
GRAF: A Graph Neural Network based Proactive Resource
Allocation Framework for SLO-Oriented Microservices
Jinwoo Park

∗

KAIST

South Korea

jinwoo520528@kaist.ac.kr

Byungkwon Choi
∗

KAIST

South Korea

nfsp3k@gmail.com

Chunghan Lee

Toyota Motor Corporation

Japan

lch@toyota-tokyo.tech

Dongsu Han

KAIST

South Korea

dhan.ee@kaist.ac.kr

ABSTRACT
Microservice is an architectural style that has been widely adopted

in various latency-sensitive applications. Similar to the monolith,

autoscaling has attracted the attention of operators for managing

resource utilization of microservices. However, it is still challenging

to optimize resources in terms of latency service-level-objective

(SLO) without human intervention. In this paper, we present GRAF,

a graph neural network-based proactive resource allocation frame-

work for minimizing total CPU resources while satisfying latency

SLO. GRAF leverages front-end workload, distributed tracing data,

and machine learning approaches to (a) observe/estimate impact of

traffic change (b) find optimal resource combinations (c) make proac-

tive resource allocation. Experiments using various open-source

benchmarks demonstrate that GRAF successfully targets latency

SLO while saving up to 19% of total CPU resources compared to the

fine-tuned autoscaler. Moreover, GRAF handles traffic surge with

36% fewer resources while achieving up to 2.6x faster tail latency

convergence compared to the Kubernetes autoscaler.

CCS CONCEPTS
• Software and its engineering → Cloud computing; • Net-
works→ Network resources allocation.

KEYWORDS
microservices, resources optimization, graph neural networks, ap-

plied machine learning, cloud computing, autoscaler

ACM Reference Format:
Jinwoo Park, Byungkwon Choi, Chunghan Lee, and Dongsu Han. 2021.

GRAF: AGraphNeural Network based Proactive Resource Allocation Frame-

work for SLO-Oriented Microservices. In The 17th International Conference
on emerging Networking EXperiments and Technologies (CoNEXT ’21), Decem-
ber 7–10, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3485983.3494866

1 INTRODUCTION
Microservice is an architectural style that structures an application

into loosely coupled services, which are also called microservices.

∗
The first two authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00

https://doi.org/10.1145/3485983.3494866

Microservice is gaining popularity, the survey report from O’Reilly

in 2020 [10, 11] says 1502 respondents who took a technical role

in the company have applied microservices into their business.

This is because microservice’s modular architecture enhances the

reliability, maintenance, and scalability of overall service [58]. Also,

its ease at making small deployments enables applications to be

continuously developed and updated at a small cost.

Microservices are often executed on cloud servers to carry out

user-facing latency-sensitive applications including Netflix [24],

Amazon [2], and Airbnb [3]. Considering applications’ purpose and

target, indicators that represent user experiences such as availability

and tail latency are often set as service level objectives (SLOs) [35].

Latency SLO in these microservices applications is especially impor-

tant. Therefore, many operators choose to overprovision resources

on clouds [7, 9, 60]. Unfortunately, overprovisioning comes with the

cost, about $6.6 billion are wasted in the cloud because of overprovi-

sioning [8, 14, 54]. Even slight improvements in the cloud resources

allocations would result in saving millions of dollars at scale. An

efficient resource allocation framework would tightly minimize

associated resources in terms of tail latency to satisfy SLO.

In addition, an efficient resource allocation framework should

allocate resources to every microservices on the application proac-

tively, according to the change in front-end workload. Suchmeasure

is necessary to avoid cascading effect (discussed in § 2.1), which

severely degrade microservices performance when traffic surges.

The root causes of cascading effect are; inevitable deployment over-

head (i.e., 15s startup latency [39]), and the nature of microservice

architecture that the requests are processed along with series of

microservices. When the traffic surges at the front, microservices in

depth are not directly affected until prior microservices process in-

creased workloads downwards after deploying additional resources.

Proactive resource allocation to the microservice chain is the key

to avoiding cascading effect, otherwise, the delay is accumulated

while congestion mitigation from the first to the last microservice

in the chain takes place one at a time.

Therefore, the resource allocation framework for microservices

should aim for two major goals: optimizing CPU resources in terms

of latency SLO (i.e., end-to-end tail latency), and proactively de-

ploying CPU resources for every microservices according to the

expected impact of the front-end workload.

Until now, autoscaler [21, 41, 46, 52, 53, 55, 62, 63] has been

widely developed for resource allocation in microservices but no

existing approaches consecutively address the two major goals in-

troduced above. First, they do not target latency SLO except for

FIRM [53], yet FIRM also fall in sub-optimal configuration (dis-

cussed in § 5.3). Existing autoscalers target objectives such as CPU

154

https://doi.org/10.1145/3485983.3494866
https://doi.org/10.1145/3485983.3494866

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany J. Park et al.

utilization or performance (e.g., throughput, profit/cost). For ex-

ample, Kubernetes (K8s) autoscaler observes resource utilization

of each microservice and make scaling decision to keep utiliza-

tion under certain threshold. K8s autoscaler’s such behavior can

achieve optimal at server-side resources utilization, but this does

not lead to achieving optimal in latency SLO’s perspective. For the

above reasons, K8s autoscaler does not fix the utilization threshold

near 100% which would minimize total CPU resources but provides

a function that can change the threshold of resource utilization

on-demand. However, this only leaves the burdens of balancing

between operating costs and quality-of-service to human operators.

The operators are left with no choice but to set a threshold with

a large extra margin to satisfy latency SLO, which results in over-

provisioning. Second, many existing autoscalers [21, 53, 55, 62, 63]

control resources of each microservice individually, which can not

avoid cascading effects and suffer from severe performance degra-

dation when traffic surges. Those autoscalers are blindsight until

the deepest microservice in the chain is affected by the workload

change, unable to fully react to traffic surge. Combined with the

delay caused by instance creation time in each microservice, such

immature behavior of autoscaler is not negligible in terms of tail

latency.

Devising a resource allocation system that achieves two major

goals rises several non-trivial requirements:

• First, predicting end-to-end percentile latency of microservices

under multi-APIs workload, assuming planned CPU resources

are deployed. Deploying CPU resources and observing the end-

to-end percentile latency is not affordable while servicing a mi-

croservices application. Any kind of trial and error method will

immeasurably harm user experience, degrading the performance

of microservices.

• Second, finding optimal CPU resource configuration for every

microservice component at once, within the decision time win-

dow. Unfortunately, it’s almost infeasible to find optimal resource

configuration from x to the nth possible combinations within

few seconds with global optimization algorithms.

• Third, proactive resource allocation should be made to avoid

cascading effect when traffic increases. This requires the resource

allocation for every microservices to be made according to the

expected impact of the front-end workload change.

To accomplish the above requirements, we present GRAF: a

graph neural network-based proactive resource allocation frame-

work for SLO-oriented microservices. First, GRAF analyzes the

frontend’s workloads of various APIs into workloads distribution

upon microservices, which are paired with microservice’s CPU

quota to represent the node state of microservices’ graphical sys-

tem. Then GRAF leverages the graph neural network (GNN) to

predict the end-to-end tail latency of microservices with the mi-

croservices’ node states. Second, GRAF utilizes gradient descent

algorithm to find outminimal resource configurationwhich satisfies

tail latency SLO. In the loss function, the fully trained end-to-end

tail latency prediction model is used as a detector for possible la-

tency SLO violations. Gradient descent algorithm is lightweight and

finds adequate resource combination fast enough. Third, GRAF only

accesses frontend workload and microservice’s trace data history,

which allows GRAF to make proactive resource allocation decisions

immediately when front-end workload differentiates. Thus, GRAF

saves microservice applications from suffering extensive latency

elongation when traffic surges.

To the best of our knowledge, GRAF is the first work to optimize

microservice resources in terms of end-to-end tail latency. GRAF

outperforms state-of-the-art resource allocation systems such as

K8s autoscaler. Since Kubernetes autoscaler is not designed to tar-

get latency SLO, we have fine-tuned the threshold value of K8s

autoscaler to meet latency SLO for comparison. GRAF saves 14-

19% total CPU resources compared to fine-tuned threshold-based

K8s autoscaler while satisfying latency SLO. GRAF utilizes 36%

fewer CPU resources and achieves up to 2.6x faster tail-latency

convergence compared to K8s autoscaler when traffic surges.

In summary, we make the following key contributions:

• Tail latency prediction with GNN: A graph neural network

design that can process graph-structured systems like microser-

vices to model complex end-to-end variables such as tail latency.

• Proactive optimal resource allocation: GRAF optimizes re-

sources for every microservices in the application according to

the expected impact of front-end workload change, while directly

targeting end-to-end tail latency.

• End-to-end resource allocation framework: An end-to-end

implementation and evaluation of GRAF with various applica-

tions in a real Kubernetes cluster and comparison with the state-

of-the-art autoscaler.

2 OBSERVATIONS AND OPPORTUNITIES
Microservices communicate with one another and form a chain

of microservices. Most existing autoscalers do not consider the

microservice chain and suffer from the limitations [34]. Specifically,

we observed that they experience a phenomenon called cascading

effect and severely degrade the performance when traffic changes

abruptly (§ 2.1) and also inefficiently optimize resources for mi-

croservices (§ 2.2). In this section, we describe our observations in

detail and investigate the opportunity behind them to effectively

optimize resources for microservices.

2.1 Cascading Effect
A cascading effect is a phenomenon that subsequent microservices

in a chain slowly perceive changes in the workload because of the

instance creation delay of previous microservices in the chain. The

cascading effect severely degrades the performance of microser-

vices when traffic surges. As described in Section 7, most existing

autoscalers do not consider the microservice chain and face the

cascading effect. We describe the cascading effect based on K8s

autoscaler [19] that is widely used [5, 9, 18, 27]. Then, we show

how to avoid it.

K8s autoscaler operates with a pre-determined resource utiliza-

tion threshold. When a microservice’s resource utilization reaches

the threshold, the autoscaler creates more instances of the microser-

vice to keep the utilization below a certain level
1
. Service operators

can control the threshold to adjust how quickly the autoscaler reacts

1
One can vertically scale a microservice instance up by allocating more low-level

resources such as CPU or memory. However, it is insufficient because the amount of

resources allocated to an instance cannot get larger than the total amount of resources

in the machine it is running on [55].

155

GRAF: A GNN-based Proactive Resource Allocation Framework CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

5.5 8.7
12.5

23.6

45.6

0

10

20

30

40

50

1 2 4 8 16

Ti
m

e
to

 c
re

at
e

(s
)

of instances to create at once

Figure 1: Time to create microservice in-
stances.

0
50

100
150
200
250
300

0 50 100 150 200 250 300 350

To
ta

l #
 o

f
in

st
an

ce
s

Time (s)

Proactive
K8s Autoscaler(10%)
K8s Autoscaler(25%)
K8s Autoscaler(50%)

Figure 2: Total Number of microservice
instances when traffic surges.

0.3 0.4
2.0

0.5
2.2

17.2

0.9 2.0

22.6

3.5

12.2

27.8

0

5

10

15

20

25

30

90%-tile 95%-tile 99%-tile

La
te

n
cy

 (
s)

Proactive
K8s Autoscaler(10%)
K8s Autoscaler(25%)
K8s Autoscaler(50%)

Figure 3: End-to-end latency when traf-
fic surges.

Internet

Cart
Currency

Product Shipping

User requests

Frontend

Recommendation

Figure 4: A microservice chain of an
open source benchmark called Online
Boutique [25]

Robot shop Bookinfo

Details Reviews

Ratings

Product Page

User requests
(REST API)

Web

Catalogue

User requests
(REST API)

Figure 5: Microservice chain of Robot
Shop [6] and Bookinfo [16]

0

100

200

300

400

500

0 500 1000 1500

5
0

%
-t

ile
 la

te
n

cy
 (

m
s)

CPU quota (milli-core)

Catalogue Web

Figure 6: Latency curves of each mi-
croservice in Online Boutique applica-
tion

to the changes in resource utilization. The autoscaler monitors the

usage of the resources such as CPU and memory to independently

creates instances for each microservice.

Cascading effect. Instance creation time is accumulated and prop-

agated down through the microservice chains and we call this phe-

nomenon the cascading effect. Figure 1 shows the time it takes to

create instances
2
. Across microservices, it takes 5.5 seconds on

average to create a single instance. Under circumstances where

multiple instances are created at once, the creation time increases

even more. Furthermore, in production settings, operators set an

interval (e.g., 15 seconds) of how often the autoscaler makes scaling

decisions to prevent the number of instances from being fluctu-

ated. This instance creation time and control interval makes the

autoscaler slow at perceiving changes in the microservices of an

application.

Due to the cascading effect, the further back a microservice is

located within a chain, the longer it takes for the microservice

to experience the changes in workload and resource usage. For

example, Figure 4 shows one of the microservice chains in an open-

source benchmark called Online Boutique [25]. This microservice

chain is to get a cart page of the service. When ‘Frontend’ receives

a request from an end-user, it first sends a request to the following

microservice called ‘Currency’. ‘Frontend’ then sequentially sends

a request to the successive microservice ‘Cart’ and so forth.

Assume that ‘Currency’ receives an excessive amount of requests

and the autoscaler creates more instances for ‘Currency’. During

that time, ‘Cart’ is not aware of the change in the workload. After

the additional instances of ‘Currency’ are created, ‘Cart’ perceives

2
We create instances of microservices in [25] on a single worker node and ignore the

network delay to download the container images.

the increase of the workload. This happens sequentially to the

following microservices.

Experimental result. We can observe this phenomenon in exper-

iments. The upper graph in Figure 7 shows the workload that each

microservice perceives when using K8s autoscaler. We transmit

queries for the cart page at a rate of 300qps by using Vegeta [13].

While ‘Frontend’ perceives its peak traffic at 31s, ‘Cart’ starts han-

dling its peak workload at 118s. It is because until enough number

of instances for ‘Frontend’ is created the workload for ‘Cart’ does

not reach the peak. The subsequent microservices see the peak

even further later at 155s. A naïve approach to reducing the delay

caused by the cascading effect is to lower the utilization threshold,

but it comes with a lot of costs. We run the same experiment while

varying the CPU utilization threshold from 10 to 50%. Figure 2 and

3 show the total number of microservice instances and the end-to-

end latency, respectively. When we adjust the threshold from 50 to

10%, the 99%-tile latency decreases from 27.8 to 17.2 seconds but

the total number of instances dramatically increases from 51 to 258.

Opportunity. When we create the instances for all microservices

in a chain at once, we could avoid the cascading effect. We first

transmit the cart queries and then manually create the heuristically

determined number of instances for each microservice. As shown in

Figure 2 and 3, this approach ‘Proactive’ reduces the 99%-tile latency

by 8.6 times compared to the 10% threshold setting of K8s autoscaler

while creating 6.6 times less amount of the total instances. The time

to reach the peak workload for all microservices is also similar to

each other at 58s, as shown in the lower graph of Figure 7. If we

can automatically determine the appropriate number of instances,

156

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany J. Park et al.

< Microservice Chain >

0

1000

2000

Time (s)

Frontend Cart Recommendation Product Shipping Currency

31 118 155W
o

rk
lo

ad
 (

q
p

s)

5831
0

1000

2000

Time (s)

< When using K8s autoscaler >

< When proactively creating instances >

Frontend

Cart

Recommendation

Shipping

Currency

Currency

Product

Time

W
o

rk
lo

ad
 (

q
p

s)

Figure 7: Microservice chain and workload that each microservice perceives when traffic surges

we can develop a resource allocation framework that avoids the

cascading effect.

2.2 Microservice Latency Characteristics
Microservices share the limited resources. Depending on how to

distribute resources across microservices, an application could de-

liver better performance with less amount of resources. For ex-

ample, Figure 5(left) and 6 shows a microservice chain of a demo

application called Robot Shop [6] and the relationship between

latency and resource for each microservice, respectively. Because

the ‘Catalogue’ microservice shows a more sharp curve in latency

than ’Web’ microservice as shown in Figure 6, one could deliver

the same performance with less amount of resources by allocating

more resources to ‘Catalogue’. Figure 5 (right) shows a microservice

chain of another demo application called Bookinfo [16]. ‘Product

Page’ transfers requests to ‘Details’ and ‘Reviews’ in parallel, so

that the end-to-end latency is determined by the longest one be-

tween them, which is ‘Reviews’ and ‘Ratings’ in this case. Even

if we reduce resource allocated to ‘Details’, Bookinfo would show

the same end-to-end latency unless the time to handle a request by

‘Details’ go beyond the time handled in ‘Reviews’ and ‘Ratings’.

Opportunity. As described above, one could optimize resources

for microservices in a better way when using the holistic view of

the microservice chain. However, it is known that resolving high-

dimensional optimization problems is non-trivial. In our case, it

is feasible because the target function has convexity as latency of

every microservice monotonically decreases.

3 DESIGN

Approach. Our goal is to identify the minimal CPU quota re-

sources configuration that satisfies latency SLO. This is expressed

in the formula as:

min

®𝑟

∑
𝑟 ∈®𝑟

𝑟 (1)

𝑠 .𝑡 . 𝐿(®𝑟, ®𝑤) ≤ Latency SLO (2)

where ®𝑟 is the CPU quota for each microservice, ®𝑤 is the workload

for each API (e.g., queries per sec), and 𝐿(®𝑟, ®𝑤) is the end-to-end tail

latency of microservices. For resource allocation to take place in

real-time, the configuration must be solved simultaneously to the

change of input workloads. However, difficulties arise since latency

can only be measured after deploying a resource configuration to

the real cluster. It is infeasible to try possible combinations in real-

time because changing resources would affect the performance of

the microservices. Moreover, the search space of possible combina-

tions is very large as there are tens [6, 25, 40] to hundreds [4, 12]

of microservices in an application.

To overcome this challenge, we train graph neural network

(GNN) to model end-to-end tail latency instead of measuring in real-

time after making resource deployments. Estimating end-to-end tail

latency of the microservice application is non-trivial because every

microservices have different latency curves and complex edge con-

nections between microservices. Not only a request’s end-to-end

latency is a combination of multiple addition and max operations

between each microservice’s latency, but also some microservices’

latency is affected by the performance of neighboring microser-

vices. Accommodating the graphical structure of microservices,

we leverage GNN which is known to be scalable when modeling

graph-structured workloads [36, 47, 48].

GNN is trained as supervised learning to predict end-to-end tail

latency with workloads, resources, and latency paired samples col-

lected from real clusters. Specifically, GNN is structured as message

passing neural network (MPNN) [42] with edge information con-

structed from microservices tracing data. For proactive resources

allocation, we precisely restricted state features of our GNN model

to use only available information at the front end. With trained

GNN, frontend workload, and target latency SLO, we apply gradient

descent optimization with microservices’ resources as variables.

Our loss function is designed to minimize total CPU resources in

microservices while avoiding violation of latency SLO. Thus, GRAF

finds resource combination that minimizes total CPU resources

for microservices while satisfying latency SLO. Meanwhile, GRAF

proactively allocates resources for every microservices according

to frontend workload changes, avoiding performance degradation

at traffic surge.

157

GRAF: A GNN-based Proactive Resource Allocation Framework CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

B

B

State and trace
Collector (§3.2)

Workload Analyzer (§3.3)

Message
Passing
Neural

Network

Fully
Connected

Neural
Network

Latency
Prediction

Sample Collector (§3.7)

Frontend
Workload

Instances
Deployment

Scaled Input

Resource
Configuration

Trained
GNN

Asynchronous Training

Synchronous deployment

Workload
API 1
API 2
API 3

(Workload, Resource, Latency)

url

User requests

NGINX

media user

User-mentionCompose-post

Unique-id

Post-storage User-timeline

text

Internet

Microservice Graph structure
Execution telemetry data

Microservices deployed on Kubernetes

Resource
Controller

(§3.6)

Configuration
Solver (§3.5) Latency

SLO

1

Latency Prediction Model (§3.4)
2 3

45

Figure 8: GRAF: Design Overview

3.1 GRAF Overview
Figure 8 illustrates an overview of the GRAF Design. GRAF operates

as an end-to-end resource allocator with six components geared

up together within a microservice application deployed onto real

Kubernetes cluster.

1. State and trace collector (§ 3.2), collects information of mi-

croservices deployed on Kubernetes cluster. The collected data is

formatted and reshaped then passed to the other components.

2. Workload analyzer (§ 3.3), analyzes front-end workload into

distributed workloads to each microservices in the system. Such

distributed workloads capture the state of the graph, representing

a microservices dependency. The reshaped workload is fed to the

latency prediction model as an input feature.

3. Latency predictionmodel (§ 3.4) outputs end-to-end tail-latency

of microservice application with inputs of each microservice’s state

in pair of workload and CPU resources.

4. Configuration solver (§ 3.5) calculates resource configuration

which corresponds to Eq (1), and Eq (2). The optimal configura-

tion is found by iterating through possible resource combinations

while identifying a latency SLO violation by estimated end-to-end

tail latency from the above latency prediction model. Once the

configuration is found, the resource controller (§ 3.6) calculates

corresponding instances for each microservice and make scaling

decision to the cluster.

5. For the training process, the sample collector (§ 3.7) gathers

sample and build training set, validation set, and test set. Microser-

vice state-aware sampling allows the collector to sample efficiently

from real Kubernetes cluster environment where search space is

very large.

Note that Latency Prediction Model asynchronously trains the

end-to-end tail latency prediction model with collected samples

utilizing a GNN. The samples are collected by state-aware sample

collector in pair of frontend workload, resources configuration, and

end-to-end tail latency (e.g.,99%-tile) from a microservice applica-

tion deployed on Kubernetes cluster. Then, Configuration Solver cal-
culates resource configuration synchronously to frontend workload

and latency SLO using gradient descent optimization and trained

Latency Prediction Model. Then, the resource control module in

Resource Controller makes scaling decisions on microservices ac-

cording to calculated resource configuration. Each component will

be further explained in detail throughout the following sections.

3.2 State and Trace Collector
The state and trace collector monitors the current states of mi-

croservices and collects the history of trace data. cAdvisor [17] is

used to monitor each microservice’s current CPU usage and CPU

utilization. Jaeger [20] is used to collect trace data of every request

executed through the microservices. These trace data include the

frontend workloads, the execution path and the amount requests to

microservices for each API, individual microservice’s latency, and

the end-to-end microservice’s latency. End-to-end tail-latency is

measured by picking percentile rank in the collected latency sam-

ples. The frontend workloads and the execution history of requests

are delivered to the workload analyzer for further process.

3.3 Workload Analyzer

Capturing the microservice’s graphical features. The state

collector observes the frontend workload for each API, which we

have annotated as ®𝑤 . Front-end workloads information does not

represent graph characteristics of the microservices. The workload

analyzer gets front-end workloads as input and outputs distribution

of workloads for each microservice in the application. With a dis-

tributed tracing called Jaeger [20], the workload analyzer collects

the request history to every microservices in the chain for exe-

cuting each API. Depending on the conditions same API’s request

history could vary, from the history 90%-ile samples are chosen

to represent the behavior of the API. According to determined

158

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany J. Park et al.

Microservices
Graph Step 1 Step 2

𝒙𝟏𝟎𝒙𝟗
𝒆𝟗 𝒆𝟏𝟎

𝒙𝒊 → 𝒆𝒊

(a) Node Embedding

L
a
te

n
cy

N
o
d
e
 E

m
b
e
d
d
in

g

𝒆𝒊 → 𝐿𝑎𝑡𝑒𝑛𝑐𝑦

(b) Readout

Figure 9: Graph neural network composed of node embed-
ding and readout phase to predict latency

trace data for ®𝑤 , the amount of workload that each microservice

would experience can be calculated. The frontend input workload,

®𝑤 , is converted to each microservice’s workload 𝑙𝑖 for the microser-

vice node 𝑖 . Microservice node feature processing is completed

by pairing workload 𝑙𝑖 , and allocated CPU resource 𝑟𝑖 for every

microservices. Then, the following node features are fed into the

latency prediction model as an input state for predicting end-to-end

tail latency.

3.4 Latency Prediction Model
To successfully train the end-to-end tail latency prediction model,

we carefully design input state features, neural network structure,

and loss function. In addition, the state-aware sample collector

(§ 3.7) is made for an efficient sample collection from real clusters.

Graph neural network. Our GNN is composed of MPNN [42] for

graph node embedding and fully connected (FC) layers for readout

as notated in Fig 9. MPNN is structured with edge connection

details derived from trace data of the microservice application’s

every APIs.

Given the vectors of xi as input features corresponding to the

nodes in microservice graph representation, GRAF elicits node

embedding (xi → ei). The node embedding ei is a vector that

implies information from all neighboring nodes. To compute node

embedding vector, GRAF propagates messages from parent to child

nodes in a sequence of message passing steps, starting from the

front-end node of the microservice. In every message-passing steps,

a node 𝑖’s embedding is updated with the sum of every message

collected from its parent nodes and its own embedding vector as:

𝑒𝑖 = 𝛾 (𝑘) (𝑥𝑖 ,
∑

𝑗 ∈𝑁 (𝑖)
𝜙 (𝑘) (𝑒 𝑗)) (3)

where 𝛾 (·) and 𝜙 (·) are neural network implemented as multi-layer

perceptrons, (𝑘) meaning neural network of 𝑘𝑡ℎ message passing

step. Also, 𝑁 (𝑖) represents set of parent nodes of node 𝑖 .
Specifically, our MPNN is designed to carry out two message-

passing steps. In the first step, each node embedding is calculated

with aggregated messages (i.e., node features), which are from one-

hop anterior microservices, shown in Fig 9(a) Step 1. At the next

consecutive MPNN layer, new node embedding is updated from

messages (i.e., node embeddings), which are again aggregated from

one-hop anterior microservices, shown in Fig 9(a) Step 2. This

neural network structure allows implicit comprehension of the

influences from anterior microservices in the microservice graph.

The final node embedding ei from MPNN is passed to FC layers

as the readout phase. At readout, two consecutive FC layers carry

out end-to-end tail latency regression with input node embedding

as shown in Fig 9(b). The dropout is introduced to FC layers and

the validation set is used to prevent overfitting and save the best

performance GNN.

Handling tail-latency loss. Latency Prediction Model targets end-
to-end tail latency, specifically 99%-tile in our experiments. 99%-tile

latency of a microservice application shows large ranges depending

on allocated CPU resources. Also, it shows high variance at latency

peaks, and samples of extreme irregular latency values are collected

from time to time, even if sampling is done under a similar resource

configuration setting.

To accommodate 99%-tile latency’s characteristics, we introduce

three tricks to our loss function. First, we apply percentage error

so our model achieves better predictions in small latency regions

(e.g., 0-200ms). Otherwise, the trained model shows the behavior of

predicting accurately in big latency regions (e.g., 200-3000ms) com-

pared to small latency regions. Second, we choose the hüber loss

function instead of the mean-square loss function to increase stabil-

ity during training. The Hüber loss function is designed to give out

mean-square-error towards small error within bounds and linear

error when a large error that’s out of bounds occurs. Thus, irregular

samples that show extreme values in some of the collected samples

have less effect during the training process. Third, we introduce

asymmetry in the loss function, it gives more penalty if the latency

prediction of the model is lower than the actual value and gives

less penalty, otherwise. Considering our original purpose to cal-

culate resources configuration that satisfies latency SLO, it’s more

critical when the model underestimates end-to-end latency. There-

fore, we avoid underestimation of our latency prediction model by

penalizing more when it guess latency to be shorter than actual.

𝐿𝑜𝑠𝑠 (𝑥) =


−𝜃𝐿 (2𝑥 + 𝜃𝐿) for 𝑥 < −𝜃𝐿
𝑥2 for −𝜃𝐿 ≤ 𝑥 < 𝜃𝑅

𝜃𝑅 (2𝑥 + 𝜃𝑅) for 𝜃𝑅 ≤ 𝑥

(4)

Our loss is calculated following the above equation (4), where

x represents the percentage error between model output and true

label. 𝜃𝐿 and 𝜃𝑅 are constants that modulate the shape of the latency

prediction model’s asymmetric hüber loss function. 𝜃𝐿 is chosen

as a larger value than 𝜃𝑅 to achieve desired behavior of penalizing

underestimation more. As the result, trained Latency Prediction
Model shows a slight overestimation of end-to-end tail latency.

3.5 Configuration Solver

Synchronous resource configuration. Unlike the latency pre-

diction model which is asynchronously trained, the configuration

solver must synchronously find optimal resource configuration ac-

cording to front-end workload change and latency SLO demand. For

synchronous operation, the solver must be light and fast. To meet

the demands, GRAF practices gradient descent optimization along

with variables ®𝑟 for the loss function Eq (5) to find out minimal

159

GRAF: A GNN-based Proactive Resource Allocation Framework CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

resource configuration which satisfies latency SLO.

𝐿𝑜𝑠𝑠 (®𝑟, 𝑆𝐿𝑂) =
∑
𝑟 ∈®𝑟

𝑟 + 𝜌 ∗ 𝜙 (𝐿(®𝑤, ®𝑟), 𝑆𝐿𝑂) (5)

𝜙 (𝑥,𝑦) =𝑚𝑎𝑥 (0, 𝑥 − 𝑦) (6)

Loss is determined with respect to change of resources ®𝑟 , and
latency SLO. The first term in the equation 5, works as the objective

term for minimizing total CPU resources, while the second term

works as a penalty term for violating latency SLO due to insufficient

CPU resources. 𝜌 is a penalty coefficient that amplifies the result

of the penalty function 𝜙 (·). Pre-trained latency prediction model

𝐿(®𝑤, ®𝑟) estimates tail-latency and is used as a detector for latency

SLO violations. Max function is used as a penalty function 𝜙 (·) as
stated in equation 6. Gradient descent algorithm can be applied

because the equation 5 is end-to-end differential, including neural

network model for latency estimate. Gradient descent algorithm

reaches optimal value by minimizing the resources without trig-

gering penalty term. The configuration solver iterates until the

tolerance, corresponding to 𝐿𝑜𝑠𝑠𝑡 − 𝐿𝑜𝑠𝑠𝑡−1 at the current 𝑡 step,
is less than the predetermined threshold. Although gradient de-

scent optimization cannot guarantee finding a global minimum in

non-convex functions, the monotonic relationship between each

microservice’s latency and CPU resource enables it. Empirical re-

sults are further provided in evaluation (§ 5.2). We use ADAM [45]

for optimization of our loss function.

3.6 Resource Controller

Scaling workload and instances. The resource control module

scale observed workload moderately to fit into the latency predic-

tion model. Scaled workloads are fed into the configuration solver,

which gives out optimal resource configuration as the output. The

resource controller brings back the previous scaling process by mul-

tiplying the resource configuration from the configuration solver

according to the magnitude of scaling done to the workload. With

the processed resource configuration, the resource controller calcu-

lates the number of instances to scale in/out for every microservices.

𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 𝐶𝑒𝑖𝑙 (𝐶𝑃𝑈𝑞𝑢𝑜𝑡𝑎/𝐶𝑃𝑈𝑢𝑛𝑖𝑡) (7)

The resource configuration from the configuration solver comes

out as a combination of a real number (i.e. CPU quota). The number

of instances is rounded up by an instance’s CPU quota unit as

represented in the equation 7. Finally, the scaling decisions are

handed over to the Kubernetes cluster and each microservice’s

CPU resources are adjusted.

3.7 Sample Collector
Building a big enough training dataset is necessary to train GNN

at predicting end-to-end percentile latency with high accuracy.

Without simulators or pre-collected trace data, it is necessary to

collect samples by interacting with real clusters which are time-

consuming. GRAF makes use of the state-aware sample collector,

which enables efficient sample collection for the training dataset.

Unlike our resource allocation framework, during sample collection,

we utilize other state information besides front-end information.

Eachmicroservice’s current CPU usage, CPU utilization, tail-latency

from 50%-tile to 99%-tile, workloads are observed by the state-aware

Algorithm 1 Reducing Search Space

1: Require: Individual microservice’s CPU usage, tail-latency

2: procedure ReducedSearchSpace
3: Initialize Microservices with sufficient CPU

4: M = Set of every Microservices

5: 𝑇𝐿 ← 𝑀.𝑔𝑒𝑡𝑇𝑎𝑖𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦 ()
6: for 𝑖 ∈ 𝑀 do
7: Reset Microservices with sufficient CPU

8: while True do
9: Reduce 𝐶𝑃𝑈𝑖

10: if 𝑀𝑖 .𝑔𝑒𝑡𝑇𝑎𝑖𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦 () > 𝑇𝐿𝑖 then
11: 𝐻𝑖 = 𝐶𝑃𝑈𝑖 ⊲ Higher Bound

12: Break
13: while True do
14: Reduce 𝐶𝑃𝑈𝑖

15: if 𝑀𝑖 .𝑔𝑒𝑡𝑇𝑎𝑖𝑙𝐿𝑎𝑡𝑒𝑛𝑐𝑦 () > 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑆𝐿𝑂 then
16: 𝐿𝑖 = 𝐶𝑃𝑈𝑖 ⊲ Lower Bound

17: Break
18: Return L, H

sample collector. The heuristic algorithm caps sample collector from

exploring unnecessary resource regions where it’s too high that

latency would no longer decrease or it’s too low that the latency of

a single microservice would violate latency SLO.

The sample collector collects samples from reduced search space

identified by using Algorithm 1. An upper bound for each microser-

vice is found by collocating large CPU resources for every microser-

vices then reducing the target microservice’s CPU resource step

by step. The latency for each microservice has a lower bound due

to the required minimal CPU cycles to handle a request. The up-

per bound is set when a decrease in CPU resource for the target

microservice results in longer latency. On the other hand, a lower

bound for each microservice is found by further reducing the target

microservice’s CPU resource step by step. If the latency of a single

microservice exceeds the latency SLO which targets end-to-end

latency of the microservices application, the corresponding CPU

resource is set as the lower bound.

3.8 Proactive Resource Allocation
There are two major characteristics in GRAF, which enable proac-

tive resource allocation according to front-end workload change.

First, Latency Prediction Model only utilizes front-end workloads

data, prior information (e.g., tracing data of each API workload),

and CPU quota configuration. Therefore, before every microser-

vices are already affected by traffic change at the front-end, Latency
Prediction Model predicts expected end-to-end tail latency for the

front-end workloads and possible CPU resource allocations. Second,

the resource controller synchronously copes with the change of

front-end workload and change of latency SLO demand. It’s possi-

ble because our configuration solver is lightweight, using gradient

descent optimization. Configuration solver finds out adequate re-

source configuration, without complex procedures such as training

neural network every time or finding optimal configuration with

heavy global optimization algorithms. In our experiments, it takes

160

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany J. Park et al.

Parameter Value

Number of epoch 7 × 104
Batch size 256

Learning Rate 2 × 10−4
Dropout Probability 0.25

Asymmetric hüber loss 𝜃𝐿 (0.1), 𝜃𝑅 (0.3)

Table 1: Latency Prediction Model (§ 3.4) training parame-
ters.

3.4-6.8s to calculate resource configuration when front-end work-

load and latency SLO are given. The proactive resource allocation

makes GRAF tolerant to traffic surges, which will be demonstrated

in the Evaluation chapter.

4 IMPLEMENTATION
To collect CPU usage and workload data for each microservice, we

use Prometheus [26], Linkerd [22], and cAdvisor [17]. For tracing

information about the microservice chain, we leverage Jaeger [20].

We implemented our machine learning model using Pytorch [50]

and torch geometric [38] modules. Total 92K samples are collected

from the microservice applications for training. The training and

gradient descent optimization modules are implemented in 0.5K

lines of Python code. The data collection and resource control

module is implemented in 3.2K lines of Python code.

Training parameters. We implemented the message passing neu-

ral network and fully connected readout neural network using

PyTorch [50] and torch geometric [38] modules. The MPNN has

the input size of the node’s features and contains two hidden layers

with 20 hidden units, all using ReLU activation function. The output

of MPNN for each node is flattened and fed toward a fully connected

neural network for the readout phase. The fully connected (FC)

neural network also contains two hidden layers with 120 hidden

units, having ReLU activation function and one output dimension

for the last layer. Dropout layers are applied to every layer except

for the last layer for the generalization of the model during training.

The input dimension of MPNN equals the number of node features

and the input dimension of the FC neural network is linear to the

number of nodes. Hyperparameters of the latency prediction model

training are listed in Table 1.

5 EVALUATION
We evaluate GRAF to answer the following questions:

• How effectively does each design component in GRAF function?

• How much total CPU resources are saved by GRAF compared to

Kubernetes autoscaler?

• How much better does GRAF handle traffic surge compared to

existing autoscalers?

Experimental Setup. We evaluate GRAF using two open-source

microservice applications: Online Boutique [25] and Social Net-

work [40]. Graph representation of the controlled microservices for

Online Boutique and Social Network is depicted in Figure 4 and 10,

respectively. Kubernetes [21] is used for underlying container or-

chestration. We deploy Kubernetes clusters on 7 machines equipped

url

Internet

User requests

NGINX

media user

User-mentionCompose-post

Unique-id

Post-storage User-timeline

text

Figure 10: A microservice chain of a post-compose request
in Social Network [40].

Latency Region 0-50ms 50-100ms 0-200ms 0-800ms over-estimate

Percentage Error 21.3% 27.1% 27.1% 31.9% 5.2%

Table 2: Average absolute percentage error of model predic-
tion according to sampled 99%tile-latency region.

with 2 Intel E5-2650 CPUs and 128GB of memory. We use a ma-

chine for the Kubernetes master node and the rest for the worker

nodes. We use GeForce GTX1080 for training. We use Locust [23]

and Vegeta [13] for load generation. The load generators generate

workloads for sample collection and the creation of traffic surges.

For the Social Network application, Vegeta generates post-compose

requests. For the Online Boutique application, Locust generates

workloads composed of three multi APIs. Load generation takes

place in a separate machine from Kubernetes clusters.

Sample Collection and Training. A sample is collected in the

procedure of applying resource configuration, generating load, col-

lecting latency, and initialization. Random resource configuration

in a range of Algorithm 1 is chosen and applied to the microservices

of an application. After a load is generated, the latencies of requests

are collected within 10 seconds time window which measures the

percentile latency of a sample pair. Initialization is a 5 seconds

process that flushes out possible existing requests queue for the

next consecutive sample collections.

During the experiments, a latency prediction model is trained for

each application. As the graph structure of microservices for each

application is unchanged throughout the experiments, the model is

trained once. The trained model is then used to reproduce every

result in the evaluation without retraining. For training, 42k and

50k samples are collected for Social Network and Online Boutique

respectively.

5.1 End-to-end Tail Latency Prediction

Latency prediction accuracy. Table 2 shows the results of La-
tency Prediction Model. Our collected samples are separated into the

training, validation, and test sets. Accuracy of the latency predic-

tion model is measured by having prediction upon test set which

is unseen during training. As GRAF used percentage error in the

loss function, the latency prediction model tends to have higher

accuracy in the lower latency region. This behavior is intended be-

cause our focus is to satisfy latency SLO, which is usually set upon

161

GRAF: A GNN-based Proactive Resource Allocation Framework CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

low latency region. Also, Table 2 shows that the latency prediction

model tends to overestimate about 5.2% upon overall data points.

Over-estimate of latency allows GRAF to avoid resource configu-

ration that might violate latency SLO. Although percentage error

shows more than 20% error, this is inevitable due to the natural

variance of 99%-tile latency.

Efficacy ofGNN. We claim the effectiveness of GNN by comparing

the learning curves of our GRAF neural network and GRAF neural

network without MPNN. The trained model from GRAF showed

better performance than the model from GRAF without MPNN as

shown in Figure 11. On the other hand, GRAF without MPNN’s

training loss converged faster than GRAF sometimes achieving

lower value during the training phase. To avoid overfitting of GRAF

without MPNN, we tried different network sizes and introduced

dropout layers but couldn’t achieve a model that performs better

than GRAF. While MPNN increased the ability to generalize over

unseen data by successfully embedding neighbor’s information,

GRAF without MPNN tends to suffer from overfitting upon noisy

samples.

Efficient SampleCollection. Naïve sample collector formicroser-

vices would explore every possible CPU resource combinations of

microservices. State-aware sample collector utilizes the current

state of microservices and latency characteristics to make efficient

exploration. Each microservice’s CPU utilization, latency, and input

workloads are observed by the sample collector. With additional in-

formation, our sample collector does not explore the region where

the CPU resource of a microservice is too low that leads to high tail

latency, or region where CPU resource is too much that additional

resource cannot reduce tail latency anymore. As the result, in the

Online Boutique application, our sample collector exploration is

done in 0.00027x reduced search space compared to the original

search space.

5.2 Resources Optimization Analysis

Configuration solver. We show empirical results that support

gradient descent optimization find optimal combinations in our

experiments within a reasonable time. The gradient descent al-

gorithm is a local optimization algorithm that converges fast but

cannot guarantee to find the global optimum. However, gradient

descent can find global optimal in microservices followed by their

resource latency relationship. Note that in Figure 6, latency in each

microservice is a monotonic decreasing function toward variable

of CPU resources. The designed loss function is convex, only af-

fected by the trade-off relationship among resources and latency.

For the demonstration of empirical results, heatmap of loss values

restricted to two resource variables is illustrated in Figure 12. Every

microservices shows a similar latency characteristic which leads

the gradient descent optimization to find global optimal resource

combinations. CPU resource combinations found by GRAF actually

utilize less total CPU resources compared to K8s autoscaler while

meeting target latency SLO.

To verify resource combinations from GRAF are tightly mini-

mized in terms of target tail latency, we measured 99%-tile latency

after making allocation decisions according to the combinations.

Figure 17 plots measured 99%-tile latency of resource combinations

Modules AWS EC2 Instance Time (h) Budget ($)

Load Generator CPU (c4.large) 208.3 20.83

Worker Node CPU (c4.2xlarge) 208.3 82.92

Model Training GPU (g4dn.xlarge) 16 8.42

Table 3: Expected budgets for collecting 50k samples and
training the latency prediction model for Online Boutique.

with respect to their target tail latency. 85.1% of resource combi-

nations’ actual tail latency fall in the boundary of targeted latency

SLO, which implies our asymmetric hüber loss is taking effect as

we wanted. In Figure 17, we can also witness that measured 99%-

tile latency points are densely located near targeted tail latency,

which means our configuration solver tightly minimizes total CPU

resources in terms of latency SLO. Also, the gradient descent al-

gorithm’s 90%-tile latency to reach the target tolerance threshold

takes about 6.7 seconds, fast enough to make resource allocation

decisions synchronously in microservices.

Scaling workload. The resource controller scale down the work-

load moderately to fit in the region where GNN is trained. After,

configuration solver finds resource combination, the resource con-

troller scale up resource combination with the scaled ratio of the

workload. This design is chosen under the assumption that work-

loads are evenly distributed among deployed instances. During the

evaluation, GRAF shows consistent behavior under various work-

loads settings with the resource controller module. Figure 18 shows

experiment results with varying simulated number of users in the

online boutique application. GRAF’s showed dominance over tuned

K8s autoscaler, achieving the same tail latency while distancing the

proportional amount of the saved instances as workload increase.

5.3 End-to-end Performance Evaluation

Resource saving. We show how much GRAF can save CPU re-

sources compared to K8s autoscaler. Since K8s autoscaler has no

functionality to make resource optimization according to latency

SLO, we hand-tuned the resource utilization threshold of K8s au-

toscaler to meet latency SLO. One global resource utilization thresh-

old is empirically found according to the latency SLO, and then

applied to every microservice in the application.

As shown in Figure 15 and 16, GRAF saves 14-19% more total

CPU resources at runtime compared to fine-tuned K8s autoscaler

while achieving the same tail latency performance. GRAF finds

optimal resource configuration by allocating more CPU resources

to latency-sensitive microservices while saving from others. For

example, GRAF allocates more CPU resources to MS5 (recommen-

dation microservice) and MS6 (shipping microservice) and save

from others compared to K8s autoscaler as depicted in Figure 15.

In addition, we conduct the cost-benefit analysis of GRAF for On-

line Boutique. Figure 19 shows profitable regions by applying GRAF

according to microservices update period and workload magnitude.

We calculate the cost for the sample collection and training of GRAF,

and the benefit by following the pricing plan of AWS EC2 [15]. A

total of $112.17 cost is expected for collecting 50k samples from

Online Boutique application and training the latency prediction

model. The specific details of instance type and borrowing time are

illustrated in Table 3. Total time for collecting samples is driven

162

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany J. Park et al.

GRAF w/o MPNN
GRAF

Te
st

 S
et

 L
os

s

0

0.5

1.0

1.5

Training Iterations
0 20,000

Figure 11: Learning curve comparison
between GRAF and GRAF without
MPNN.

Resource 1 Increase

R
e
so

u
rc

e
 2

 I
n
cr

e
a
se

Loss

low

high

Figure 12: Heatmap of gradient descent
optimization loss value according to two
microservices’ resources.

C
P
U
 Q

u
o
ta

 (
M

ill
ic

o
re

)

0

1000

2000

MS1MS2MS3MS4MS5MS6

: Original Search space

: Reduced Search space

Figure 13: Reduced search space com-
pared to orginal search space in Online
Boutique application.

0

1000

2000

3000

Social Media Online Boutique

GRAF K8s Autoscaler

C
P
U
 Q

u
o
ta

 (
M

ill
ic

o
re

)

2324
2711

2220
2650

Figure 14: Total CPU resources when us-
ing GRAF and Kubernetes autoscaler ac-
cording to target latency SLO.

C
P
U
 Q

u
o
ta

 (
M

ill
ic

o
re

)

0

500

1000

M
S
1

M
S
2

M
S
3

M
S
4

M
S
5

M
S
6

GRAF K8s Autoscaler

Figure 15: Online Boutique: Each mi-
croservice’s CPU resource comparison
when using GRAF and Kubernetes au-
toscaler.

0

500

1000

M
S
1

M
S
2

M
S
3

M
S
4

M
S
5

M
S
6

M
S
7

M
S
8

M
S
9

M
S
1
0

GRAF K8s Autoscaler

C
P
U
 Q

u
o
ta

 (
M

ill
ic

o
re

)

Figure 16: Social Network: Each mi-
croservice’s CPU resource comparison
when using GRAF and Kubernetes au-
toscaler.

0
60

120
180
240
300

0 60 120 180

Latency SLO (ms)

M
e
a
su

re
d
 9

9
%

-t
ile

La

te
n
cy

 (
m

s)

Figure 17: Measured tail latency of re-
source configuration targeting various
latency SLO.

0

5

10

0
20
40
60

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

S
a
ve

d
 I
n
st

a
n
ce

s

To
ta

l
#
 i
n
st

a
n
ce

s

Simulated # users

GRAF K8s Autoscaler

Saved Instances

Figure 18: Total CPU instances saved by
GRAF in the various workload settings.

0

2000

4000

6000

0 20 40 60

W
o

rk
lo

ad
 (

q
p

s)

Microservice update period (days)

Profit Area

Loss Area

Figure 19: Cost-benefit analysis accord-
ing to update period and workload mag-
nitude.

by multiplying 50k samples and 15 seconds per sample. The model

training time with GPU is referred from our actual time spent to

train the model. Note that sample collection can be processed in

parallel to save time while spending the same budget. Moreover, it

is a one-time cost for the sample collection and training unless the

microservices application is updated.

The expected profit is also calculated by converting the number

of saved instances to the saved $ per day according to the pricing

plan of AWS EC2. The more workloads an application handles, the

more benefits one can get from GRAF as shown in Figure 18. Also,

the less frequently a microservice is updated, the more benefits one

receives because the cost is constant regardless of the workload.

Real workload demonstration. We demonstrate GRAF under

Online Boutique [25] using real workload trace data in Figure 20.

To the best of our knowledge, published granular time-series work-

load traffic data of web-service applications do not exist. Hence,

we use AzurePublicDatasetV2 [56] which contains real-world time

series data of functions invocations per minute. To convert func-

tions invocations data to our experimental environment, the total

number of functions invocations per minute is abstracted as the

input workloads per minute. To mimic the real input workloads,

the Locust [23] spawns the appropriate number of user threads

at every minute. Both GRAF and K8s autoscaler achieve approxi-

mately 180ms 95%-tile latency measured by response time statistics

of Locust API, while GRAF utilizes less number of total instances

than K8s autoscaler during the most of 1900s demonstration time

window.

Furthermore, we can observe GRAF makes scaling decisions

according to the workload variation, efficiently scaling up and down

immediately according to the frontend workload changes. On the

other hand, K8s autoscaler suffers from cascading effects when

workload increases and scale-downs slowly when the workload

163

GRAF: A GNN-based Proactive Resource Allocation Framework CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

30

40

50

60

70

80

200

300

400

500

600

0

2
5
0

5
0
0

7
5
0

1
0
0
0

1
2
5
0

1
5
0
0

1
7
5
0

To
ta

l
#
 o

f
in

st
a
n
ce

s

Time (s)

Workload GRAF K8s Autoscaler

N
u
m

b
e
r

o
f
Lo

cu
st

 t
h
re

a
d
s

Figure 20: Total number of microservice instances under
real time-series workload. Locust spawns threads according
to the Azure function invocation data set [56].

decreases. In the default setting, K8s autoscaler records the scale

recommendations of the past 5 minutes and chooses the highest one.

This means that scale-downs occur gradually, smoothing out the

impact of fluctuating CPU utilization metrics. Accordingly, after a

sharp workload decrease at 1500s, K8s autoscaler scale down slowly

after 5 minutes whereas GRAFmakes scaling decisions according to

the workload variation. As a result, GRAF utilizes 21% less number

of net instances on average than K8s-autoscaler.

Handling traffic surge. We compare GRAF with K8s autoscaler

and FIRM [53]-like algorithm when traffic surges using Online Bou-

tique [25] application. As mentioned in Section 2.1, unlike GRAF,

K8s autoscaler and FIRM do not consider the microservice chain in

their scaling decision so they face the cascading effect when traffic

surges. We implement FIRM-like algorithm that increases the CPU

quota of a microservice when a ratio between median and 95%-tile

latency for the microservice exceeds a pre-determined threshold. To

generate traffic surge, we use Locust [23], which spawns multiple

user threads, each of the users sends various types of requests in

a predefined order. The Locust thread randomly waits for up to 5

seconds before it sends the next request to mimic the actual user

behavior. To increase workload abruptly, we create from 250 to 500

Locust threads.

Figure 21 and 22 show the results. GRAF creates 13-60% less

number of microservice instances while taking up to 2.6x faster

time to achieve end-to-end tail latency settlement compared to

existing approaches. In Figure 21, during the first 160 seconds the

two methods incrementally increase the number of instances while

GRAF creates the required instances concurrently at around 50

seconds.

6 DISCUSSION AND FUTUREWORK

Scalability of GRAF. GRAF has complete scalability toward han-

dling multiple chains of different request types at once. This is

possible due to our workload analyzer and node embedding proce-

dure in the system design. Workload analyzer analyzes frontend

multiple APIs workloads and distributes information to graph nodes

states. Then, the node embedding procedure captures the state of

a graph and predicts the end-to-end tail latency of the overall mi-

croservices application. Also, GRAF is scalable toward the size of

0

50

100

150

0 50 100 150 200
Time (s)

GRAF K8s Autoscaler FIRM-like

0

50

100

150

0 50 100 150 200
Time (s)

(5
0

0
 t

h
re

ad
s)

o

f
in

st
an

ce
s

(2
5

0
 t

h
re

ad
s)

o

f
in

st
an

ce
s

100

41

40

100

60

53

Figure 21: Total number ofmicroservice instanceswhen traf-
fic surges. Each graph represents results when a load gener-
ator called Locust [23] spawns 250 threads and 500 threads
respectively.

100

170

260
230

205 205

0

50

100

150

200

250

300

250 500

Ti
m

e
to

 c
o

n
ve

rg
e

(s
)

Number of Locust threads

GRAF K8s Autoscaler FIRM-like

B
et

te
r

Figure 22: Time for end-to-end tail latency to converge after
traffic surge.

the workload as the resource controller handles the size of input

fed into the configuration solver.

However, the latency prediction model of GRAF isn’t scale-free

to the microservices size. To meet the goal of satisfying end-to-

end tail latency and resource optimization of overall microservices,

GRAF’s design incorporates everymicroservices’ state concurrently.

Accordingly, the readout phase’s neural network input node dimen-

sion is linearly dependent on the number of microservices in an

application. Although GRAF has the capability in that it easily copes

with decent size microservices including Social Network, GRAF’s

performance may degrade when applied to applications composed

of hundreds to thousands of microservices. Graph partitioning algo-

rithms might reduce the burden on the latency prediction model’s

scalability by partitioning the microservices and training separately.

Actively removing contention anomalies. GRAF optimizes re-

source usage for given trafficwhile satisfying latency SLO. However,

microservices sometimes suffer from latency SLO violations even

when the proper amount of resources are allocated. It is frequently

observed that latency spikes occur in microservices caused by un-

expected contention in resources. Overprovisioning resources for

microservices is a possible option that would probably enhance the

ability to prevent unexpected latency spikes, therefore reducing

SLO violations caused by anomalies. Unfortunately, this approach

conflicts with GRAF, since GRAF tries to minimize as many re-

sources as possible within the target SLO latency. An algorithm

164

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany J. Park et al.

that actively removes contentions in microservices should take

place in order to fully utilize the capabilities of GRAF while meet-

ing SLO latency at all times.

IntegerOptimization for instances scaling. Latency prediction
model and resource configuration solver in GRAF works with real

numbers. State input features for the latency prediction model are

not an integer, nor the optimal configuration found with gradient

descent algorithm. On the other hand, in the microservices envi-

ronment, the CPU resources are scaled by the number of instances,

where a CPU unit is pre-determined for each instance. In this pa-

per, we have rounded up the real numbers from GRAF modules to

the number of instances. As the result, GRAF is overprovisioning

resources in every microservices, yet bounded by the CPU resource

unit for an instance. Although integer optimization is a well-known

NP-hard problem, if one can perform integer optimization consid-

ering an instance’s CPU unit, there is slight improvement room for

GRAF to save more resources.

7 RELATEDWORKS

Autoscaling. Numerous works apply autoscaling to cloud applica-

tions [41, 46, 53, 55, 62, 63]. To the best of our knowledge, none of

the existing autoscalers have the ability to optimize the resources

of an entire microservice application targeting adjustable latency

SLOs. Also, they suffer from traffic surges due to cascading effect.

FIRM [53] is a reinforcement learning (RL)-based resource man-

agement framework. FIRM uses the support vector machine to

identify microservices critical to latency SLO violations and adjust

multiplex resources with the deep deterministic policy gradient

algorithm. FIRM focuses on finding and removing contention in

the microservice that is the critical cause of latency SLO violation.

Although FIRM can achieve latency SLO, it does not handle subse-

quent microservices in the chain which possibly lead to falling in

sub-optimal states. MIRAS [62] is another RL-based autoscaler. MI-

RAS learns a policy that behaves to allocate more resources to the

microservices with longer request queues. However, MIRAS does

not target end-to-end tail latency and does not consider the influ-

ence of other microservices with short request queues. ATOM [41]

is a model-driven autoscaler that runs a genetic algorithm over

queuing model. ATOM adjusts resources for microservices at once

considering the entire structure, but they optimize the system in

the perspective of throughput. Throughput can be a candidate of

service level indicator, however, tail-latency and availability are key

indicators for latency-sensitive applications. RAMBO [46] lever-

ages multi-objective Bayesian optimization to allocate resources

and meet performance/cost goals. RAMBO chooses a design that

achieves sample efficiency from an enormous search space. RAMBO

claims to explore and find Pareto optimal points in performance

and cost relationship, where performance is chosen as the maxi-

mum throughput under latency constant. Considering the traffic to

microservice applications is often an uncontrollable external factor,

RAMBO yet faces a lack of design to automatically find optimums

under dynamic traffic workload.

Container startup latency. The main cause that develops cas-

cading effect of microservices into a severe problem is container

startup latency. S. Fu et al [39] suggest a scheduling scheme to

reduce container startup time by utilizing dependencies between

layers of the container images. S. Fu et al [39]’s scheme has been

adopted by Kubernetes, but Kubernetes still suffers from a slow

startup time of about 15 seconds in 90%-tile latency. Slacker [43]

reduces container startup latency by lazily pulling the container

images. Yet, Slacker can not be easily deployed because of require-

ments to use a proprietary NFS server and modify the Linux kernel.

There are other approaches [1, 44, 61] to reduce container startup

delay by reusing containers. The side effect of these approaches

is an expensive cost in cloud services [39] due to excessive use of

resources such as memory [64].

Combinatorial Optimization. Combinatorial optimization[49]

problems have been explored inmany research for decades. Bayesian

optimization [51], one of the de-facto standards in the area of global

optimizations, has shown its capability of sample-efficient optimiza-

tion in non-convex, and heterogeneous functions [29, 32, 57, 59].

Recent researches improve scalability, handle constraints, andmulti-

objective with Bayesian optimization [28, 37], making the algo-

rithms more practical to combinatorial optimization. The reinforce-

ment learning approach also has been widely investigated in the

use of solving combinatorial optimization problems [30, 31, 33, 36].

However, off-the-shelf optimization algorithms can not fit into mi-

croservices’ resource optimization problems because of constantly

changing external factors (e.g., workload) in the environment, nar-

row decision-making time window, and costly or even fatal explo-

ration. GRAF tackles the combinatorial optimization problem in

microservices by using asynchronous latency model training, and

fast convergence algorithm. GRAF utilizes the convexity of the loss

function achieved in nature of microservice latency characteris-

tics, model-based differential loss function, and integration of the

constraints into loss function.

8 CONCLUSION
Wepresent GRAF, a GNN-based proactive resource allocation frame-

work that minimizes overall CPU resources in the microservice

chain while satisfying latency SLO. Despite the wide usage of mi-

croservices, existing resource allocation algorithms do not interpret

the microservice chain which results in sub-optimal behaviors. Our

main objective is to present an efficient microservices resources allo-

cation framework that considers the characteristics of the microser-

vice chain. GRAF utilizes GNN and gradient descent algorithm to

make CPU resource allocation for every microservices considering

the internal relationship of the microservice chain. We show the

effectiveness of our approach by greatly outperforming existing

autoscalers in end-to-end evaluations. By applying GRAF, service

providers can minimize the total usage of CPU resources while

satisfying latency SLO without additional human interventions.

ACKNOWLEDGMENTS
We thank our shepherd Marco Canini and anonymous reviewers

for their valuable comments that improved the paper. We appreci-

ate Youngmok Jung and Yechan Kim for their thorough feedback

on writing. This work was partially supported by Toyota Motor

Corporation.

165

GRAF: A GNN-based Proactive Resource Allocation Framework CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

REFERENCES
[1] 2014. Understanding Container Reuse in AWS Lambda. https://aws.amazon.com/

blogs/compute/container-reuse-in-lambda/.

[2] 2015. Microservices at Amazon. https://www.slideshare.net/apigee/i-love-apis-

2015-microservices-at-amazon-54487258.

[3] 2017. Airbnb, From Monolith to Microservices: How to Scale Your Architecture.

https://www.youtube.com/watch?v=N1BWMW9NEQc.

[4] 2018. Examples and types of microservices. https://www.itrelease.com/2018/10/

examples-and-types-of-microservices/.

[5] 2018. Horizontal Pod Autoscaler in AWS. https://docs.aws.amazon.com/eks/

latest/userguide/horizontal-pod-autoscaler.html.

[6] 2018. Stan’s Robot Shop by Instana. https://www.instana.com/blog/stans-robot-

shop-sample-microservice-application/.

[7] 2019. Borg cluster workload traces. https://github.com/google/cluster-data.

[8] 2019. Cloud Waste To Hit Over 14 Billion in 2019. https://devops.com/cloud-

waste-to-hit-over-14-billion-in-2019/.

[9] 2019. Multi-Tenancy Kubernetes on Bare Metal Servers. https:

//deview.kr/data/deview/2019/presentation/[231]+Multi-Tenancy+Kubernetes+

on+Bare+Metal+Servers.pdf (16p).

[10] 2020. Microservice architecture growing in popularity, adopters enjoying suc-

cess. https://www.itproportal.com/news/microservice-architecture-growing-in-

popularity-adopters-enjoying-success/.

[11] 2020. Microservices Adoption in 2020. https://www.oreilly.com/radar/

microservices-adoption-in-2020/.

[12] 2020. The Story of Netflix andMicroservices. https://www.geeksforgeeks.org/the-

story-of-netflix-and-microservices/.

[13] 2020. Vegeta: a versatile HTTP load testing tool. https://github.com/tsenart/

vegeta.

[14] 2020. Wasted Cloud Spend to Exceed 17.6 Billion in 2020, Fueled by Cloud Com-

puting Growth. https://jaychapel.medium.com/wasted-cloud-spend-to-exceed-

17-6-billion-in-2020-fueled-by-cloud-computing-growth-7c8f81d5c616.

[15] 2021. Amazon EC2 On-Demand Pricing. https://aws.amazon.com/ec2/pricing/on-

demand/.

[16] 2021. Bookinfo Application by Istio. https://istio.io/latest/docs/examples/

bookinfo/.

[17] 2021. cAdvisor software on Github. https://github.com/google/cadvisor.

[18] 2021. Configuring horizontal Pod autoscaling in GKE. https://cloud.google.com/

kubernetes-engine/docs/how-to/horizontal-pod-autoscaling.

[19] 2021. Horizontal Pod Autoscaler of Kubernetes. https://kubernetes.io/docs/tasks/

run-application/horizontal-pod-autoscale/.

[20] 2021. Jaeger: open source, end-to-end distributed tracing. https://www.

jaegertracing.io/.

[21] 2021. Kubernetes: Production-Grade Container Orchestration. https://kubernetes.

io/.

[22] 2021. Linkerd: The world’s lightest, fastest service mesh. https://linkerd.io/.

[23] 2021. Locust: An open source load testing tool. https://locust.io/.

[24] 2021. Microservices - Netflix Techblog. https://netflixtechblog.com/tagged/

microservices.

[25] 2021. Online Boutique by Google. https://github.com/GoogleCloudPlatform/

microservices-demo.

[26] 2021. Prometheus -Monitoring system& time series database. https://prometheus.

io/.

[27] 2021. Scale applications in Azure Kubernetes Service (AKS). https://docs.

microsoft.com/en-us/azure/aks/tutorial-kubernetes-scale.

[28] Setareh Ariafar, Jaume Coll-Font, Dana Brooks, and Jennifer Dy. 2019. ADMMBO:

Bayesian Optimization with Unknown Constraints using ADMM. Journal of
Machine Learning Research 20, 123 (2019), 1–26. http://jmlr.org/papers/v20/18-

227.html

[29] Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin

Letham, AndrewGordonWilson, and Eytan Bakshy. 2019. BoTorch: A Framework

for Efficient Monte-Carlo Bayesian Optimization. arXiv preprint arXiv:1910.06403
(2019).

[30] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. 2020. Ex-

ploratory combinatorial optimization with reinforcement learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34. 3243–3250.

[31] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.

2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

[32] Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A tutorial on Bayesian

optimization of expensive cost functions, with application to active user modeling

and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).
[33] Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-

Schwarz, and Andre Cire. 2020. Combining reinforcement learning and constraint

programming for combinatorial optimization. arXiv preprint arXiv:2006.01610
(2020).

[34] Byungkwon Choi, Jinwoo Park, Chunghan Lee, and Dongsu Han. 2021. pHPA:

A Proactive Autoscaling Framework For Microservice Chain. In 5th Asia-Pacific

Workshop on Networking (APNet 2021). Association for Computing Machinery,

Inc.

[35] Chris Jones,John Wilkes,Niall Murphy,Cody Smith. [n.d.]. Service Level Objec-

tives. https://sre.google/sre-book/service-level-objectives/.

[36] Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017.

Learning combinatorial optimization algorithms over graphs. arXiv preprint
arXiv:1704.01665 (2017).

[37] David Eriksson and Matthias Poloczek. 2021. Scalable Constrained Bayesian

Optimization. In Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 130),
ArindamBanerjee and Kenji Fukumizu (Eds.). PMLR, 730–738. http://proceedings.

mlr.press/v130/eriksson21a.html

[38] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with

PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).
[39] Silvery Fu, Radhika Mittal, Lei Zhang, and Sylvia Ratnasamy. 2020. Fast and effi-

cient container startup at the edge via dependency scheduling. In 3rd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 20).

[40] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,

Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An

open-source benchmark suite for microservices and their hardware-software

implications for cloud & edge systems. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 3–18.

[41] Alim Ul Gias, Giuliano Casale, and Murray Woodside. 2019. ATOM: Model-

driven autoscaling for microservices. In 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 1994–2004.

[42] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of
the 34th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 1263–

1272. http://proceedings.mlr.press/v70/gilmer17a.html

[43] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H

Arpaci-Dusseau. 2016. Slacker: Fast distribution with lazy docker containers. In

14th {USENIX} Conference on File and Storage Technologies ({FAST} 16). 181–195.
[44] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.

2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the
2017 Symposium on Cloud Computing. 445–451.

[45] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[46] Qian Li, Bin Li, Pietro Mercati, Ramesh Illikkal, Charlie Tai, Michael Kishinevsky,

and Christos Kozyrakis. 2021. RAMBO: Resource Allocation for Microservices

Using Bayesian Optimization. IEEE Computer Architecture Letters 20, 1 (2021),
46–49. https://doi.org/10.1109/LCA.2021.3066142

[47] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. 2018. Combinatorial optimiza-

tion with graph convolutional networks and guided tree search. arXiv preprint
arXiv:1810.10659 (2018).

[48] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,

and Mohammad Alizadeh. 2019. Learning scheduling algorithms for data pro-

cessing clusters. In Proceedings of the ACM Special Interest Group on Data Com-
munication. 270–288.

[49] Christos H Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial optimization:
algorithms and complexity. Courier Corporation.

[50] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

2017. Automatic differentiation in pytorch. (2017).

[51] Martin Pelikan, David E Goldberg, Erick Cantú-Paz, et al. 1999. BOA: The

Bayesian optimization algorithm. In Proceedings of the genetic and evolutionary
computation conference GECCO-99, Vol. 1. Citeseer, 525–532.

[52] Issaret Prachitmutita, Wachirawit Aittinonmongkol, Nasoret Pojjanasuksakul,

Montri Supattatham, and Praisan Padungweang. 2018. Auto-scalingmicroservices

on IaaS under SLA with cost-effective framework. In 2018 Tenth International
Conference on Advanced Computational Intelligence (ICACI). 583–588. https:

//doi.org/10.1109/ICACI.2018.8377525

[53] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-

hankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained Resource Management

Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20). USENIX Association, 805–825.

https://www.usenix.org/conference/osdi20/presentation/qiu

[54] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A

Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace

analysis. In Proceedings of the third ACM symposium on cloud computing. 1–13.
[55] Krzysztof Rzadca, Paweł Findeisen, Jacek Świderski, Przemyslaw Zych, Prze-

myslaw Broniek, Jarek Kusmierek, Paweł Krzysztof Nowak, Beata Strack, Piotr

Witusowski, Steven Hand, and John Wilkes. 2020. Autopilot: Workload Au-

toscaling at Google Scale. In Proceedings of the Fifteenth European Conference on
Computer Systems. https://dl.acm.org/doi/10.1145/3342195.3387524

166

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://www.slideshare.net/apigee/i-love-apis-2015-microservices-at-amazon-54487258
https://www.slideshare.net/apigee/i-love-apis-2015-microservices-at-amazon-54487258
https://www.youtube.com/watch?v=N1BWMW9NEQc
https://www.itrelease.com/2018/10/examples-and-types-of-microservices/
https://www.itrelease.com/2018/10/examples-and-types-of-microservices/
https://docs.aws.amazon.com/eks/latest/userguide/horizontal-pod-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/horizontal-pod-autoscaler.html
https://www.instana.com/blog/stans-robot-shop-sample-microservice-application/
https://www.instana.com/blog/stans-robot-shop-sample-microservice-application/
https://github.com/google/cluster-data
https://devops.com/cloud-waste-to-hit-over-14-billion-in-2019/
https://devops.com/cloud-waste-to-hit-over-14-billion-in-2019/
https://deview.kr/data/deview/2019/presentation/[231]+Multi-Tenancy+Kubernetes+on+Bare+Metal+Servers.pdf
https://deview.kr/data/deview/2019/presentation/[231]+Multi-Tenancy+Kubernetes+on+Bare+Metal+Servers.pdf
https://deview.kr/data/deview/2019/presentation/[231]+Multi-Tenancy+Kubernetes+on+Bare+Metal+Servers.pdf
https://www.itproportal.com/news/microservice-architecture-growing-in-popularity-adopters-enjoying-success/
https://www.itproportal.com/news/microservice-architecture-growing-in-popularity-adopters-enjoying-success/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.geeksforgeeks.org/the-story-of-netflix-and-microservices/
https://www.geeksforgeeks.org/the-story-of-netflix-and-microservices/
https://github.com/tsenart/vegeta
https://github.com/tsenart/vegeta
https://jaychapel.medium.com/wasted-cloud-spend-to-exceed-17-6-billion-in-2020-fueled-by-cloud-computing-growth-7c8f81d5c616
https://jaychapel.medium.com/wasted-cloud-spend-to-exceed-17-6-billion-in-2020-fueled-by-cloud-computing-growth-7c8f81d5c616
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://istio.io/latest/docs/examples/bookinfo/
https://istio.io/latest/docs/examples/bookinfo/
https://github.com/google/cadvisor
https://cloud.google.com/kubernetes-engine/docs/how-to/horizontal-pod-autoscaling
https://cloud.google.com/kubernetes-engine/docs/how-to/horizontal-pod-autoscaling
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://kubernetes.io/
https://kubernetes.io/
https://linkerd.io/
https://locust.io/
https://netflixtechblog.com/tagged/microservices
https://netflixtechblog.com/tagged/microservices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://prometheus.io/
https://prometheus.io/
https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-scale
https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-scale
http://jmlr.org/papers/v20/18-227.html
http://jmlr.org/papers/v20/18-227.html
https://sre.google/sre-book/service-level-objectives/
http://proceedings.mlr.press/v130/eriksson21a.html
http://proceedings.mlr.press/v130/eriksson21a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi.org/10.1109/LCA.2021.3066142
https://doi.org/10.1109/ICACI.2018.8377525
https://doi.org/10.1109/ICACI.2018.8377525
https://www.usenix.org/conference/osdi20/presentation/qiu
https://dl.acm.org/doi/10.1145/3342195.3387524

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany J. Park et al.

[56] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry, Paul Batum,

Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo

Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing the

Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 205–218. https://www.usenix.

org/conference/atc20/presentation/shahrad

[57] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical bayesian

optimization of machine learning algorithms. arXiv preprint arXiv:1206.2944
(2012).

[58] Jacopo Soldani, Damian Tamburri, and Willem-Jan Heuvel. 2018. The Pains and

Gains of Microservices: A Systematic Grey Literature Review. Journal of Systems
and Software 146 (09 2018). https://doi.org/10.1016/j.jss.2018.09.082

[59] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. 2016.

Bayesian optimization with robust Bayesian neural networks. Advances in neural
information processing systems 29 (2016), 4134–4142.

[60] Arunchandar Vasan, Anand Sivasubramaniam, Vikrant Shimpi, T. Sivabalan,

and Rajesh Subbiah. 2010. Worth their watts? - an empirical study of data-

center servers. In HPCA - 16 2010 The Sixteenth International Symposium on

High-Performance Computer Architecture. 1–10. https://doi.org/10.1109/HPCA.

2010.5463056

[61] LiangWang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, andMichael Swift.

2018. Peeking behind the curtains of serverless platforms. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 133–146.

[62] Z. Yang, P. Nguyen, H. Jin, and K. Nahrstedt. 2019. MIRAS:Model-based Reinforce-

ment Learning for Microservice Resource Allocation over Scientific Workflows.

In 2019 IEEE 39th International Conference on Distributed Computing Systems
(ICDCS). 122–132. https://doi.org/10.1109/ICDCS.2019.00021

[63] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2019. Microscaler: Automatic scaling

for microservices with an online learning approach. In 2019 IEEE International
Conference on Web Services (ICWS). IEEE, 68–75.

[64] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,

Dimitrios Skourtis, Amit S Warke, Mohamed Mohamed, and Ali R Butt. 2019.

Large-scale analysis of the docker hub dataset. In 2019 IEEE International Confer-
ence on Cluster Computing (CLUSTER). IEEE, 1–10.

167

https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/HPCA.2010.5463056
https://doi.org/10.1109/HPCA.2010.5463056
https://doi.org/10.1109/ICDCS.2019.00021

	Abstract
	1 Introduction
	2 Observations and Opportunities
	2.1 Cascading Effect
	2.2 Microservice Latency Characteristics

	3 Design
	3.1 GRAF Overview
	3.2 State and Trace Collector
	3.3 Workload Analyzer
	3.4 Latency Prediction Model
	3.5 Configuration Solver
	3.6 Resource Controller
	3.7 Sample Collector
	3.8 Proactive Resource Allocation

	4 Implementation
	5 Evaluation
	5.1 End-to-end Tail Latency Prediction
	5.2 Resources Optimization Analysis
	5.3 End-to-end Performance Evaluation

	6 Discussion and Future Work
	7 Related Works
	8 Conclusion
	Acknowledgments
	References

