
Training Graph Neural Networks with 1000 Layers

Guohao Li 1 2 Matthias Müller 1 Bernard Ghanem 2 Vladlen Koltun 1

Abstract

Deep graph neural networks (GNNs) have
achieved excellent results on various tasks on in-
creasingly large graph datasets with millions of
nodes and edges. However, memory complex-
ity has become a major obstacle when training
deep GNNs for practical applications due to the
immense number of nodes, edges, and interme-
diate activations. To improve the scalability of
GNNs, prior works propose smart graph sampling
or partitioning strategies to train GNNs with a
smaller set of nodes or sub-graphs. In this work,
we study reversible connections, group convolu-
tions, weight tying, and equilibrium models to
advance the memory and parameter efficiency of
GNNs. We find that reversible connections in
combination with deep network architectures en-
able the training of overparameterized GNNs that
significantly outperform existing methods on mul-
tiple datasets. Our models RevGNN-Deep (1001
layers with 80 channels each) and RevGNN-Wide
(448 layers with 224 channels each) were both
trained on a single commodity GPU and achieve
an ROC-AUC of 87.74 ± 0.13 and 88.24 ± 0.15
on the ogbn-proteins dataset. To the best of our
knowledge, RevGNN-Deep is the deepest GNN
in the literature by one order of magnitude.

1. Introduction
Graphs are all around us. Whether we watch a show on
Netflix, browse through friends’ feeds on Facebook, buy
something on Amazon, or look up a researcher on Google,
chances are that our actions trigger queries on a large graph.
Movie and book databases are often encoded as knowledge
graphs for efficient recommendation systems. Social media
services rely on social graphs. Shopping platforms leverage
product co-purchasing networks to boost sales. Citation
indices like Web of Science, Scopus, and Google Scholar

1Intel Labs 2King Abdullah University of Science and Technol-
ogy. Correspondence to: Guohao Li <guohao.li@kaust.edu.sa>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

0 5 10 15 20 25 30 35
← GPU Memory (GB)

83

84

85

86

87

88

Sc
or

e (
RO

C-
AU

C)
 →

ResGNN-64

WT-ResGNN-64DEQ-GNN-64

DEQ-GNN-224
RevGNN-64

RevGNN-80

RevGNN-224

WT-RevGNN-64

WT-RevGNN-80

WT-RevGNN-224

RevGNN-Deep

RevGNN-Wide

32
GB

11
GB

90 95 100

ResGNN-224

Out of Memory

WT-ResGNN-224
Out of Memory

Figure 1. ROC-AUC score vs. GPU memory consumption on
the ogbn-proteins dataset. We find that deep reversible GNNs
are very powerful and outperform existing models by a margin;
our best models are RevGNN-Deep and RevGNN-Wide. We also
compare reversible connections (RevGNN-x), weight-tying (WT-
x), and equilibrium models (DEQ-x) for 112-layer deep GNNs
(x denotes the number of channels per layer). Reversible models
consistently achieve the same or better performance as the baseline
using only a fraction of the memory. Weight-tied and equilibrium
models offer a good performance to parameter efficiency trade-off.
Datapoint size is proportional to

√
p, where p is the number of

parameters.

construct large citation graphs. Even the Internet itself is
in essence a vast graph with billions of nodes and edges.
Graphs are also powerful tools for representing 3D data
such as point clouds and meshes or biological data such as
molecular structures and protein interactions.

One prominent and powerful approach to process such
graphs are graph neural networks (GNNs). GNNs have
achieved impressive performance on relatively small graph
datasets (Yang et al., 2016; Zitnik & Leskovec, 2017; Shchur
et al., 2018). Unfortunately, the most interesting and impact-
ful real-world problems rely on very large graphs where lim-
ited GPU memory quickly becomes a bottleneck. In order
to train GNN models on large graphs, the common practice
is to reduce the number of model parameters. This is coun-
terproductive, since processing larger graphs would likely
benefit from more parameters. While there is evidence that
over-parameterized models generalize better (Neyshabur
et al., 2019; Belkin et al., 2019), the relationship between
performance and parameters is best illustrated in the context

ar
X

iv
:2

10
6.

07
47

6v
2

 [
cs

.L
G

]
 1

7
Ju

n
20

21

Training Graph Neural Networks with 1000 Layers

of language modelling. Recent progress in natural language
processing (NLP) has been enabled by a massive increase
in parameter counts: GPT (110M) (Radford et al.), BERT
(340M) (Devlin et al., 2019), GPT-3 (175B) (Brown et al.,
2020), Gshard-M4 (600B) (Lepikhin et al., 2021), and Deep-
Speed (1T) (Rasley et al., 2020). More parameters mean
deeper or wider networks that consume more memory.

GNNs have shown a lot of promise on recent large-scale
graph datasets such as Benchmarking GNNs (Dwivedi et al.,
2020), Open Graph Benchmark (OGB) (Hu et al., 2020;
2021) and Microsoft Academic Graph (MAG) (Wang et al.,
2020). Recent works (Li et al., 2019; 2020; Chen et al.,
2020) have successfully trained deep models with a large
number of parameters and achieved state-of-the-art perfor-
mance. However, these models have large memory foot-
prints and operate at the physical limits of current hardware.
In order to apply deeper and wider GNNs with more param-
eters, we need either different hardware or more efficient
architectures that consume less memory.

Existing works try to overcome the memory bottleneck by
mini-batch training, i.e. sampling a smaller set of nodes
(Hamilton et al., 2017; Chen et al., 2018b;a) or partition-
ing large graphs (Chiang et al., 2019; Zeng et al., 2020)
into smaller subgraphs and sampling from those. These ap-
proaches have proven successful, but they introduce further
hyperparameters that need to be tuned. For instance, if the
sampled size of nodes or subgraphs is too small, it may break
important structures in the graph. While these methods are a
step in the right direction, they do not scale well as the mod-
els become deeper or wider, since memory consumption is
still dependent on the number of layers. Another approach
is efficient propagation via K-power adjacency matrices or
graph diffusion matrices (Wu et al., 2019; Klicpera et al.,
2019; Bojchevski et al., 2020; Liu et al., 2020; Frasca et al.,
2020). However, the propagation schemes of these methods
are non-trainable, which may lead to sub-optimality.

Inspired by efficient architectures from computer vision and
natural language processing (Gomez et al., 2017; Xie et al.,
2017; Bai et al., 2018; 2019), here we investigate several
methods to obtain more efficient GNNs that use less memory
than conventional architectures while achieving state-of-the-
art results (see Figure 1). We explore grouped reversible
graph connections in order to reduce the memory complexity
with respect to the number of layers from O(L) to O(1). In
other words, the memory consumption is independent of the
depth. This allows us to train very deep, over-parameterized
models with constant memory consumption.

We also investigate parameter-efficient architectures. We
study deep weight-tied GNNs that have the parameter cost
of only a single layer. We also develop a deep graph equilib-
rium GNN, which is essentially a weight-tied network with
infinite depth. We directly solve for the equilibrium point of

this infinite-layer network using a root-finding method. We
backpropagate through the equilibrium point using implicit
differentiation. Hence, we do not need to store intermediate
states and get an infinite-depth network at the memory and
parameter cost of a single layer.

Our analysis of these methods shows that deep reversible
architectures are the most powerful in terms of achieving
state-of-the-art performance on benchmark datasets. This
is due to their very large capacity at low memory cost and
only slightly increased training time. Weight-tied models
offer constant parameter size regardless of depth. How-
ever, due to the smaller number of parameters, performance
on large datasets suffers and has to be compensated by in-
creasing the width. Finally, graph equilibrium models have
the same memory efficiency as reversible models and the
same parameter efficiency as weight-tied models. They per-
form similarly to weight-tied models, and the training time
vs. performance tradeoff can be further adjusted by tuning
the number of iterations in each optimization step.

Our methods can be applied to different GNN operators. In
our experiments, we successfully apply them to GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT
(Veličković et al., 2018), and DeepGCN (Li et al., 2019). We
can also combine the proposed techniques with sampling-
based methods to further reduce memory and boost perfor-
mance on some datasets. To the best of our knowledge, we
are the first to train a GNN with more than 1000 layers. Our
model RevGNN-Deep, outperforms all state-of-the-art ap-
proaches on the ogbn-proteins dataset (Hu et al., 2020) with
an ROC-AUC of 87.74%, while only consuming 2.86 GB
of GPU memory during training, one order of magnitude
less than the current top performer. We can also trade our
memory savings for larger width, pushing performance to
new heights. Our RevGNN-Wide achieves an ROC-AUC
of 88.24% on the ogbn-proteins dataset, ranking first on the
leaderboard by a large margin.

In summary, we investigate several techniques to increase
the memory efficiency of GNNs and perform an extensive
analysis. We significantly outperform current state-of-the-
art methods on several datasets by employing reversible
connections to train deeper and wider models. Further, we
demonstrate the generality of these techniques by applying
them to multiple GNN operators. We release our implemen-
tation, which supports PyTorch Geometric (Fey & Lenssen,
2019) and the Deep Graph Library (Wang et al., 2019a).

2. Related Work
GNNs were introduced by Gori et al. (2005) and Scarselli
et al. (2008) for learning a graph representation by find-
ing stable states through fixed-point iterations. Bruna et al.
(2014) generalized Convolutional Neural Networks (CNNs)

Training Graph Neural Networks with 1000 Layers

to graphs using the Fourier basis by computing the eigen-
decomposition of the graph Laplacian. Follow-up works
(Henaff et al., 2015; Defferrard et al., 2016; Kipf & Welling,
2017; Levie et al., 2018; Li et al., 2018) propose different
ways to improve and extend spectral GNNs. For instance,
Kipf & Welling (2017) simplify spectral graph convolutions
by limiting the filters to operate on 1-hop neighborhoods.
Instead of defining GNNs from the spectral view, Gilmer
et al. (2017) introduce a general framework termed Mes-
sage Passing Neural Networks (MPNNs) to unify GNNs.
MPNNs define convolutions on the graph by propagating
messages from spatial neighbors. Many subsequent works
(Hamilton et al., 2017; Monti et al., 2017; Niepert et al.,
2016; Gao et al., 2018; Xu et al., 2019; Veličković et al.,
2018; Wang et al., 2019b) fall into this framework.

Most prior state-of-the-art (SOTA) works are limited to shal-
low depths due to the over-smoothing (Li et al., 2018) and
vanishing gradient problems (Li et al., 2019; 2021) present
in GNNs. Current works have explored different approaches
to resolve these difficulties in training deep GNNs. The first
line of research employs skip connections across layers. Xu
et al. (2018) propose jump connections to adaptively se-
lect intermediate representations to the last layer. Li et al.
(2019) adapt residual and dense connections (He et al., 2016;
Huang et al., 2017) and dilated convolutions (Yu & Koltun,
2016) from CNNs to GNNs; they successfully train GNNs
with up to 56 layers on 3D point clouds and achieve SOTA
results. Li et al. (2020) train a 112-layer residual GNN and
achieve SOTA performance on the large-scale ogbn-proteins
dataset (Hu et al., 2020). Other works also demonstrate that
residual connections aid in training deeper GNNs (Gong
et al., 2020; Chen et al., 2020; Xu et al., 2021). We push
further along the path of deep residual GNNs and train a
SOTA model with more than 1000 layers by addressing the
memory bottleneck of current approaches.

Researchers have also studied different normalization and
regularization techniques such as DropEdge (Rong et al.,
2020), DropConnect (Hasanzadeh et al., 2020), PairNorm
(Zhao & Akoglu, 2019), weight normalization (Oono &
Suzuki, 2019), differentiable group normalization (Zhou
et al., 2020), and GraphNorm (Cai et al., 2020). Another line
of work (Wu et al., 2019; Klicpera et al., 2019; Bojchevski
et al., 2020; Liu et al., 2020; Frasca et al., 2020) proposes
an efficient propagation scheme to avoid stacking layers
by incorporating multi-hop information into a single GNN
layer via K-th power adjacency matrices or personalized
PageRank diffusion matrices. However, the propagation
scheme of these methods is non-trainable, thus making it
difficult to learn hierarchical features and limiting capacity.

Many applications yield huge graphs with millions of nodes
and edges. Memory limitations preclude full-batch training
in such settings. Specifically, to train an L-layer GNN with

D hidden channels on a graph G withN nodes andM edges,
the memory complexity of storing activations is O(LND).
GraphSAGE (Hamilton et al., 2017) incorporates a recur-
sive node-wise sampling scheme to improve the scalability
of GNNs. Instead of training on the whole graph, Graph-
SAGE uniformly samples a fixed number of neighbors for
a batch of nodes. However, the recursive neighborhood
leads to exponential memory complexity as the number of
GNN layers increases. If B is the batch size of nodes and
R is the number of sampled neighbors per node, the mem-
ory complexity of GraphSAGE is O(RLBD). VR-GCN
(Chen et al., 2018b) enhances GraphSAGE by reducing the
variance of mini-batch training to increase the convergence
rate. However, to reduce the estimation variance, historical
activations need to be stored in memory (O(LND)).

To avoid recursive neighborhood expansion, FastGCN
(Chen et al., 2018a) performs layer-wise sampling to sub-
sample nodes for each layer independently with a degree-
based distribution. While this further reduces the memory
complexity to O(LRBD), it leads to sparse connections.
To better maintain the graph structure, Cluster-GCN (Chiang
et al., 2019) and GraphSAINT (Zeng et al., 2020) propose
subgraph-wise sampling methods for mini-batch training
with memory complexity O(LBD). However, even with
smart sampling methods, GNNs still do not scale as the
number of layers increases (i.e. the L dimension). We tackle
this issue and study orthogonal approaches that eliminate
the L dimension from the memory complexity. Our tech-
niques enable unlimited network depth at no memory cost
and can be combined with existing sampling methods.

3. Building Deep GNNs
3.1. Preliminaries

A graph G is represented by a tuple G = 〈V, E〉, where
V = { v1, v2, ..., vN } is an unordered set of vertices and
E ⊆ V × V is a set of edges. Let N and M denote
the number of vertices and edges, respectively. For con-
venience, a graph can be equivalently defined as an ad-
jacency matrix A ∈ A ⊂ RN×N , where ai,j denotes the
link relation between vertex vi and vj . In some scenar-
ios, vertices and edges are associated with a vertex fea-
ture matrix X ∈ X ⊂ RN×D and an edge feature matrix
U ∈ U ⊂ RM×F , respectively. We use GNN operators that
map the vertex feature matrix X , the adjacency matrix A,
and the edge feature matrix U (optional) to a transformed
vertex feature matrix X ′:

fw : X ×A× U 7→ X ′, (1)

where fw(X,A,U) is parameterized by learnable param-
eters w. For simplicity, we assume that the transformed
vertex feature matrix X ′ has the same dimension as the
input vertex feature matrix X . We also assume that the

Training Graph Neural Networks with 1000 Layers

adjacency matrix A is the same for all GNN layers. When
the edge feature matrix U is present, it is fed into each layer
with its initial values U (0).

3.2. Over-parameterized GNNs

Deep GNNs. Recent works (Li et al., 2019; 2020) show
how adding residual connections (He et al., 2016) to ver-
tex features (X ′ = fw(X,A,U) +X) enables training of
deep GNNs that achieve promising results on graph datasets.
However, the memory complexity of the activations remains
O(LND), where L is the number of GNN layers, N is
the number of vertices, and D is the size of vertex features.
Hence, the memory consumption of deep GNNs scales lin-
early with the number of layers. Since the memory footprint
of the network parameters is usually negligible, we focus
on memory consumption induced by the activations.

Grouped Reversible GNNs. Inspired by reversible net-
works (Gomez et al., 2017; Liu et al., 2019; Kitaev et al.,
2019) and grouped convolutions (Krizhevsky et al., 2012;
Xie et al., 2017), we generalize reversible residual connec-
tions to grouped reversible residual connections for GNNs.
Specifically, the input vertex feature matrix X is uniformly
partitioned into C groups 〈X1, X2, ..., XC〉 across the chan-
nel dimension, where Xi ∈ RN×D

C . A grouped reversible
GNN block operates on a group of inputs and produces a
group of outputs: 〈X1, X2, ..., XC〉 7→ 〈X ′1, X ′2, ..., X ′C〉.
The forward pass is defined as follows:

X ′0 =

C∑
i=2

Xi (2)

X ′i = fwi
(X ′i−1, A, U) +Xi, i ∈ {1, · · · , C}, (3)

where X ′0 is designed for exchanging information across
groups. Unlike conventional GNNs, grouped reversible
GNNs only need to save the output vertex features of
the last GNN block in GPU memory for backpropagation.
Therefore, the memory complexity of activations becomes
O(ND), which is independent of the depth of the network.
Note that the adjacency matrixA and the edge feature matrix
U are not updated during message passing. During the back-
ward pass, only the input vertex features are reconstructed,
on the fly, from the output vertex features 〈X ′1, X ′2, ..., X ′C〉
for backpropagation:

Xi = X ′i − fwi
(X ′i−1, A, U), i ∈ {2, · · · , C} (4)

X ′0 =

C∑
i=2

Xi (5)

X1 = X ′1 − fw1
(X ′0, A, U). (6)

In practice, Xi for i ∈ {2, · · · , C} can be computed in
parallel. To reconstruct X1, X ′0 needs to be computed in
advance. After reconstructing the original input vertex fea-
tures, gradients can be derived through backpropagation.

Owing to the group processing, the number of parameters
reduces as the group size increases. Note that in the special
case where the group size C = 2, we obtain a similar form
to the reversible residual connections proposed for CNNs
(Gomez et al., 2017). The definition above is independent of
the choice of fw. However, we find that normalization lay-
ers and dropout layers are essential for training deep GNNs.
To avoid extra memory usage, normalization layers and
dropout layers are embedded into the reversible GNN block.
The GNN block fwi

is designed similar to the pre-activation
residual GNN block proposed by Li et al. (2020):

X̂i = Dropout(ReLU(Norm(X ′i−1))) (7)

X̃i = GraphConv(X̂i, A, U). (8)

The stochasticity of vanilla dropout layers causes recon-
struction errors in the reverse pass. A naive solution would
be to store the dropout pattern for all layers. However, the
dropout patterns have the same dimension as the activations,
which would lead to O(LND) memory consumption. As
an alternative, we adopt a modified dropout layer in which
the dropout pattern is shared across layers. Therefore, we
only need to store one dropout pattern in every SGD iter-
ation; its memory complexity is independent of the depth:
O(ND). During the reverse pass, the saved dropout pattern
is reactivated to reconstruct the input vertex features.

3.3. Parameter-Efficient GNNs

Weight-tied GNNs. Weight-tying is a powerful tool for im-
proving the parameter efficiency of language models (Press
& Wolf, 2017; Inan et al., 2017; Bai et al., 2018). We
take these works as inspiration to study how weight-tying
can improve the parameter efficiency of GNNs. Instead
of having different weights for different GNN blocks, the
weight-tied GNN shares weights across layers. The GNN
model proposed by Scarselli et al. (2008) can be consid-
ered the first weight-tied GNN, in which a learned transition
function is used to find stable node states by Banach’s fixed
point theorem (Khamsi & Kirk, 2001). Here we experiment
with weight-tied residual GNNs and weight-tied reversible
GNNs. For weight-tied residual GNNs, we define:

f (1)w := f (2)w . . . := f (L)
w , (9)

where L is the number of layers. For weight-tied reversible
GNNs, weights are shared in a group-wise manner:

f (1)wi
:= f (2)wi

. . . := f (L)
wi

, i ∈ {1, · · · , C} (10)

Note that we use the same pre-activation GNN block de-
scribed in Section 3.2 instead of a contraction map used by
Scarselli et al. (2008). Both weight-tied GNNs have explicit
layers and are trained with backpropagation. But the weight-
tied reversible GNN reconstructs input vertex features on the

Training Graph Neural Networks with 1000 Layers

fly during backpropagration. Therefore, the memory com-
plexities of the weight-tied residual GNN and weight-tied
reversible GNN are O(LND) and O(ND), respectively.

Deep Equilibrium GNNs. An alternative way to train
weight-tied GNNs with O(ND) memory consumption is to
use implicit differentiation (Scarselli et al., 2008; Bai et al.,
2019), which assumes that the network can reach an equi-
librium state. We construct a GNN model that is assumed
to converge to a fixed point Z∗ for any given input:

Z∗ = fDEQ
w (Z∗, X,A, U), (11)

where the state Z represents the transformed node features.
To construct a stable or contractive GNN block, we mimic
the design of MDEQ (Bai et al., 2020). We build a GNN
block as follows:

Z ′ = GraphConv(Zin, A, U) (12)

Z
′′
= Norm(Z ′ +X) (13)

Z
′′′
= GraphConv(Dropout(ReLU(Z

′′
)), A, U) (14)

Zo = Norm(ReLU(Z
′′′
+ Z ′)), (15)

where Zin is the input node state, Zo is the output node state,
X serves as the injected input, and Z ′ forms an internal
residual signal to the output Zo. In practice, X represents
the initial node features and Zin is initialized to zeros for
the first iteration. Similar to DEQ (Bai et al., 2019), the for-
ward pass of DEQ-GNN is implemented with a root-finding
algorithm (e.g. Broyden’s method) and the gradients are ob-
tained by implicitly differentiating through the equilibrium
node state for the backward pass.

3.4. Analysis of Different Deep GNN Architectures

In the following, we compare the different techniques for
building deep GNNs with respect to their performance,
memory efficiency and parameter efficiency on the ogbn-
proteins dataset from the Open Graph Benchmark (OGB)
(Hu et al., 2020). We use the same GNN operator (Li et al.,
2020), hyper-parameters (e.g. learning rate, dropout rate,
training epoch, etc.), and optimizers to make the compar-
ison as fair as possible. We use mini-batch training with
random partitioning where graphs are split into 10 parts
during training and 5 parts during testing (Li et al., 2020).
One subgraph is sampled to form a mini-batch at each step.
The reported GPU memory corresponds to the peak GPU
memory usage during the first training epoch.

Baseline GNN. We use a recent pre-activation residual
GNN (Li et al., 2020), which achieves state-of-the-art per-
formance across several OGB datasets, as our baseline. For
simplicity, we use the max aggregation function for all the
ablated models on the ogbn-proteins dataset. We refer to
the baseline model as ResGNN. As shown in Figure 2, the

3 7 14 28 56 112 224 448 1001
Number of Layers

0

8

16

24

32

GP
U

M
em

or
y (

GB
)

83.47

84.65 85.16

85.26

86.05

85.94

83.32
84.71 84.96 85.31 85.96 85.97 86.23 86.83

87.06

85.09 85.68 86.62

86.68

86.9 87.02 87.33 87.41 11GB

Out of MemoryResGNN-64 (Baseline)
RevGNN-80 (Ours)
RevGNN-224 (Ours)

Figure 2. GPU memory consumption vs. number of layers for
ResGNN (Li et al., 2020) and RevGNN, our adaptation with
reversible connections. RevGNN uses constant memory for
deeper networks with more parameters and better performance. We
use width 64 and 80 for ResGNN and RevGNN, respectively, to en-
sure a similar number of parameters per network depth. Datapoints
are annotated with the ROC-AUC score of the model and their size
is proportional to

√
p, where p is the number of parameters.

ResGNN with 112 layers and a channel size of 64 achieves
85.94% ROC-AUC on ogbn-proteins. However, the mem-
ory consumption of ResGNN-64 increases linearly with the
number of layers. ResGNN-64 runs out of memory be-
yond 112 layers, making it impossible to investigate deeper
models with current commodity hardware.

Reversible GNN. Our reversible GNN enables training of
very deep networks with constant memory footprint, as
illustrated in Figure 2 (RevGNN). We use a group size of 2;
since grouping reduces the number of parameters, RevGNN-
80 has roughly the same number of parameters as ResGNN-
64 for the same number of layers. While the baseline model
ResGNN-64 cannot go beyond 112 layers due to memory
limitations, RevGNN-80 can go to more than 1000 layers
without additional memory cost and achieves much better
accuracy (87.06% ROC-AUC). We can invest the saved
GPU memory to increase the network width and train a
higher-capacity model. This model is not only deep (448
layers) but also wide (224 channels) and further improves
performance (87.41% ROC-AUC).

Weight-tied GNN. We compare the weight-tied ResGNN
(WT-ResGNN) and its reversible counterpart RevGNN (WT-
RevGNN) in Figure 3. Both models have approximately the
same number of parameters and achieve a similar accuracy
while the reversible model uses significantly less GPU mem-
ory. Since the parameters are shared across GNN layers, the
number of parameters stays constant as the number of layers
increases. For example, with 112 layers, WT-RevGNN-224
has only 337k parameters, while RevGNN-224 has 17.1M
parameters. However, training time and GPU memory con-
sumption are similar while the performance of the weight-

Training Graph Neural Networks with 1000 Layers

tied model is worse (85.28% vs. 87.41%) due to diminishing
returns after more than 7 layers. Similar to the results in
Figure 2, this is evidence of a clear correlation between the
number of parameters and performance.

3 7 14 28 56 112
Number of Layers

0

8

16

24

32

GP
U

M
em

or
y (

GB
)

82.76

83.41 83.67

83.35

82.91

83.3

82.55

83.28 83.53 83.1 83.07 83.46

84.95 85.49 85.33

85.21

85.37 85.28

11GB

WT-ResGNN-64 (Baseline)
WT-RevGNN-80 (Ours)
WT-RevGNN-224 (Ours)

Figure 3. GPU memory consumption vs. number of layers for
WT-ResGNN and WT-RevGNN. For a given filter size, the num-
ber of parameters is constant regardless of network depth. Our
reversible architecture has a constant memory footprint regardless
of network depth, while yielding similar accuracy. Datapoints are
annotated with the ROC-AUC score of the model and their size is
proportional to

√
p, where p is the number of parameters.

3 7 14 28 56 112
Number of Layers/Iterations

0

8

16

24

32

GP
U

M
em

or
y (

GB
)

82.76

83.41 83.67

83.35

82.91

83.3

79.04

82.82 82.88 83.66 83.17 83.38

81.67 85.06 85.6

85.32

85.84
85.55

11GB

WT-ResGNN-64 (Baseline)
DEQ-GNN-64 (Ours)
DEQ-GNN-224 (Ours)

Figure 4. GPU memory vs. number of layers/iterations for Res-
GNN and DEQ-GNN. Datapoints are annotated with the ROC-
AUC score of the model and their size is proportional to

√
p, where

p is the number of parameters.

Equilibrium GNN. Equilibrium networks implicitly model
a weight-tied network with infinite depth. As a result, they
only have the parameter and memory footprint of a single
layer, but the expressiveness of a very deep network. The
initial node features X are used as input injection and the
initial node states Z are set to zero. We implement our
DEQ-GNN based on the original DEQ implementation for
CNNs (Bai et al., 2019). Broyden’s root-finding method
is used (Broyden, 1965) in both the forward pass and the
backward pass to find the equilibrium node states and ap-
proximate the inverse Jacobian. The Broyden iterations

terminate when the norm of the objective is smaller than a
tolerance ε or a maximum iteration threshold is reached. ε
is set to 10−6 ·

√
BD and 2× 10−10 ·

√
BD for the forward

pass and the backward pass respectively, where B is the
number of nodes in the sampled subgraph andD is the chan-
nel size. The iteration thresholds in the forward pass and
the backward pass are set to the same value. We examine
different iteration thresholds for DEQ-GNN with a channel
size of 64 (DEQ-GNN-64) and a channel size of 224 (DEQ-
GNN-224) in Figure 4. It can be seen that the iteration
threshold is crucial for good performance, since it affects
the convergence to the equilibrium. We find that DEQ-GNN-
64 performs similarly to WT-RevGNN-80 with nearly the
same number of parameters and memory consumption. The
wider DEQ-GNN-224 model reaches 85.84% ROC-AUC,
which is comparable to the 112-layer ResGNN-64, with
only around 28% memory footprint and 23% parameters
(Mem: 7.60GB vs. 27.1GB, Params: 537k vs. 2.37M). DEQ-
GNN-224 slightly outperforms WT-RevGNN-224 with only
about 60% of the training time.

Discussion. Reversible networks emerge as the most
promising approach for building deep GNNs that achieve
state-of-the-art performance. They consume much less
memory than the baseline while achieving comparable per-
formance with the same number of parameters (see Figure
1). However, in contrast to the baseline method, we are able
to train very deep networks with more parameters and much
better performance without running out of memory. While
it is possible to go to arbitrary depths with constant memory
consumption, the training time increases. In order to reduce
the number of parameters and inference time, it is possible
to increase the group size. However, we find that group
sizes larger than 2 do not lead to a performance increase
in practice and may even degrade model performance. We
conjecture that this is due to the increased receptive field
of early layers and the smaller number of parameters per
memory. We provide an ablation study in the appendix.

The weight-tied network limits the number of parameters to
a single layer regardless of the effective depth. We find that
going deeper with tied weights boosts performance, but re-
turns eventually diminish (see Figure 3). While parameters
stay constant, going deeper still increases memory consump-
tion, unless the reversible GNN block is used. An extension
of the weight-tied network is the graph equilibrium model.
It represents an infinite-depth weight-tied network and uses
fixed-point iterations to solve for the optimal weights. This
allows for much wider channel size with the same amount
of memory. DEQ-GNNs are faster to train, but have more
hyper-parameters to tune. Please refer to the appendix for
a training time ablation. We find that pretraining is not
necessary, but can further improve the results. The results
reported in this paper are without pretraining for fair com-
parison. While weight-tied GNNs and equilibrium GNNs

Training Graph Neural Networks with 1000 Layers

are not able to achieve state-of-the-art performance, they
are very parameter-efficient, which may be relevant for ap-
plications on embedded devices where model size matters.

4. Over-parameterized Deep GNNs
We conduct experiments on several datasets from the Open
Graph Benchmark (OGB) (Hu et al., 2020). We first show
state-of-the art results on several datasets with the proposed
deep reversible GNN. We then apply the reversible GNN
framework to different GNN operators on the ogbn-arxiv
dataset. To show how mini-batch sampling can further aid
the training of deep GNNs, we compare full-batch and mini-
batch training of reversible GNNs on the ogbn-products
dataset. The data splits and evaluation metrics on all datasets
follow the OGB evaluation protocol. Mean and standard de-
viation are obtained across 10 trials. All the ablated models
use the same hyper-parameters (e.g. learning rate, dropout
rate, training epoch, etc.) and optimizers as the baseline
models. The implementation of all the reversible models is
based on PyTorch (Paszke et al., 2019) and supports both
PyTorch Geometric (PyG) (Fey & Lenssen, 2019) and Deep
Graph Libray (DGL) (Wang et al., 2019a) frameworks.

4.1. State-of-the-art Results

We briefly describe two variants of our RevGNN with re-
versible connections, which reach new SOTA results on the
ogbn-proteins dataset of the OGB leaderboard (Hu et al.,
2020) (Table 1) at the time of submission. RevGNN-Deep
has 1001 layers and a channel size of 80. It outperforms the
previous SOTA method UniMP+CEF by 0.83% ROC-AUC,
while using only 10.5% of the GPU memory for training.
RevGNN-Wide uses 448 GNN layers and 224 hidden chan-
nels and significantly outperforms UniMP+CEF by 1.33%
ROC-AUC with about 29% of the GPU memory. RevGNN-
Deep uses the same training setting as mentioned in Section
3.4. The RevGNN-Wide uses a larger dropout rate of 0.2
to prevent overfitting. To boost the performance, the results
of RevGNN-Deep and RevGNN-Wide are obtained using
multi-view inferences with 10 views on larger subgraphs
with a partition size of 3. We perform the inferences on a
NVIDIA RTX A6000 (48GB). Please refer to the appendix
for the details of multi-view inference. Larger and deeper
models incur a cost in terms of training and inference time.
RevGNN-Deep and RevGNN-Wide take 13.5 days and 17.1
days, respectively, to train for 2000 epochs on a single
NVIDIA V100. Nonetheless, it is affordable for accuracy-
critical applications in scientific research such as predicting
protein structures (Senior et al., 2020). We demonstrate
that it is possible to train huge over-parameterized GNN
models on a single GPU. The RevGNN-Wide model has
68.47 million parameters, which is about half the size of the
GPT language model (Radford et al.). We believe that this is

Table 1. Results on the ogbn-proteins dataset compared to
SOTA. RevGNN-Deep has 1001 layers with 80 channels each.
It achieves SOTA performance with minimal GPU memory for
training. RevGNN-Wide has 448 layers with 224 channels each. It
achieves the best accuracy while consuming a moderate amount of
GPU memory.

Model ROC-AUC ↑Mem ↓ Params

GCN (Kipf & Welling) 72.51 ± 0.35 4.68 96.9k
GraphSAGE (Hamilton et al.) 77.68 ± 0.20 3.12 193k

DeeperGCN (Li et al.) 86.16 ± 0.16 27.1 2.37M
UniMP (Shi et al.) 86.42 ± 0.08 27.2 1.91M

GAT (Veličković et al.) 86.82 ± 0.21 6.74 2.48M
UniMP+CEF (Shi et al.) 86.91 ± 0.18 27.2 1.96M

Ours (RevGNN-Deep) 87.74 ± 0.13 2.86 20.03M
Ours (RevGNN-Wide) 88.24 ± 0.15 7.91 68.47M

an important step forward in developing over-parameterized
GNNs for graphs.

Our RevGNNs also achieve new SOTA results on the ogbn-
arxiv dataset (see Table 2). RevGCN-Deep uses 28 GCN
(Kipf & Welling, 2017) layers with 128 channels each and
achieves an accuracy of 73.01%, while only using 1.84GB
of GPU memory. RevGAT-Wide uses 5 attention layers
with 3 heads and 356 channels for each head and out-
performs the current top performer UniMP v2 (Shi et al.,
2020) (74.05% vs. 73.97%) while using about a third of the
memory (8.49GB vs. 25.0GB). RevGAT-SelfKD uses self-
knowledge distillation (Zhang et al., 2019) with 5 attention
layers, 3 heads, and 256 channels each. The teacher models
achieve an accuracy of 74.02%. After training with distilla-
tion, the student models set a new SOTA with 74.26% test
accuracy. Please refer to the appendix for more details.

4.2. Application to Different GNN Operators

The proposed techniques are generic and can in principle
be applied to any SOTA GNN to further boost the perfor-
mance with deeper and wider architectures while saving
GPU memory. We show this for the example of reversible
GNNs and build RevGNNs with different SOTA GNN oper-
ators: GAT (Veličković et al., 2018), GCN (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017), and ResGEN
(Li et al., 2020). We compare them to their non-reversible
residual counterparts on the ogbn-arxiv in Table 3. Since
ogbn-arxiv is much smaller than the ogbn-proteins, we are
able to run all experiments with full-batch training and re-
port statistics across 10 training runs. We observe that all of
the RevGNNs consistently outperform their vanilla residual
counterparts with the same channel size. The RevGNNs
use less memory due to reversible connections and fewer
parameters due to grouping. We increase the channel size of
RevGNNs to roughly match the number of parameters of the

Training Graph Neural Networks with 1000 Layers

Table 2. Results on the ogbn-arxiv dataset compared to SOTA.
RevGCN-Deep has 28 layers with 128 channels each. It achieves
SOTA performance with minimal GPU memory. RevGAT-Wide
has 5 layers with 1068 channels each. RevGAT-SelfKD denotes
the student models with 5 layers and 768 channels. It achieves
the best accuracy while consuming a moderate amount of GPU
memory.

Model ACC ↑ Mem ↓ Params

GraphSAGE (Hamilton et al.) 71.49 ± 0.27 1.99 219k
GCN (Kipf & Welling) 71.74 ± 0.29 1.90 143k

DAGNN (Liu et al.) 72.09 ± 0.25 2.40 43.9k
DeeperGCN (Li et al.) 72.32 ± 0.27 21.6 491k
GCNII (Chen et al.) 72.74 ± 0.16 17.0 2.15M

GAT (Veličković et al.) 73.91 ± 0.12 5.52 1.44M
UniMP v2 (Shi et al.) 73.97 ± 0.15 25.0 687k

Ours (RevGCN-Deep) 73.01 ± 0.31 1.84 262k
Ours (RevGAT-Wide) 74.05 ± 0.11 8.49 3.88M

Ours (RevGAT-SelfKD) 74.26 ± 0.17 6.60 2.10M

1 3 7 14 28 56
Number of Layers

0

8

16

24

32

GP
U

M
em

or
y (

GB
)

66.96

76.43

67.89 77.08
81.05

81.81

81.31

73.25 78.42 78.77 78.77 78.71 78.03

72.98 79.16 80.79 81.27 81.45 82.16

32GB

11GB

Out of Memory Out of MemoryFull-batch+ResGNN-128 (Baseline)
Mini-batch+ResGNN-128 (Baseline)
Full-Batch+RevGNN-160 (Ours)
Mini-batch+RevGNN-160 (Ours)

Figure 5. GPU memory consumption vs. number of layers for
ResGNN (Li et al., 2020) and RevGNN with full-batch and
mini-batch training on the ogbn-products. RevGNN uses con-
stant memory for deeper networks with more parameters and better
performance. We use a width of 128 and 160 for ResGNN and
RevGNN, respectively, to ensure a similar number of parameters
per network depth. Datapoints are annotated with the accuracy
of the model and their size is proportional to

√
p, where p is the

number of parameters.

corresponding ResGNNs, thus increasing the performance
gap further. For instance, the RevGCN with 28 layers and
180 channels reduces the memory footprint by more than
75% while improving the accurracy by 0.76%, as compared
to the ResGCN with 28 layers and 128 channels. Utilizing
label propagation, the RevGAT with 5 layers and 1068 chan-
nels (3 attention heads with 356 channels for each head)
achieves SOTA results on ogbn-arxiv.

4.3. Full-batch vs. Mini-batch Training

Our method is orthogonal to existing sampling-based ap-
proaches, which also reduce memory consumption. Hence,

Table 3. Results with different GNN operators on the ogbn-
arxiv. All GAT models use label propagation. #L and #Ch denote
the number of layers and channels respectively. Baselines are in
italic.

Model #L #Ch ACC ↑ Mem ↓ Params

ResGCN 28 128 72.46 ± 0.29 11.15 491k
RevGCN 28 128 73.01 ± 0.31 1.84 262k
RevGCN 28 180 73.22 ± 0.19 2.73 500k

ResSAGE 28 128 72.46 ± 0.29 8.93 950k
RevSAGE 28 128 72.69 ± 0.23 1.17 491k
RevSAGE 28 180 72.73 ± 0.10 1.57 953k

ResGEN 28 128 72.32 ± 0.27 21.63 491k
RevGEN 28 128 72.34 ± 0.18 4.08 262k
RevGEN 28 180 72.93 ± 0.10 5.67 500k

ResGAT 5 768 73.76 ± 0.13 9.96 3.87M
RevGAT 5 768 74.02 ± 0.18 6.30 2.10M
RevGAT 5 1068 74.05 ± 0.11 8.49 3.88M

we can use our techniques in conjunction with mini-batch
training to further optimize memory. We conduct an ablation
study on the ogbn-products dataset (Hu et al., 2020) with
full-batch training and a simple random-clustering mini-
batch training for ResGNNs and RevGNNs. The test results
are reported in Figure 5 with full-batch inference. Com-
pared to full-batch training, we find that mini-batch training
further reduces the memory consumption of RevGNN to
44% and improves its accuracy from 78.77% to 82.16%.

4.4. Analysis of Complexities

We have discussed the memory complexity of full-batch
GNNs, GraphSAGE (Hamilton et al., 2017), VR-GCN
(Chen et al., 2018b), FastGCN (Chen et al., 2018a), Cluster-
GCN (Chiang et al., 2019) and GraphSAINT (Zeng et al.,
2020) in the related work section, and the memory complex-
ity of our Reversible GNN, Weight-tied GNN and DEQ-
GNN in the methodology section. We summarize the theo-
retical memory complexity in Table 4, where L is the num-
ber of layers of the GNN, D is the size of hidden channels,
N is of the number of nodes in the graph, B is the batch size
of nodes and R is the number of sampled neighbors of each
node. K is the maximum Broyden iterations for equilibrium
GNNs. We only discuss the memory complexity for storing
intermediate node features in each layer since the memory
footprint of the network parameters is negligible. All prior
works suffer from memory consumption with respect to the
number of layers, while the memory consumption of our
methods is independent of the depth. Our methods can also
be combined with mini-batch sampling methods to further
reduce the memory complexity with respect to the num-
ber of nodes. We also include the parameter complexity
and time complexity in Table 4. Note that although the

Training Graph Neural Networks with 1000 Layers

Table 4. Comparison of complexities. L is the number of layers, D is the number of hidden channels, N is of the number of nodes, B is
the batch size of nodes and R is the number of sampled neighbors of each node. K is the maximum Broyden iterations.

Method Memory Params Time

Full-batch GNN O(LND) O(LD2) O(L ‖A‖0D + LND2)
GraphSAGE O(RLBD) O(LD2) O(RLND2)

VR-GCN O(LND) O(LD2) O(L ‖A‖0D + LND2 +RLND2)
FastGCN O(LRBD) O(LD2) O(RLND2)

Cluster-GCN O(LBD) O(LD2) O(L ‖A‖0D + LND2)
GraphSAINT O(LBD) O(LD2) O(L ‖A‖0D + LND2)

Weight-tied GNN O(LND) O(D2) O(L ‖A‖0D + LND2)

RevGNN O(ND) O(LD2) O(L ‖A‖0D + LND2)
WT-RevGNN O(ND) O(D2) O(L ‖A‖0D + LND2)
DEQ-GNN O(ND) O(D2) O(K ‖A‖0D +KND2)

RevGNN + Subgraph Sampling O(BD) O(LD2) O(L ‖A‖0D + LND2)
WT-RevGNN + Subgraph Sampling O(BD) O(D2) O(L ‖A‖0D + LND2)
DEQ-GNN + Subgraph Sampling O(BD) O(D2) O(K ‖A‖0D +KND2)

time complexity of RevGNN is the same as for the vanilla
GNNs, it has a larger constant term. This is due to the input
that needs to be reconstructed during the backward pass.
Both the memory complexity and parameter complexity of
WT-RevGNN and DEQ-GNN is independent of L.

4.5. More Ablation Studies

Comparison with SGC & SIGN on Ogbn-products. We
compare RevGNN with SGC (Wu et al., 2019) and SIGN
(Frasca et al., 2020) on ogbn-products. The test accuracies
(%) of SGC, SIGN and RevGNN on ogbn-products are:
74.87 ± 0.25 (SGC), 77.60 ± 0.13 (SIGN) and 82.16 ± 0.15
(RevGNN) respectively. The results of SGC and SIGN are
obtained from the SIGN paper (Frasca et al., 2020). We train
the RevGNN with 56 layers and 160 hidden channels in a
random-clustering mini-batch training fashion. We find that
RevGNN outperforms SGC and SIGN by a large margin.

Results of RevGNN on Ogbg-ppa. We trained ResGNN
and RevGNN with 28 layers and similar number of parame-
ters (∼ 2.3M) on the ogbg-ppa dataset. Both achieve around
77% test accuracy, but RevGNN uses only 16% GPU mem-
ory compared to ResGNN.

Comparison of Normalizations on Ogbg-molhiv. We
conduct an ablation study on ogbg-molhiv for comparing
using BatchNorm (Ioffe & Szegedy, 2015) or GraphNorm
(Cai et al., 2020) for RevGNN on graph property prediction.
We train RevGNN with 14 layers and 256 hidden chan-
nels. Dropout layers with a rate of 0.3 are used. Learnable
SoftMax aggregation functions (Li et al., 2020) are used
for message aggregation. The RevGNN with GraphNorm
achieves 78.62 ROC-AUC which outperforms the RevGNN
with BatchNorm (77.82 ROC-AUC) slightly.

5. Conclusion and Discussion
This work addresses a fundamental bottleneck of current
deep GNNs: their high GPU memory consumption. We
investigate several techniques to reduce the memory com-
plexity with respect to network depth (L) from O(L) to
O(1). In particular, reversible GNNs enable networks that
are an order of magnitude deeper than current SOTA models.
Since there is no memory cost associated with depth, the
width can be increased for additional representational power.
As a result, we can train over-parameterized networks that
significantly outperform current models on standard bench-
marks while consuming less memory.

However, this comes at an additional cost in training time.
While this cost is less than 40%, it can extend the training
time by several days on very large datasets. In addition,
current GNNs are usually trained for thousands of epochs
to achieve SOTA performance. Reducing the training time
of GNNs is an interesting avenue for future research. Please
refer to the appendix for more details about the opportunities
for future work and further discussion on topics like gradient
checkpointing, model parallelism, etc. In the appendix, we
also provide all the experimental details and further ablation
studies.

Acknowledgments
The authors thank Shaojie Bai, researchers at Intel ISL, the
reviewers, and area chairs for their helpful suggestions. This
project is partially funded by the King Abdullah University
of Science and Technology (KAUST) Office of Sponsored
Research under Award No. OSR-CRG2019-4033.

Training Graph Neural Networks with 1000 Layers

References
Bai, S., Kolter, J. Z., and Koltun, V. Trellis networks for se-

quence modeling. In International Conference on Learn-
ing Representations, 2018.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. In Advances in Neural Information Processing
Systems, 2019.

Bai, S., Koltun, V., and Kolter, J. Z. Multiscale deep equi-
librium models. In Advances in Neural Information Pro-
cessing Systems, 2020.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconcil-
ing modern machine-learning practice and the classical
bias–variance trade-off. Proceedings of the National
Academy of Sciences, 116(32), 2019.

Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais,
M., Rózemberczki, B., Lukasik, M., and Günnemann, S.
Scaling graph neural networks with approximate pager-
ank. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data
Mining, pp. 2464–2473, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M. F., and Lin, H. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 33, pp. 1877–1901, 2020.

Broyden, C. G. A class of methods for solving nonlinear
simultaneous equations. Mathematics of computation, 19
(92):577–593, 1965.

Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. Spectral
networks and locally connected networks on graphs. In
International Conference on Learning Representations,
2014.

Cai, T., Luo, S., Xu, K., He, D., Liu, T.-y., and Wang,
L. Graphnorm: A principled approach to acceler-
ating graph neural network training. arXiv preprint
arXiv:2009.03294, 2020.

Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with
graph convolutional networks via importance sampling.
In International Conference on Learning Representations,
2018a.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph
convolutional networks with variance reduction. In Inter-
national Conference on Machine Learning, pp. 941–949,
2018b.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In Proceedings of
the 37th International Conference on Machine Learning,
volume 119, pp. 1725–1735, 2020.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training
deep and large graph convolutional networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 257–266,
2019.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information pro-
cessing systems, pp. 3844–3852, 2016.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, volume 1, pp. 4171–4186, 2019.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bron-
stein, M., and Monti, F. Sign: Scalable inception graph
neural networks. In ICML 2020 Workshop on Graph
Representation Learning and Beyond, 2020.

Gao, H., Wang, Z., and Ji, S. Large-scale learnable graph
convolutional networks. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 1416–1424, 2018.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning, 2017.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
reversible residual network: Backpropagation without
storing activations. In Advances in Neural Information
Processing Systems, 2017.

Training Graph Neural Networks with 1000 Layers

Gong, S., Bahri, M., Bronstein, M. M., and Zafeiriou, S.
Geometrically principled connections in graph neural
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11415–
11424, 2020.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., volume 2, pp. 729–734. IEEE, 2005.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024–1034, 2017.

Hasanzadeh, A., Hajiramezanali, E., Boluki, S., Zhou, M.,
Duffield, N., Narayanan, K., and Qian, X. Bayesian graph
neural networks with adaptive connection sampling. In
International Conference on Machine Learning, pp. 4094–
4104. PMLR, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Henaff, M., Bruna, J., and LeCun, Y. Deep convolu-
tional networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances in
Neural Information Processing Systems, volume 33, pp.
22118–22133, 2020.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y.,
and Leskovec, J. Ogb-lsc: A large-scale challenge
for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Inan, H., Khosravi, K., and Socher, R. Tying word vectors
and word classifiers: A loss framework for language mod-
eling. In Proceedings of the 5th International Conference
on Learning Representations, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Khamsi, M. A. and Kirk, W. A. An introduction to metric
spaces and fixed point theory, volume 53. John Wiley &
Sons, 2001.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. In International Conference on
Learning Representations, 2019.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personal-
ized pagerank. In International Conference on Learning
Representations, 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25:
1097–1105, 2012.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. In International Conference on Learning Rep-
resentations, 2021.

Levie, R., Monti, F., Bresson, X., and Bronstein, M. M.
Cayleynets: Graph convolutional neural networks with
complex rational spectral filters. IEEE Transactions on
Signal Processing, 67(1):97–109, 2018.

Li, G., Müller, M., Thabet, A., and Ghanem, B. Deepgcns:
Can gcns go as deep as cnns? In The IEEE International
Conference on Computer Vision, 2019.

Li, G., Xiong, C., Thabet, A., and Ghanem, B. Deep-
ergcn: All you need to train deeper gcns. arXiv preprint
arXiv:2006.07739, 2020.

Li, G., Müller, M., Qian, G., Perez, I. C. D., Abualshour,
A., Thabet, A. K., and Ghanem, B. Deepgcns: Making
gcns go as deep as cnns. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

Li, Q., Han, Z., and Wu, X. Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning.
In The Thirty-Second AAAI Conference on Artificial In-
telligence, 2018.

Li, R., Wang, S., Zhu, F., and Huang, J. Adaptive graph
convolutional neural networks. In Thirty-second AAAI
conference on artificial intelligence, 2018.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. Advances in Neural Information Pro-
cessing Systems, 2019.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural
networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 338–348, 2020.

Training Graph Neural Networks with 1000 Layers

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5115–5124, 2017.

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and
Srebro, N. The role of over-parametrization in general-
ization of neural networks. In International Conference
on Learning Representations, 2019.

Niepert, M., Ahmed, M., and Kutzkov, K. Learning con-
volutional neural networks for graphs. In International
conference on machine learning, pp. 2014–2023, 2016.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
International Conference on Learning Representations,
2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Press, O. and Wolf, L. Using the output embedding to
improve language models. In Proceedings of the 15th
Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers,
pp. 157–163, 2017.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Proceed-
ings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 3505–3506,
2020.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node clas-
sification. In International Conference on Learning Rep-
resentations, 2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre,
L., Green, T., Qin, C., Žı́dek, A., Nelson, A. W., Bridg-
land, A., et al. Improved protein structure prediction
using potentials from deep learning. Nature, 577(7792):
706–710, 2020.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. Relational
Representation Learning Workshop, NeurIPS, 2018.

Shi, Y., Huang, Z., Wang, W., Zhong, H., Feng, S., and Sun,
Y. Masked label prediction: Unified message passing
model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Wang, K., Shen, I., Huang, C., Wu, C.-H., Dong, Y., and
Kanakia, A. Microsoft academic graph: when experts are
not enough. Quantitative Science Studies, 1(1):396–413,
February 2020.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,
G., Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. arXiv preprint arXiv:1909.01315, 2019a.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph cnn for learning on
point clouds. ACM Transactions on Graphics (TOG), 38
(5):1–12, 2019b.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861–
6871. PMLR, 2019.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1492–1500, 2017.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In Proceedings of the 35th
International Conference on Machine Learning, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

Xu, K., Zhang, M., Jegelka, S., and Kawaguchi, K. Opti-
mization of graph neural networks: Implicit acceleration
by skip connections and more depth. arXiv preprint
arXiv:2105.04550, 2021.

Training Graph Neural Networks with 1000 Layers

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40–48.
PMLR, 2016.

Yu, F. and Koltun, V. Multi-scale context aggregation by
dilated convolutions. In International Conference on
Learning Representations, 2016.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. GraphSAINT: Graph sampling based in-
ductive learning method. In International Conference on
Learning Representations, 2020.

Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., and Ma,
K. Be your own teacher: Improve the performance of
convolutional neural networks via self distillation. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, October 2019.

Zhao, L. and Akoglu, L. Pairnorm: Tackling oversmooth-
ing in gnns. In International Conference on Learning
Representations, 2019.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X.
Towards deeper graph neural networks with differentiable
group normalization. Advances in Neural Information
Processing Systems, 33, 2020.

Zitnik, M. and Leskovec, J. Predicting multicellular function
through multi-layer tissue networks. Bioinformatics, 33
(14):i190–i198, 2017.

Training Graph Neural Networks with 1000 Layers

A. Grouping of RevGNN
Grouped convolution is an effective way to reduce the pa-
rameter complexity in CNNs. We provide an ablation study
to show how grouping reduces the number of parameters of
RevGNNs. We conduct experiments on the ogbn-proteins
dataset with different group sizes and report the results in
Table 5. The number of hidden channels for all of these
models is set to 224. We find that a larger group size reduces
the number of parameters. As the group size increases from
2 to 4, the number of parameters reduces by more than 30%.
The performance of models with 3 to 56 layers decreases
slightly. The 112-layer networks achieve the same perfor-
mance while the model with group size 4 uses only around
67% parameters compared to the model with group size 2.
However, we observe that the GPU memory usage increases
from 7.30 GB to 11.05 GB as the group size increases from
2 to 4 with our current implementation. We conjecture that
this is due to our inefficient implementation. Optimizing our
code for larger group sizes and conducting a more rigorous
analysis is an interesting avenue for future investigation.

Table 5. Ablation of the group size of group reversible GNNs
on the ogbn-protein dataset. L is the number of layers. The
number of hidden channels is 224 for all the models.

Group=2 Group=4

#L Params ROC-AUC ↑ Params ROC-AUC ↑
3 490k 85.09 339k 84.86
7 1.1M 85.68 750k 85.25
14 2.2M 86.62 1.5M 85.79
28 4.3M 86.68 2.9M 86.30
56 8.6M 86.90 5.8M 86.76

112 17.2M 87.02 11.5M 87.09

B. Experimental Details and More Ablations
B.1. Datasets and Frameworks

We conduct experiments on three OGB datasets (Hu
et al., 2020) including ogbn-proteins, ogbn-arxiv and ogbn-
products. We follow the standard data splits and evaluation
protocol of OGB 1.2.4. Please refer to the OGB website1 for
more details. Our code implementation relies on the deep
learning framework Pytorch 1.6.0. We use Pytorch Geomet-
ric 1.6.1 (Fey & Lenssen, 2019) for all experiments except
for the experiments with GATs where we use DGL 0.5.3
(Wang et al., 2019a). The reversible module is implemented
based on MemCNN (?). The deep equilibrium module is
implemented based on DEQ (Bai et al., 2019).

1https://ogb.stanford.edu/

Table 6. Results on the ogbn-proteins dataset for various 112-
layer networks. Note that DEQ-GNN always has only a single
layer that approximates an infinitely deep network. Each network
is trained on one V100 GPU with 32GB of memory. The column
Mem reports the GPU memory in GB, Params reports the number
of model parameters, and Time reports the training time in days.
Baselines are in italic.

Model #Ch ROC-AUC ↑ Mem ↓ Params Time ↓
ResGNN 64 85.94 27.1 2.37M 1.3
ResGNN 224 - OOM 28.4M -

WT-ResGNN 64 83.30 27.4 51.2k 1.2
WT-ResGNN 224 - OOM 537k -

DEQ-GNN 64 83.17 2.22 51.3k 1.3
DEQ-GNN 224 85.84 7.60 537k 2.9

RevGNN 64 85.48 2.09 1.46M 1.8
RevGNN 80 85.97 2.56 2.25M 2.2
RevGNN 224 87.02 7.30 17.1M 4.9

WT-RevGNN 64 82.89 1.60 35.0k 1.7
WT-RevGNN 80 83.46 2.08 51.4k 2.0
WT-RevGNN 224 85.28 5.55 337k 4.8

B.2. Hyperparameters and Experimental Settings

We describe all important hyperparameters and training
settings that were not mentioned in the main paper for re-
producibility. The settings are slightly different for each
dataset.

Ogbn-proteins. The node features are initialized through
aggregating connected edge features by a sum aggregation
at the first layer. We use random partitioning for mini-batch
training. The number of partitions is set to 10 for training
and 5 for validation for all the ablated models. One subgraph
is sampled at each SGD step. One layer normalization is
used in the GNN block. Dropout with a rate of 0.1 is used
for each layer. We use max as the message aggregator. Each
model is trained for 2000 epochs using the Adam optimizer
with a learning rate of 0.001.

Ablations on Ogbn-proteins. A detailed comparison of
ResGNN, Weight-tied ResGNN, DEQ-GNN, RevGNN and
Weight-tied RevGNN is shown in Table 6. Except for the
DEQ-GNN, all the other models have an explicit depth of
112 layers. The reversible connections reduce the mem-
ory consumption significantly and enable training of wider
RevGNNs. A 112-layer RevGNN achieves the best per-
formance (87.02 ROC-AUC) among the compared models.
DEQ-GNN with 64 channels and WT-RevGNN with 80
channels have a similar number of parameters and memory
consumption and also perform similarly. However, training
DEQ-GNN is significantly faster than training WT-RevGNN
(1.3 days vs. 2 days).

Training Graph Neural Networks with 1000 Layers

Table 7. Ablations for multi-view inference with RevGNN-
Deep and RevGNN-Wide on the ogbn-proteins dataset. L, Ch,
Views and Parts denote the numbers of layers, channels, views and
parts respectively. Doing inference with more views and less parts
is favorable.

Model #L #Ch #Views #Parts ROC-AUC ↑
RevGNN-Deep 1001 80 1 3 87.29 ± 0.16
RevGNN-Deep 1001 80 5 3 87.68 ± 0.13
RevGNN-Deep 1001 80 10 3 87.74 ± 0.13

RevGNN-Wide 448 224 1 3 87.84 ± 0.21
RevGNN-Wide 448 224 5 3 88.20 ± 0.16
RevGNN-Wide 448 224 10 3 88.24 ± 0.15

RevGNN-Wide 448 224 1 3 87.84 ± 0.21
RevGNN-Wide 448 224 1 5 87.62 ± 0.18
RevGNN-Wide 448 224 1 10 87.23 ± 0.22

Multi-view Inference on Ogbn-proteins. To further im-
prove the evaluation results, we propose multi-view infer-
ence which reduces the negative effects of random partition-
ing and noisy neighbors. During different inference passes,
each vertex will see a different set of neighbors. We refer
to this as multi-view inference and implement it by parti-
tioning the graphs into different subgraphs in each inference
pass. In Table 7, we find that performing inference with
more views yields better results. We observe a substantial
improvement with increasing number of views for both the
RevGNN-Deep and RevGNN-Wide models. The results
increase by about 0.4% in terms of ROC-AUC going from
1 view to 10 views. We also observe that a smaller number
of partitions is favorable for evaluation. To reduce memory
cost, automatic mixed precision2 by NVIDIA is used for
inference.

Ogbn-arxiv. The directed graph is converted into an undi-
rected graph and self-loops are added. We use the full-batch
setting for both training and testing. For the GCN (Kipf
& Welling, 2017), SAGE (Hamilton et al., 2017) and GEN
(Li et al., 2020) models, batch normalization and dropout
with a rate of 0.5 is applied to each layer and the Adam
optimizer with a learning rate of 0.001 is used to train the
models for 2000 epochs. The GAT-based (Veličković et al.,
2018) models are implemented based on the OGB leader-
board submission GAT + norm. adj. + label reuse3. The
RevGAT models with self-knowledge distillation are imple-
mented based on the submission GAT + label reuse + self
KD4. The teacher models and student models have the same

2https://developer.nvidia.com/automatic-mixed-precision
3https://github.com/Espylapiza/dgl/tree/master/examples

/pytorch/ogb/ogbn-arxiv
4https://github.com/ShunliRen/dgl/tree/master/examples

/pytorch/ogb/ogbn-arxiv

architecture. A knowledge distillation loss is added to the
student model to minimize the Kullback–Leibler divergence
between the teacher’s predictions and the student’s predic-
tions during training. Please refer to the Github repositories
for more details about the implementation.

Ogbn-products. Self-loops are added to the graph. We
compare RevGNNs with full-batch training and mini-batch
training. For mini-batch training, the graph is randomly par-
titioned into 10 subgraphs and one subgraph is sampled at
each SGD step. We use full-batch testing in both scenarios.
Batch normalization and dropout with a rate of 0.5 are used
for each GNN block. The model is trained using the Adam
optimizer with a learning rate of 0.001 for 1000 epochs.

B.3. GPU Memory Measurement

In all the experiments, the GPU memory usage is measured
as the peak GPU memory during the first training epoch.
Note that the measured GPU memory is larger than the GPU
memory for storing node features due to the intermediate
computation and network parameters. We consider the peak
GPU memory usage as a practical metric since it is the bot-
tleneck for training neural networks. As is common practice,
we use torch.cuda.max memory allocated()
for the memory measurement. However, note that
the measured peak GPU memory obtained using
torch.cuda.max memory allocated() is usually
smaller than the actual peak GPU memory obtained with
NVIDIA-SMI.

B.4. Correlation of Model Predictions

We perform a correlation analysis on model predictions
of RevGNN, Weight-tied RevGNN and DEQ-GNN. The
pearson correlations of RevGNN with 1000 layers, WT-
RevGNN-224 with 7 layers and DEQ-GNN-224 with 56
iterations are: 0.8571 (RevGNN vs. WT-RevGNN), 0.8565
(RevGNN vs. DEQ-GNN) and 0.8948 (WT-RevGNN
vs. DEQ-GNN).

C. More Discussion
C.1. Gradient Checkpointing and Model Parallelism

By saving checkpoints every
√
L steps, gradient check-

pointing can achieve a memory complexity of O(
√
LND),

which is still higher than the memory complexity O(ND)
of RevGNN. For 112-layer models with 64 hidden channels,
ResGNN with gradient checkpointing consumes 2.5X the
memory compared to RevGNN (5.22 G vs. 2.09 G) while
reaching similar performance on ogbn-proteins with sim-
ilar training time. Model parallelism is orthogonal to our
approach. It would be interesting to investigate model paral-
lelism to make RevGNN even wider with multiple GPUs.

Training Graph Neural Networks with 1000 Layers

C.2. Going Deeper and Datasets

In our experiments, we find that going deeper is very effec-
tive on ogbn-proteins. It would probably be beneficial to
pre-train overparameterized GNNs on larger-scale protein
datasets and then apply the pre-trained models to scientific
applications such as drug discovery, protein structure pre-
diction and gene-disease associations. For the other datasets
such as ogbn-products and ogbn-arxiv, we observe less im-
provement when going very deep. It is still unclear what
kind of datasets benefit more from depth and overparameter-
ization. Investigating the relationship between overparame-
terization and factors such as dataset size, graph modality
and graph learning task is an important direction of future
work to better understand when overparameterized models
are beneficial. We also anticipate that overparameterized
GNNs will be a promising solution to even larger datasets
such as OGB-LSC (Hu et al., 2021).

