Note the recursion must be done over the entire

dataflow graph instead of a single operator, as the parti-

tion plan of the previous recursive step will influence the

global decision of the current one.

While the recursive algorithm may seems straightfor-

ward, it is less obvious why the resulting partition plan

has the optimal overall communication cost. In particu-

lar, the recursive algorithm chooses a sequence of basic

partition plans {P1,P2, ...Pm} in m recursive steps, and

we need to prove that no other sequence of choices leads

to a better plan with a smaller communication cost. The

main insight of our proof is that the partition plan de-

cided in each recursive step is commutative (i.e, choosing

partition plan P followed by P ′ results in the same to-

tal communication cost as choosing P ′ followed by P .)

Based on this insight, we derive the following property

and use it to prove optimality.

Theorem 1. Let the total communication cost incurred

by all worker groups at step i be δi. Then δi ≤ δi+1.

Suppose {P1,P2, ...Pm} is the sequence of partition

plans chosen and it is not optimal. Then there exists

a different sequence {P ′

1,P
′

2, ...P
′

m
} with smaller total

cost. Hence, there must be two consecutive steps k − 1
and k, such that δk−1 ≤ δ′

k−1
and δ′

k
< δk. We can

show that, by choosing P ′

k
instead of Pk at step k, the

search could have produced a better partition plan. This

contradicts the optimality of the DP algorithm. The full

proof is included in our techincal report [37].

If the number of GPUs k is not a power of two, we

factorize it to k = k1 ∗ k2 ∗ ... ∗ km, where ki ≥ ki+1

for all i. At each step i in the recursive algorithm, we

partition the dataflow graph into ki workers in which

each partition strategy still partitions a tensor along only

one dimension but across ki workers.

The benefits of recursion. Recursion dramatically

cuts down the search time by partitioning along only

one dimension at each step. For example, the number of

configurations to be enumerated at each step for a 2D-

convolution operator group is only 46 = 4096. There-

fore, the total number of partition strategies searched for

the 2D-convolution operator with 8 workers (3 recursive

7

…

×

×B C

A

×

C

C

Group#0: W0,W1

Worker#0

Step#1: Apply DP

on the coarsened

graph. Row-

partition is decided.

Step#2: Apply DP

on the coarsened

graph of Group#0.

Col-partition is

decided.

B[0,:] C[0,:]

B[1,:] C[1,:]
M

M[0,:]

M[1,:]

C Concatenation

M
M[:,0]

M[:,1]

Worker#1

×C

A[0,1]

B[0,1]

B[1,1]

C[0,1]
C

×C

A[0,0]

B[0,0]

B[1,0]

C[0,0]

C

Group#1: W2,W3

…

…

…
A[0,:]

A[1,:]

…

…

…

…

Figure 6. Recursively partition a dataflow graph to four workers. Only one matrix multiplication is drawn for cleanness.

In step#1, every matrix is partitioned by row, and for group#0, B[1,:] is fetched from the other group. Because of this,

B[1,:] becomes an extra input in step#2 when the graph is further partitioned to two workers. Because step#2 decides

to partition every matrix by column, every matrix is partitioned into a 2x2 grid, with each worker computes one block.

GPU#0

GPU#1

(a) (b)

Figure 7. (a) Original dataflow graph; (b) Partitioned

graph with extra control dependencies (dashed lines).

steps) is 3 ∗ 4096, which is far fewer than 206 when re-

cursion is not used. Table 1 shows the search time for

two common large DNN models when applying the orig-

inal DP algorithm on coarsened graph without and with

recursion.

As another important benefit, recursion finds partition

plans that work well with common hierarchical physical

interconnects which have less aggregate bandwidth near

the top of the hierarchy. For example, many commercial

servers group GPUs by faster PCI-e buses first and then

connect the groups with slower QPI buses or Infinibands.

As theorem 1 indicates, Tofu assigns worker groups with

less communication near the top of the hierarchical inter-

connects in earlier steps of the recursion.

6 Optimizations in generating the

partitioned graph

Once the search algorithm determines how to partition for

every tensor and operator, Tofu generates a correspond-

ing partitioned dataflow graph. The graph generation

process is mostly straightforward save for two optimiza-

tions, which are crucial to keep the per-worker memory

consumption low.

Leveraging the existing memory planner. Systems

like MXNet and TensorFlow have their own memory

planners to statically allocate and re-use memory buffers

among operators according to their dependencies. Ide-

ally, the per-worker memory consumption for k work-

ers should be 1/k of the original memory consumption.

In our initial implementation, per-worker memory con-

sumption far exceeded the expected amount. We found

that this is because the partitioning of a dataflow graph

changes the dependencies between original operators.

Figure 7 illustrates an example. In the original graph,

the second operator can reuse the memory buffer of the

first one (such as the workspace of a convolution op-

erator) due to the dependency between the two. Naive

graph generation may result in the graph with solid edges

in Figure 7(b), in which the two operators executed by

each worker no longer have a direct dependency between

them and thus allows no immediate memory-reuse. To fix

this, Tofu maintains the original operator dependencies

on each worker by generating the extra control depen-

dencies (dashed lines), so that the memory planner can

immediately re-use buffers across dependent operators.

Fusing operators for remote data fetch. For each

operator in the original graph, Tofu generates a copy

for each GPU worker in the partitioned graph. Often,

these operators need to fetch data from a different worker.

MXNet already supports copy, split, concatenate opera-

tors, which can be used to support data movements. A

naively generated graph would use split to extract the

required input regions from the other workers, copy data

to the local worker, and concatenate them together to

assemble the input region needed by the operator’s GPU

kernel. Extra reduce operators can also be generated if

the output tensors of different workers need to be aggre-

gated according to the partition strategy used. Execution

of such graphs results in many intermediate memory

blocks, increasing the per-worker memory consumption.

To mitigate this, we wrote a custom GPU kernel called

MultiFetch to retrieve remote data and assemble the input

region in-place using CUDA Unified Virtual Address-

ing (UVA).CUDA UVA allows a kernel running on one

GPU to directly access the memory on another, which

avoids explicit data copying before kernel execution. Our

MultiFetch kernel takes multiple pointers to the memory

blocks of the input regions from the other GPUs and

assembles them in one kernel launch.

8

RNN

L=6 L=8 L=10

H=4K 8.4 11.4 14.4

H=6K 18.6 28.5 32.1

H=8K 33.0 45.3 57.0

Wide ResNet

L=50 L=101 L=152

W=4 4.2 7.8 10.5

W=6 9.6 17.1 23.4

W=8 17.1 30.6 41.7

W=10 26.7 47.7 65.1

Table 2. Total weight tensor sizes (GB) of our benchmarks.

Beyond the two optimizations described above, we

also spread out the reduction workload to all GPUs (all-

reduce) when performing output reduction. This is im-

portant for avoiding any single aggregation bottleneck.

We also find that the MXNet scheduler can execute the

remote fetch operator much earlier than required, result-

ing in memory being occupied for longer than necessary.

We adopt the same technique proposed by TensorFlow

to delay the execution of the remote fetch operator.

7 Evaluation

This section evaluates Tofu and compares with various

alternative approaches. The highlights of our results are

the following:

• Tofu can train very large WResNet and RNN models

across 8 GPUs with high throughput that is within

60%-98% of a hypothetical ideal baseline.

• Except for a few exceptions, Tofu outperforms existing

alternative approaches including shrinking the mini-

batch size used for training, swapping to CPU memory,

and placing different operators on different GPUs.

• Tofu’s recursive partition algorithm leads to better

training throughput than existing partition algorithms [14,

35] and simple heuristics.

• The overall partition plan found by Tofu is highly non-

trivial, even though the underlying DNN model has a

regular structure.

7.1 Experimental setup

Prototype Implementation. We implement Tofu based

on MXNet 0.11. The TDL components (operator descrip-

tions and the region analyzer) are written in Python (2K

LoC). The recursive search algorithm is implemented as

a graph transformation pass in NNVM (4K LoC in C++).

As we need information from gradient calculation and

shape inference, we also made slight modifications to the

corresponding NNVM passes.

Testbed: The experiments run on an EC2 p2.8xlarge

instance. The instance has 8 K80 GPUs with 12GB mem-

ory each. GPUs are connected by PCI-e bus with 21GB/s

peer-to-peer bandwidth. It has 32 virtual CPU cores

and 488GB CPU memory. The CPU-GPU bandwidth

is 10GB/s.

DNN Benchmarks: We evaluate the WResNet [1] con-

volutional neural network and recurrent neural network

(RNN). We choose these two benchmarks because they

correspond to very large models. We do not evaluate

those well-known DNNs that fit into a single GPU’s

memory, such as AlexNet, VGGNet and Inception.

WResNet [1] is a widened version of the original resid-

ual network model [38]. It has a widening scalar to in-

crease the number of channels on each convolution layer.

The model size grows quadratically as each weight ten-

sor is widened on both the input and output channel.

WResNet has been shown to achieve a better accuracy

when the model is widened by 10×. Due to the mem-

ory limitation, such improvement is only demonstrated

on CIFAR-10 dataset of small images (32x32) using a

50-layer model. We experiment with WResNet on Im-

ageNet dataset with images of size (224x224). We also

test different model variations: widening scalar from 4

to 10 on networks with 50, 101 and 152 layers. We use

notations like WResNet-101-8 to denote the 101-layer

ResNet model widened by 8 times.

For RNN, there are two ways to increase model ca-

pacity. The number of neurons in each hidden layers can

be increased, and multiple RNN layers can be stacked

to form a deeper model. Researchers have explored very

large RNNs by increasing the number of RNN layers

to 8 [28, 29], or by using a large hidden layer size such

as 8192 [20]. We use the model described in [20], and

test it with different configurations varying from 6 to 10

layers with 4K, 6K, and 8K hidden sizes. All RNN model

variants use LSTM cell [39] and are unrolled for 20 steps

as in [20]. We use the RNN-8-8K to denote the 8-layer

RNN model with 8K hidden size.

All the benchmarks are tested by running a full train-

ing iteration including forward/backward propagation

and weight update. State-of-the-art weight optimizers

such as Adam [40] and Adagrad [41] must maintain an

extra buffer for storing the gradient history. Therefore, a

model of weight size W needs to consume at least 3W
size of memory for storing the weight, gradient and the

history tensors. Table 2 shows the total weight memory

consumption for all the benchmarks.

Baseline and Alternatives for Comparison. We con-

sider an ideal baseline and several alternative approaches

for comparison.

Ideal is a hypothetical baseline that assumes each GPU

has infinite memory. We simulate this by modifying the

memory allocator of MXNet to always return the same

memory block. We measure the single-GPU through-

put number and multiply it by 8 as the performance of

running on 8 GPUs.

SmallBatch is a baseline that tries to fit the model in a

single GPU by reducing the mini-batch size. Like the

9

W=4 W=6 W=8 W=10

0.0

0.2

0.4

0.6

0.8

1.0
47 18 10 6.446

16

O
O
M

O
O
M

28
12

5.9
4.0

41
17 9.3 6.0

Ideal Small Batch Swap Tofu

(a) Wide ResNet-50

W=4 W=6 W=8 W=10

0.0

0.2

0.4

0.6

0.8

1.0
27 9.4 5.3 3.3

23

O
O
M

O
O
M

O
O
M

11

5.4
3.2 2.1

20

8.7 4.8 3.1

Ideal Small Batch Swap Tofu

(b) Wide ResNet-101

W=4 W=6 W=8 W=10

0.0

0.2

0.4

0.6

0.8

1.0
19 6.5 3.6 2.3

O
O
M

O
O
M

O
O
M

O
O
M

7.7

3.4

2.2

1.6

11

5.4

2.7

1.9

Ideal Small Batch Swap Tofu

(c) Wide ResNet-152

Figure 8. Normalized WResNet throughput relative to the ideal performance. The number on each bar shows the

absolute throughput in samples/sec.

ideal baseline, we scale the single-GPU throughput num-

ber by 8 for 8 GPUs. Thus, neither SmallBatch nor Ideal

baseline consider the communication cost and represent

performance upper-bounds.

Swapping [4, 42, 43] is a baseline that swaps in/out GPU

memory blocks to CPU. There are many ways to design

the swapping policy. Our baseline combines many of

these techniques in order for a fair comparison. First,

our baseline follows the design of [43], which includes a

least recently used algorithm to decide the tensor to be

swapped out and a prefetching unit based on the execu-

tion. This supports swapping in/out any memory block

instead of only activation tensors as in [4]. Second, read-

only tensors are copied to CPU only once and simply

dropped the next time they are to be swapped out. Third,

we combine dataflow analysis similar to [4] to disable

swapping out memory blocks that will soon be used.

Operator Placement [2, 28, 44, 45] assigns operators to

different devices to spread out memory usage. For RNN,

this baseline assigns the computation of different layers

to different GPUs to leverage the pipelining effect, as it

is originally proposed in [44]. If there are more layers

than the number of GPUs, we balance the assignment

in a round-robin manner. Operator placement does not

perform well for CNNs due the mostly serial layer-by-

layer execution. Therefore, we skip this baseline for all

WResNet benchmarks.

In our experiments, the ideal baseline uses a batch

size that can saturate the GPU for the best performance.

SmallBatch, Swapping and Tofu all use the largest batch

size that make the execution fit in the GPU memory.

7.2 Training Large and Deep Models

We show the performance of Tofu and compare it to the

ideal baseline and alternatives. Since different systems

use different batch sizes to achieve the best performance,

we use throughput (samples/sec) instead of training time

per iteration as the metric for comparison In Figures 8

and 9, each bar shows the throughput relative to the ideal

baseline performance. The absolute throughput numbers

are shown on top of each bar. OOM indicates out-of-

memory error.

WResNet Performance. Figure 8 shows the WRes-

Net throughput achieved by different systems. The ideal

baseline uses a global batch size of 128. Only 3 mod-

els, WResNet-50-4,6 and WResNet-101-4 can be fit in

a single GPU memory by shrinking the batch size (aka

SmallBatch).

Tofu can achieve 60%-95% of the ideal performance

for all the models. The largest model, WResNet-152,

has the biggest performance gap. This is because we

configured the ideal baseline to use a much larger mini-

batch size for peak throughput without any consideration

for memory consumption. For example, the ideal baseline

uses base size 128 for WResNet-152-4 while Tofu can

fit at most 32. The batch sizes used by Tofu ranges from

8 (for WResNet-152-10) to 128 (for WResNet-50-4).

Tofu performs better than alternatives in all scenarios

except for WResNet-50-4 and WResNet-101-4, in which

SmallBatch achieves 12% and 15% better throughput

than Tofu. This is because convolution kernels have good

GPU utilization even for small batch sizes. However,

SmallBatch runs out of memory for most of the models

in Figure 8.

As shown in Figure 8, swapping is 20%-63% slower

than Tofu across all the models. This is due to swap-

ping’s much larger communication amount. Although

we implemented prefetching to “hide” communication

latency in swapping, the CPU-GPU communication is

the bottleneck as all 8 GPUs share the same bandwidth

to communicate with the CPU.

RNN Performance. Figure 9 shows the throughput

for RNNs. The ideal baseline uses a (global) batch size

of 512. Tofu performs better than the other baselines in

all RNN configurations, achieving 70% - 98% of ideal

throughput. Unlike the WResNet experiments, Small-

Batch does not achieve better throughput than Tofu in

any RNN configuration. This is because the main RNN

computation is matrix multiplication, which has much

10

H=4K H=6K H=8K

0.0

0.2

0.4

0.6

0.8

1.0
233 108 58

130

O
O
M

O
O
M

183

32
13

107
44 24

210
102 57

Ideal
Small Batch

Swap
Op-Placement

Tofu

(a) 6 layers RNN

H=4K H=6K H=8K

0.0

0.2

0.4

0.6

0.8

1.0
172 78 45

O
O
M

O
O
M

O
O
M

120

18 9.3

95
40 22

154
75

41

Ideal
Small Batch

Swap
Op-Placement

Tofu

(b) 8 layers RNN

H=4K H=6K H=8K

0.0

0.2

0.4

0.6

0.8

1.0
136 60 33

O
O
M

O
O
M

O
O
M

58

13 7.2

59
21

O
O
M

122 55

23

Ideal
Small Batch

Swap
Op-Placement

Tofu

(c) 10 layers RNN

Figure 9. Normalized RNN throughput relative to the ideal performance. The number on each bar shows the absolute

throughput in samples/sec.

less arithmetic density than convolution. Thus, perform-

ing matrix multiplication using small batch sizes results

in decreased GPU utilization. The same reasoning ex-

plains why Tofu’s relative performance with the largest

model (RNN-10-8K) is worse than with other RNN mod-

els; Tofu uses a batch size of 128 in order to fit RNN-10-

8K in memory while it uses larger batch sizes (256 or

512) with other RNN models. As is also the case with

WResNet, SmallBatch results in OOM for larger RNN

configurations.

Operator placement achieves 38%-61% of Tofu’s through-

put and cannot train RNN-10-8K (OOM). Two reasons

contribute to the lower performance. First, layer-wise

placement results in imbalanced load because the num-

ber of layers is not a multiple of the number of GPUs.

Second, layer-wise placement relies on pipelined par-

allelism: GPU-1 executes the first operator in the first

layer and forwards its result to GPU-2. GPU-2 can exe-

cute the first operator in the second layer while GPU-1

concurrently executes the second node in the first layer.

Pipelined parallelism cannot fully saturate GPUs at all

times: e.g. GPU-2 is idle while GPU-1 executes its first

operator. By contrast, Tofu parallelizes the execution of

each operator and keeps all GPUs busy at all times.

Swapping achieves 23% - 30% throughput of Tofu and

48% - 53% throughput of operator placement when the

weight size is large. The main reason is that many tensors

may be used simultaneously in RNN training. To fully

saturate a GPU, most deep learning frameworks, includ-

ing MXNet and Tensorflow, schedule operators imme-

diately when they are ready. RNN’s mesh-like dataflow

graph results in more tensors to be used at the same time.

When the weight size is large, the amount of swapping

increases significantly. Coupled with the CPU-GPU com-

munication bottleneck, swapping is unable to achieve

good throughputs for RNNs.

Comparing with TensorFlow. We compare with Ten-

sorflow v1.8 (using Op-Placement) for training RNNs.

Table 3 shows the throughputs for running on RNN-6-4K,

RNN-8-4K, and RNN-10-4K. For additional comparison

RNN-6 RNN-8 RNN-10

Tofu 210 154 122

MX-OpPlacement 107 95 59

TF-OpPlacement 50 36 30

Table 3. Comparison of throughput (samples/second) for

RNN models. The hidden size is 4096.

AllRow-
Greedy

Spartan Equal-
Chop

ICML18 Tofu

0

1

2

3

4

5

6

7

R
u
n
n
in
g
ti
m
e
p
er

b
at
ch
(s
)

24.5
21.1

13.8 13.2
6.4

(a) RNN-4-8K

AllRow-
Greedy

Spartan Equal-
Chop

ICML18 Tofu

0

1

2

3

4

5

6

R
u
n
n
in
g
ti
m
e
p
er

b
at
ch
(s
)

OOM

33.8 35.2

OOM

21.9

(b) WResNet-152-10

Figure 10. Comparison of different partition algorithms

using RNN-4-8K and WResNet-152-10 on 8 GPUs.

Striped parts show the overhead (percentage) due to com-

munication.

points, we also include MXNet (using Op-Placement).

Note that the throughputs of Tofu and MXNet are same

as those in Figure 9. Tensorflow’s throughput is roughly

half of MXNet and about 23% of Tofu. As Tensorflow

and MXNet use the same operator kernel implementa-

tions, we originally expected the two systems to have

similar throughput. However, further investigation shows

that TensorFlow does not support in-place gradient ag-

gregation which may be crucial for the performance of

large RNNs.

7.3 Comparing different partition algorithms

We have compared Tofu’s search time with the original

DP algorithm [14] in Sec 5.2 (Table 1). We now compare

the quality of partition plan found by Tofu vs. [14] and

various other heuristics.

11

x3 x1 x7 x1 x35 x1 x2

block1 block2 block2 block3 block3 block4 block4

Figure 11. The partition found by Tofu for WResNet-152-10 on 8 GPUs. We draw the weight tensors (top row) and the

activation/data tensors (bottom row) used by convolution operators. Partitioning is marked by the tiles and each color

shows the tiles owned by the same GPU. The vertical and horizontal dimensions of an activation tensor indicate the

batch and channel dimensions. ’xN’ symbol means the corresponding block is repeated N times.

The simplest heuristic (AllRow-Greedy) partitions all

tensors along the first dimension and partitions each op-

erator using the best strategy given that its input/output

tensors are partitioned on the first dimension. Note that,

for the case of WResNet, this gives similar result as the

one-weird-trick strategy proposed in [46], because all the

convolution layers are partitioned by the batch dimension

and the only fully-connected layer in WResNet occupies

<1% of the total time. Our next heuristic is to greedily

partition the largest tensor first (along any dimension),

followed by its incident operators, followed by the sec-

ond largest tensor and so on. This is equivalent to what is

proposed by Spartan [35]. We also compare with Tofu’s

DP algorithm applied to chop each tensor equally along

only one dimension (EqualChop). Finally, we compare

with the algorithm in [14](ICML18) which does not con-

sider the partition strategy of aggregating output tensors

(aka output-reduction).

Figure 10 shows the execution time of training one

batch on 8 GPUs for RNN-4-8K (batch size is 512) and

WResNet-152-10 (batch size is 8). To see the impact of

communication on the execution time, we modify the

backend to skip memory copy among GPUs and measure

the resulting pure computation time, which is shown as

the lower light-colored portion of the bars in Figure 10.

AllRow-Greedy performs worse among all the algo-

rithms and run out of memory for WResNet-152-10 be-

cause it needs to fetch too much data from the other

GPUs. Spartan and EualChop reduce the communica-

tion overhead by 3%-10% but are still worse than Tofu.

This result shows the benefit of partitioning a tensor

along multiple dimensions. ICML18 is 7% slower than

Tofu for RNN-4-8K and results in OOM for WResNet-

152-10 due to the lack of output-reduction. After adding

output-reduction, ICML18 can find the same strategy as

Tofu, albeit with a much longer search time (see Table 1).

7.4 Partition Results

Figure 11 shows the partition found by Tofu for WResNet-

152-10. ResNet-152 contains 4 groups of residual blocks:

each block includes 3 convolutions and is repeated 3, 8,

36, and 3 times for each group respectively. The lower

residual blocks (those close to the input layer) have larger

feature map but smaller weight tensors while the higher

ones are the opposite.

We make the following observations:

• Tofu partitions both the batch and channel dimensions

and the resulting partition plan is a complicated com-

bination of different partition strategies.

• Tofu chooses different partition plans for different con-

volution layers within one residual block. Repeated

residual blocks are partitioned in the same way except

for the first block in the group which has a different

configuration to shrink the initial input feature map

size by half.

• As the activation tensors in lower layers are larger and

the weight tensor smaller, Tofu chooses to fetch weight

tensors from remote GPUs to save communication. As

the weight tensors are larger in the higher layers, Tofu

switches to partition strategies that fetch the relatively

smaller activation tensors.

8 Related Work

Parallel DNN training. Many parallel strategies have

been developed to speedup DNN training. Some strate-

gies such as the popular data parallelism [47–50] cannot

be used for training very large models because the pa-

rameters are replicated to each device. Model parallelism

spreads out the model parameters to multiple GPUs, thus

is suitable for training very large models. Early work[8,

9, 46] parallelizes specific classes of DNN models, and

is limited in flexibility and generality. Minerva[51] and

Strads[52] require users to implement extra interfaces

to partition model parameters while Tofu requires no

change to the user program. Another approach is to as-

sign different layers/operators to different devices via

heuristics [45] or stochastic search [28, 44]. However,

operator placement only works well only when there are

sufficiently many concurrent operators, and thus is not

suitable for DNN models with a deep stack of layers.

Out-of-core DNN training. This includes recomputa-

tion on demand [5–7] , swapping and prefetching from

host memory [4, 42, 43]. Recomputation is not viable

for large weight tensors. Swapping with host memory

reduces the opportunity of co-locating computation and

data, and scales poorly when there are multiple GPUs.

None of them can efficiently utilize the aggregated mem-

ory capacity of multiple cards as Tofu does. Moreover,

Tofu can also be combined with these techniques.

12

Model compression. This includes network pruning [53,

54] (which removes small weight values), quantization[55]

and reduced precision[56]. The compressed model can

then be deployed on mobile or edge devices or to speed

up the inference. However, these approaches affect model

accuracy while Tofu allows exploring very large models

without changing the model behavior.

Parallel tensor computing. There is a long history in

developing efficient parallel systems for tensor comput-

ing. The very first effort starts from developing low-

level, optimized, parallel matrix/tensor libraries [57–61].

These libraries implement efficient parallel matrix algo-

rithms [23, 62] and tensor operations [63]. However, they

have very limited programmability support and adding

new operators requires tremendous manual efforts.

Many frameworks or tools have been built to ease

the programming of parallel tensor computation. In the

low-level, ZPL [64], Chapel [65] and Unified Parallel

C [66] are parallel language supports. In the higher-level,

systems such as [35, 67–71] let users write programs in

high-level primitives like map and reduce. MadLinq [22]

and Presto [72] let user describe operators using paral-

lel loop primitives. Users need to express parallelism

using the proper combination of these primitives. For

example, implementing a parallel matrix multiplication

needs to call the shuffle primitive in Spartan [35] or

the Collect primitive in [71]. However, these primitives

are limited (e.g. it is hard to express halo-exchange in

convolution). Distributed Halide [73] lets user describe

the algorithm in their DSL and specifies how it is paral-

leled. As there are usually multiple ways of partitioning

data and computation, the efficiency varies with different

implementations. Spartan [35] and Kasen [70] propose

algorithm to automatically optimize array/matrix parti-

tioning to reduce communication. [71] further improves

this by also considering different parallel patterns via

transformations of nested high-level primitives.

More recent proposals aim to fully automate the whole

stack – user programs are written in array language and

the system can distribute the data and computation auto-

matically. There are several approaches. Cylops Tensor

Framework [74] and Tensor Contraction Engine [75] are

specialized systems for automatically parallelizing ten-

sor contraction. Spartan tries to map Numpy operators to

high-level map and reduce primitives and then partitions

them accordingly. Others tried to leverage the parallelism

among array operators. For example, Pydron [76] trans-

lates Python program into an internal dataflow graph to

parallelize independent loops. [28, 44] tries to dispatch

array operators to different devices automatically based

on the dataflow graph. However, they are not suitable for

DNN computation that is mostly sequential. Compared

with previous systems, Tofu automatically discovers the

partition-n-reduce parallel patterns of operators using

TDL description and optimizes partitioning for the entire

dataflow graph.

Data layout optimization. There have been extensive

work on optimizing communication (aka remote memory

access) on the multiprocessor architecture (e.g. [77–87])

or the new hardware [11–13]. Since searching the op-

timal solution is NP-Complete [24–27], heuristics are

used in practice [27, 79]. By contrast, Tofu analyzes the

relatively simpler operator description language instead

of the source code, and exploits the DNN computation

structure for its optimization.

9 Discussion, limitations, and future work

Fundamental limitations. Tofu only supports paralleliza-

tion via partition-n-reduce, which restricts each worker

to perform a coarse-grained task identical to the original

computation. This pattern is not applicable to all paral-

lelizable computation (e.g. Cholesky [22]). Furthermore,

the partition-n-reduce parallel strategies do not necessar-

ily minimize communication, and do not take advantage

of the underlying interconnect topology. By contrast, par-

allel algorithms developed for specific computation (e.g.

matrix multiplication [23, 62], tensor contraction [74])

are explicitly structured to minimize communication and

exploit the interconnect topology.

Limitations of TDL. TDL is a simple language with-

out control flow primitives and data-dependent indexing.

Furthermore, Tofu does not support sparse tensor opera-

tions due to load-imbalance, even though they can usually

be described in TDL. For certain operations, these lim-

itations may be removed by supporting data-dependent

partitioning (e.g. as in parallel graph computation [88])

or by sampling runtime information (e.g. as in parallel

range sort [89]).

Tofu does not verify that the operator implementa-

tion matches its TDL description. Such verification is

an open research problem even if the underlying imple-

mentation is open sourced. A more promising direction

is to leverage recent operator code-generation tools such

as TVM [30] and TC [31]. As TVM and TC are also

based on Halide, our analysis techniques can be ported

to analyze operators implemented in these languages.

Partition flexibility and hardware heterogeneity. Tofu

always partitions every operator and tensor across all

workers. For moderately sized DNN models, partition-

ing across all workers lead to small GPU kernels that

leave a GPU unsaturated. In such scenarios, it may be

beneficial to leave certain operators un-partitioned or

partially partitioned among a subset of workers. Further-

more, Tofu has no support for non-uniform partitioning

13

when GPUs have different computing and memory capac-

ity. Although Tofu’s search algorithm tries to accommo-

date bandwidth differences in a hierarchical interconnect,

it does not explicitly optimize communication according

to the interconnect topology.

Unfortunately, Tofu’s recursive search cannot be ex-

tended to address the above limitations. This is because

the underlying DP algorithm cannot optimally search

different device placement choices for un-partitioned, or

non-uniformly-partitioned operators. Exploring stochas-

tic search mechanisms [15, 28, 29] is a direction of future

work.

10 Conclusion

We present the Tofu system, which enables the training of

very large DNN models by partitioning a dataflow graph

of tensors across multiple GPU devices. To automate

this process, Tofu infers each operator’s valid partition

strategies by analyzing its semantics written in a sim-

ple description language (TDL). Tofu uses a recursive

search algorithm based on dynamic programming and

DNN-specific heuristics to find the best partition plan

that minimizes communication for the entire dataflow

graph.

Acknowledgements

This work is supported in part by the National Science

Foundation under award CNS-1816717, NVIDIA AI Lab

(NVAIL) at NYU, and AWS cloud credits for research.

Our shepherd, Chris De Sa, and other anonymous re-

viewers have given helpful feedback that improved this

work. We also thank Jeff Hammond for pointing us to

related work in the HPC community, esp. work on tensor

contraction engines.

References
[1] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks.

In arXiv:1605.07146, 2016.

[2] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, and

Mohammad Norouzi. Google’s neural machine translation system:

Bridging the gap between human and machine translation. In

arxiv.org:1609.08144, 2016.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep

Learning. MIT Press, 2016. http://www.deeplearningbook.org.

[4] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang

Gu. Training deeper models by gpu memory optimization on

tensorflow. In Proc. of ML Systems Workshop in NIPS, 2017.

[5] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot,

and Alex Graves. Memory-efficient backpropagation through

time. In Advances in Neural Information Processing Systems,

pages 4125–4133, 2016.

[6] James Martens and Ilya Sutskever. Training deep and recurrent

networks with hessian-free optimization. In Neural networks:

Tricks of the trade, pages 479–535. Springer, 2012.

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.

Training deep nets with sublinear memory cost. arXiv preprint

arXiv:1604.06174, 2016.

[8] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu

Devin, Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew

Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large scale

distributed deep networks. In Neural Information Processing

Systems (NIPS), 2012.

[9] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catan-

zaro, and Ng Andrew. Deep learning with COTS HPC systems.

In Proceedings of the 30th International Conference on Machine

Learning (ICML-13), pages 1337–1345, 2013.

[10] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik

Kalyanaraman. Project adam: Building an efficient and scalable

deep learning training system. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation,

OSDI’14, 2014.

[11] Xuan Yang, Jing Pu, Blaine Burton Rister, Nikhil Bhagdikar,

Stephen Richardson, Shahar Kvatinsky, Jonathan Ragan-Kelley,

Ardavan Pedram, and Mark Horowitz. A systematic approach

to blocking convolutional neural networks. arXiv preprint

arXiv:1606.04209, 2016.

[12] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili,

and Saibal Mukhopadhyay. Neurocube: A programmable digital

neuromorphic architecture with high-density 3d memory. In

Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual

International Symposium on, pages 380–392. IEEE, 2016.

[13] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos

Kozyrakis. Tetris: Scalable and efficient neural network accelera-

tion with 3d memory. ACM SIGOPS Operating Systems Review,

51(2):751–764, 2017.

[14] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Exploring

hidden dimensions in parallelizing convolutional neural networks.

In Proceedings of the 35th International Conference on Machine

Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,

July 10-15, 2018, pages 2279–2288, 2018.

[15] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and

model parallelism for deep neural networks. arXiv preprint

arXiv:1807.05358, 2018.

[16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey

Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat

Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul

Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. Tensorflow: A system for large-scale

machine learning. In 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), 2016.

[17] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie

Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang.

Mxnet: A flexible and efficient machine learning library for het-

erogeneous distributed systems. arXiv preprint arXiv:1512.01274,

2015.

[18] PyTorch. http://pytorch.org.

[19] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Syl-

vain Paris, Frédo Durand, and Saman Amarasinghe. Halide: a

language and compiler for optimizing parallelism, locality, and

recomputation in image processing pipelines. ACM SIGPLAN

Notices, 48(6):519–530, 2013.

[20] Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer,

and Yonghui Wu. Exploring the limits of language modeling.

CoRR, abs/1602.02410, 2016.

[21] Google Cloud. Tpu: System architecture.

[22] Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen,

Yuan Yu, Thomas Moscibroda, and Zheng Zhang. MadLINQ:

14

large-scale distributed matrix computation for the cloud. In Pro-

ceedings of the 7th ACM european conference on Computer Sys-

tems, EuroSys ’12, 2012.

[23] L. E. Cannon. A cellular computer to implement the Kalman

Filter Algorithm. PhD thesis, Montana State University, 1969.

[24] Ken Kennedy and Ulrich Kremer. Automatic data layout for

distributed-memory machines. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 20(4):869–916, 1998.

[25] Ulrich Kremer. Np-completeness of dynamic remapping. In

Proceedings of the Fourth Workshop on Compilers for Parallel

Computers, Delft, The Netherlands, 1993.

[26] Jingke Li and Marina Chen. Index domain alignment: Mini-

mizing cost of cross-referencing between distributed arrays. In

Frontiers of Massively Parallel Computation, 1990. Proceedings.,

3rd Symposium on the, pages 424–433. IEEE, 1990.

[27] Jingke Li and Marina Chen. The data alignment phase in com-

piling programs for distributed-memory machines. Journal of

parallel and distributed computing, 13(2):213–221, 1991.

[28] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Ras-

mus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi,

Samy Bengio, and Jeff Dean. Device placement optimization

with reinforcement learning. arXiv preprint arXiv:1706.04972,

2017.

[29] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner,

Quoc V. Le, and Jeff Dean. A hierarchical model for device

placement. In ICLR, 2018.

[30] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Ed-

die Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu,

Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM:

An automated end-to-end optimizing compiler for deep learn-

ing. In 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), Carlsbad, CA, 2018. USENIX

Association.

[31] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis,

Priya Goyal, Zachary DeVito, William S. Moses, Sven Ver-

doolaege, Andrew Adams, and Albert Cohen. Tensor comprehen-

sions: Framework-agnostic high-performance machine learning

abstractions. In arXiv:1802.04730v2, 2018.

[32] Arnaud J Venet. The gauge domain: scalable analysis of linear

inequality invariants. In International Conference on Computer

Aided Verification, pages 139–154. Springer, 2012.

[33] Radu Rugina and Martin Rinard. Symbolic bounds analysis of

pointers, array indices, and accessed memory regions. In ACM

Sigplan Notices, volume 35, pages 182–195. ACM, 2000.

[34] Xueguang Wu, Liqian Chen, and Ji Wang. An abstract domain to

infer symbolic ranges over nonnegative parameters. Electronic

Notes in Theoretical Computer Science, 307:33–45, 2014.

[35] Chien-Chin Huang, Qi Chen, Zhaoguo Wang, Russell Power,

Jorge Ortiz, Jinyang Li, and Zhen Xiao. Spartan: A distributed

array framework with smart tiling. In USENIX Annual Technical

Conference, 2015.

[36] J.A Bondy and U.S.R. Murty. Graph Theory with Applications.

Elseyier Science Publishing, 1976.

[37] Minjie Wang, Chien-chin Huang, and Jinyang Li. Supporting

very large models using automatic dataflow graph partitioning.

arXiv preprint arXiv:1807.08887, 2018.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016.

[39] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-

ory. Neural computation, 9(8):1735–1780, 1997.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochas-

tic optimization. CoRR, abs/1412.6980, 2014.

[41] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient

methods for online learning and stochastic optimization. Journal

of Machine Learning Research, 12(Jul):2121–2159, 2011.

[42] Taro Sekiyama, Takashi Imamichi, Haruki Imai, and Rudy Ray-

mond. Profile-guided memory optimization for deep neural net-

works. arXiv preprint arXiv:1804.10001, 2018.

[43] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar,

and Stephen W Keckler. vdnn: Virtualized deep neural networks

for scalable, memory-efficient neural network design. In Microar-

chitecture (MICRO), 2016 49th Annual IEEE/ACM International

Symposium on, pages 1–13. IEEE, 2016.

[44] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to

sequence learning with neural networks. In Advances in neural

information processing systems, pages 3104–3112, 2014.

[45] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy

Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously

large neural networks: The sparsely-gated mixture-of-experts

layer. arXiv preprint arXiv:1701.06538, 2017.

[46] Alex Krizhevsky. One weird trick for parallelizing convolutional

neural networks. In arXiv:1404.5997, 2014.

[47] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola,

Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita,

and Bor-Yiing Su. Scaling distributed machine learning with the

parameter server. In USENIX OSDI, 2014.

[48] H. Cui, J. Cipar, Q. Ho, J.K. Kim, S. Lee, A. Kumar, J.Wei,

W. Dai, G. R. Ganger, P.B. Gibbons, G. A. Gibson, and E. P. Xing.

Exploiting bounded staleness to speed up big data analytics. In

USENIX Annual Technical Conference, 2014.

[49] J. Wei, W. Dai, A. Qiao, H. Cui, Q. Ho, G. R. Ganger, P. B.

Gibbons, G. A. Gibson, and E.P. Xing. Managed communication

and consistency for fast data-parallel iterative analytics. In ACM

Symposium on Cloud Computing (SoCC), 2015.

[50] Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gib-

bons, and Eric P. Xing. Geeps: Scalable deep learning on dis-

tributed gpus with a gpu-specialized parameter server. In Eurosys,

2016.

[51] Minjie Wang, Tianjun Xiao, Jianpeng Li, Jiaxing Zhang, Chuntao

Hong, and Zheng Zhang. Minerva: A scalable and highly ef-

ficient training platform for deep learning. In NIPS Workshop,

Distributed Machine Learning and Matrix Computations, 2014.

[52] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai,

Garth Gibson, and Eric Xing. Strads: A distributed framework

for scheduled model parallel machine learning. In Eurosys, 2016.

[53] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in neural information processing systems, pages 1135–

1143, 2015.

[54] Song Han, Huizi Mao, and William J Dally. Deep compression:

Compressing deep neural networks with pruning, trained quan-

tization and huffman coding. arXiv preprint arXiv:1510.00149,

2015.

[55] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Com-

pressing deep convolutional networks using vector quantization.

arXiv preprint arXiv:1412.6115, 2014.

[56] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,

and Yoshua Bengio. Binarized neural networks. In Advances in

neural information processing systems, pages 4107–4115, 2016.

[57] Edward Anderson, Zhaojun Bai, J Dongarra, A Greenbaum,

A McKenney, Jeremy Du Croz, S Hammerling, J Demmel,

C Bischof, and Danny Sorensen. LAPACK: A portable linear

algebra library for high-performance computers. In Proceedings

15

of the 1990 ACM/IEEE conference on Supercomputing, pages

2–11. IEEE Computer Society Press, 1990.

[58] Jaeyoung Choi, Jack J Dongarra, Roldan Pozo, and David W

Walker. Scalapack: A scalable linear algebra library for distributed

memory concurrent computers. In Frontiers of Massively Parallel

Computation, 1992., Fourth Symposium on the, pages 120–127.

IEEE, 1992.

[59] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R.

Hammond, and Nichols A. Romero. Elemental: A new framework

for distributed memory dense matrix computations. ACM Trans.

Math. Softw., 39(2):13:1–13:24, feb 2013.

[60] Jaroslaw Nieplocha, Robert J Harrison, and Richard J Littlefield.

Global arrays: A nonuniform memory access programming model

for high-performance computers. The Journal of Supercomputing,

10(2):169–189, 1996.

[61] Satish Balay, William D. Gropp, Lois Curfman McInnes, and

Barry F. Smith. Efficient management of parallelism in object

oriented numerical software libraries. In E. Arge, A. M. Bruaset,

and H. P. Langtangen, editors, Modern Software Tools in Scientific

Computing, pages 163–202. Birkhäuser Press, 1997.

[62] Robert A. van de Geijn and Jerrell Watts. Summa: Scalable uni-

versal matrix multiplication algorithm. Technical report, Austin,

TX, USA, 1995.

[63] Edgar Solomonik, Devin Matthews, Jeff R Hammond, John F

Stanton, and James Demmel. A massively parallel tensor con-

traction framework for coupled-cluster computations. Journal of

Parallel and Distributed Computing, 74(12):3176–3190, 2014.

[64] Calvin Lin and Lawrence Snyder. ZPL: An array sublanguage. In

Languages and Compilers for Parallel Computing, pages 96–114.

Springer, 1994.

[65] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel pro-

grammability and the chapel language. International Journal of

High Performance Computing Applications, 2007.

[66] UPC Consortium. UPC language specifications, v1.2. Technical

report, Lawrence Berkeley National Lab, 2005.

[67] Joe B. Buck, Noah Watkins, Jeff LeFevre, Kleoni Ioannidou, Car-

los Maltzahn, Neoklis Polyzotis, and Scott Brandt. Scihadoop:

array-based query processing in hadoop. In Proceedings of 2011

International Conference for High Performance Computing, Net-

working, Storage and Analysis, 2011.

[68] Murray Stokely, Farzan Rohani, and Eric Tassone. Large-scale

parallel statistical forecasting computations in r. In JSM Proceed-

ings, Section on Physical and Engineering Sciences, Alexandria,

VA, 2011.

[69] SparkR: R frontend for Spark. http://amplab-extras.github.io/

SparkR-pkg.

[70] Mingxing Zhang, Yongwei Wu, Kang Chen, Teng Ma, and

Weimin Zheng. Measuring and optimizing distributed array pro-

grams. Proc. VLDB Endow., 9(12):912–923, August 2016.

[71] Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K. Su-

jeeth, Christopher De Sa, Christopher Aberger, and Kunle Oluko-

tun. Have abstraction and eat performance, too: Optimized het-

erogeneous computing with parallel patterns. In Proceedings

of the 2016 International Symposium on Code Generation and

Optimization, CGO ’16, 2016.

[72] Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuY-

oung, and Robert S. Schreiber. Presto: distributed machine learn-

ing and graph processing with sparse matrices. In Proceedings

of the 8th ACM European Conference on Computer Systems (Eu-

rosys), 2013.

[73] Tyler Denniston, Shoaib Kamil, and Saman Amarasinghe. Dis-

tributed halide. In Principles and Practice of Parallel Program-

ming (PPoPP), 2016.

[74] Edgar Solomonik, Devin Matthews, Jeff Hammond, and James

Demmel. Cyclops tensor framework: Reducing communication

and eliminating load imbalance in massively parallel contractions.

In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pages 813–824. IEEE, 2013.

[75] So Hirata. Tensor contraction engine: Abstraction and automated

parallel implementation of configuration-interaction, coupled-

cluster, and many-body perturbation theories. The Journal of

Physical Chemistry A, 107(46):9887–9897, 2003.

[76] Stefan C. Müller, Gustavo Alonso, Adam Amara, and André Csil-

laghy. Pydron: Semi-automatic parallelization for multi-core and

the cloud. In 11th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI 14), pages 645–659, Broomfield,

CO, October 2014. USENIX Association.

[77] David E Hudak and Santosh G Abraham. Compiler techniques

for data partitioning of sequentially iterated parallel loops. In

ACM SIGARCH Computer Architecture News, volume 18, pages

187–200. ACM, 1990.

[78] Kathleen Knobe, Joan D Lukas, and Guy L Steele Jr. Data op-

timization: Allocation of arrays to reduce communication on

simd machines. Journal of Parallel and Distributed Computing,

8(2):102–118, 1990.

[79] Michael Philippsen. Automatic alignment of array data and

processes to reduce communication time on DMPPs, volume 30.

ACM, 1995.

[80] Igor Z Milosavljevic and Marwan A Jabri. Automatic array align-

ment in parallel matlab scripts. In Parallel Processing, 1999. 13th

International and 10th Symposium on Parallel and Distributed

Processing, 1999. 1999 IPPS/SPDP. Proceedings, pages 285–289.

IEEE, 1999.

[81] J Ramanujam and P Sadayappan. Compile-time techniques for

data distribution in distributed memory machines. Parallel and

Distributed Systems, IEEE Transactions on, 2(4):472–482, 1991.

[82] J Ramanujam and P Sadayappan. A methodology for paralleliz-

ing programs for multicomputers and complex memory multipro-

cessors. In Proceedings of the 1989 ACM/IEEE conference on

Supercomputing, pages 637–646. ACM, 1989.

[83] David Bau, Induprakas Kodukula, Vladimir Kotlyar, Keshav Pin-

gali, and Paul Stodghill. Solving alignment using elementary

linear algebra. In Languages and Compilers for Parallel Comput-

ing, pages 46–60. Springer, 1995.

[84] ERIKH D’HOLLANDER. Partitioning and labeling of index

sets in do loops with constant dependence vectors. In 1989

International Conference on Parallel Processing, University Park,

PA, 1989.

[85] Chua-Huang Huang and Ponnuswamy Sadayappan.

Communication-free hyperplane partitioning of nested loops.

Journal of Parallel and Distributed Computing, 19(2):90–102,

1993.

[86] Y-J Ju and H Dietz. Reduction of cache coherence overhead

by compiler data layout and loop transformation. In Languages

and Compilers for Parallel Computing, pages 344–358. Springer,

1992.

[87] Qingda Lu, Christophe Alias, Uday Bondhugula, Thomas Hen-

retty, Sriram Krishnamoorthy, Jagannathan Ramanujam, Atanas

Rountev, Ponnuswamy Sadayappan, Yongjian Chen, Haibo Lin,

et al. Data layout transformation for enhancing data locality on

nuca chip multiprocessors. In Parallel Architectures and Compi-

lation Techniques, 2009. PACT’09. 18th International Conference

on, pages 348–357. IEEE, 2009.

[88] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson,

and Carlos Guestrin. Powergraph: Distributed graph-parallel

computation on natural graphs. In OSDI, 2012.

16

[89] Jeff Dean and Sanjay Ghemawat. Mapreduce: Simplified data

processing on large clusters. In Symposium on Operating System

Design and Implementation (OSDI), 2004.

17

	Abstract
	1 Introduction
	2 Background
	3 Challenges and our approach
	3.1 How to partition a single operator?
	3.2 How to optimize partitioning for a graph?

	4 Partitioning a single operator
	4.1 Describing an operator
	4.2 Analyzing TDL Descriptions

	5 Partitioning the dataflow graph
	5.1 Graph coarsening
	5.2 Recursive partitioning

	6 Optimizations in generating the partitioned graph
	7 Evaluation
	7.1 Experimental setup
	7.2 Training Large and Deep Models
	7.3 Comparing different partition algorithms
	7.4 Partition Results

	8 Related Work
	9 Discussion, limitations, and future work
	10 Conclusion
	References

