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Abstract
Graph neural networks (GNNs) have achieved breakthrough
performance in graph analytics such as node classification,
link prediction and graph clustering. Many GNN training
frameworks have been developed, but they are usually de-
signed as a set of manually written, GNN-specific operators
plugged into existing deep learning systems, which incurs
high memory consumption, poor data locality, and large se-
mantic gap between algorithm design and implementation.
This paper proposes the Seastar system, which presents a
vertex-centric programmingmodel for GNN training on GPU
and provides idiomatic python constructs to enable easy de-
velopment of novel homogeneous and heterogeneous GNN
models. We also propose novel optimizations to produce
highly efficient fused GPU kernels for forward and backward
passes in GNN training. Compared with the state-of-the art
GNN systems, DGL and PyG, Seastar achieves better usabil-
ity, up to 2 and 8 times less memory consumption, and 14
and 3 times faster execution, respectively.
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1 Introduction
Graph neural networks (GNNs) [37, 38, 53, 58] are designed
to extract rich information from graph data such as social
networks, knowledge graphs and e-commerce networks. In
recent years, both academia and industry have presented
promising results of using GNNs in important applications
such as recommendation systems [48, 64], combinatorial
optimization [42], chemistry [23] and physical systems [56].

GNN models are usually composed of 2-3 GNN layers. In
its most common form, within each layer, the features of
the adjacent vertices of each vertex 𝑣 in a graph are first
transformed using common neural network computations,
then aggregated and added to 𝑣 ’s own features, and finally
passed through activation functions. We refer this process as
graph convolution in this paper. The output of each layer
is fed into the next layer for its computation, except that the
output of the final layer is used for downstream tasks such
as link prediction and node classification.
Due to the irregularity of graph-structured data, various

frameworks such as DGL [59], PyTorchGeometric (PyG) [22],
GraphLearn [68], Euler [3], NeuGraph [44] and Roc [33]
have been proposed to address the challenges of expressing
GNNs’ irregular computational patterns and training GNNs
efficiently on GPU. From the design perspective, these frame-
works can be mostly characterized as GNN operator libraries.
Take DGL, a state-of-the-art GNN framework, as an example.
DGL provides a graph abstraction, models the graph convolu-
tion step using message-passing primitives, and implements
the primitives as operators being plugged into an existing
DL system (e.g., TensorFlow [2], PyTorch [50], MxNet [16]).
At runtime, GNN operators can be treated as normal DL op-
erators by a DL system and the auto-differentiation module
of the DL system handles the backward propagation. In this
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way, GNN frameworks can design efficient message-passing
primitives without modifying the underlying DL system.

However, such a design has two fundamental limitations
that are difficult to address. First, existing GNN frameworks
use awhole-graph tensor-centric programmingmodel.
This programming model is designed to implement GNN op-
erators as plug-ins of a DL system, but makes the actual
implementation of a GNN model difficult to follow from the
conceptual design of the model, especially when graph oper-
ations are involved. Second, existing designs expose a trade-
off between the generality of operators and performance
optimization. Some GNN frameworks prefer generality, for
example, [3, 22, 44, 68] decompose GNN computations into
graph propagation primitives such as scatter/gather and con-
nect with other DL operators by materializing the intermedi-
ate tensors, which results in excessive memory consumption
and massive data movements. In contrast, DGL [59] provides
fused kernels for some commonly used operator combina-
tions, but fused kernels have limited generality and DGL’s
performance is still sub-optimal as we will discuss in §2.

To address these limitations of existing GNN frameworks,
we propose Seastar, which features a vertex-centric pro-
grammingmodelwith idiomatic Python syntax (§4). Users
only need to program a single vertex’s logic in familiar
Python syntax. To support the efficient execution of var-
ious operator combinations, we identify a similar seastar
execution pattern in training both homogeneous and het-
erogeneous GNN models (§6.2). Based on the seastar pattern,
we design a generic kernel generator (§5), which produces
highly efficient fused kernels for both forward and backward
passes. We propose seastar operator fusion and kernel-level
optimizations (§6.3) such as feature-adaptive threadmapping,
locality-centric execution, and dynamic load balancing.
We evaluate Seastar (§7) using four widely-used GNN

models: GCN [37], GAT [58], APPNP [38] and R-GCN [53]
on 12 datasets. Compared with the state-of-the-art GNN
frameworks, DGL and PyG, Seastar achieves better usability,
up to 2 and 8 times less memory consumption, and 14 and 3
times faster execution, respectively.

Paper outline. In §2, we first give the background of
GNN models and discuss the limitations of existing GNN
programming models and existing GNN training methods to
motivate our work. Then we present an overview of Seastar
in §3. In §4, we introduce the vertex-centric GNN program-
ming of Seastar. In §5 and §6, we present the details of code
generation and various optimizations in Seastar. We report
the performance of Seastar in §7 and discuss related work
in §8. Finally, we give an conclusion for our work in §9.

2 Background and Motivation
2.1 Graph Neural Networks
Given a graph 𝐺 , we denote a directed edge from vertex 𝑢
to vertex 𝑣 as 𝑢𝑣 . Then, each layer of a GNN model can be
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Figure 1. The formula of a GCN layer
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Figure 2. The formula of a GAT layer

generally expressed as follows:

ℎ𝑙+1𝑣 = 𝑔(
⊕

𝑢∈N(𝑣)
(𝑓 (ℎ𝑙𝑢, ℎ𝑙𝑢𝑣, ℎ𝑙𝑣))), (1)

where ℎ𝑙𝑣 is the feature vector of 𝑣 in layer 𝑙 , 𝑓 and 𝑔 are cus-
tomizable neural network modules or functions, and ⊕ is a
function that aggregates the feature vectors of 𝑣 ’s neighbors
and edges [67]. The output of a GNN layer is the set of fea-
ture vectors of the vertices and/or edges in 𝐺 . As real-world
graphs may have multi-typed vertices and edges, heteroge-
neous GNNs are designed to capture the rich information
contained in graph heterogeneity [30, 53, 60, 65]. Usually a
hierarchical aggregation scheme is adopted, where the ag-
gregation is first applied on edges of the same type and then
on the types to obtain the output embedding of a vertex (to
which the edges are incident). We present the formulas of
two popular GNN models, GCN and GAT, in Figures 1 and 2.

2.2 Limitations of GNN Programming Models
Although various types of programming models such as
message-passing and native dataflow programming are of-
fered by existing GNN training frameworks, they share a
commonwhole-graph tensor-centric paradigm as the gran-
ularity of operators in these frameworks is in terms of high-
dimensional tensors. To access a neighbor’s features, users
explicitly or implicitly create edge tensors using messag-
ing/scattering operation and have to track dimensions care-
fully to conduct reduction on the right dimension. For ex-
ample, message-passing systems [22, 31, 59] divide graph
convolution into two stages: message and reduce, where
users create messages as edge tensors and conduct aggre-
gation using tensor reduction operations. NeuGraph [44]
proposes the Scatter-ApplyEdge-Gather-ApplyNode (SAGA)
model, which is similar to the GAS model [26]. However,
SAGA shares the same spirit of message-passing, i.e., treat-
ing the edge-wise tensors as messages, and its rigid structure
may not suit all GNN models. For example, the two ‘A’s in
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SAGA need to be skipped for GCN. Systems adopting native
dataflow programming models [3, 68] have a lower-level
interface. Users need to care for low-level details such as the
IDs of 𝑢 and 𝑣 for an edge 𝑢𝑣 and use operators such as scat-
ter and segment_sum to implement the message and reduce
functions on their own. Compared with message-passing,
even more programming effort is required to implement a
GNN model. The whole-graph tensor-centric design eases the
integration with existing DL systems as the granularity of data
and operations is consistent with DL systems, but burdens users
with the tedious task of translating local computation in Equa-
tion 1 to global tensor operations, which should be handled
by GNN training frameworks for better usability and higher
user productivity.

2.3 Limitations of Existing Optimizations
Most existing message-passing systems [3, 22, 44, 68] mate-
rialize message tensors and the intermediate results gener-
ated when creating messages, which results in high memory
consumption and data movements between streaming mul-
tiprocessors (SMs) and device memory. In these systems, the
memory consumption is proportional to the feature size and
the number of vertices and edges. This significantly limits
their scalability, for example, PyG runs out of memory for
a 2-layer GCN with hidden size 16 on the reddit dataset
(around 84 million edges) using a NVIDIA GTX 2080Ti with
11 GB device memory.

Operator fusion combines consecutive operators into a
single kernel. Within the fused kernel, an operator passes its
result to a downstream operator directly using registers with-
out dumping into global memory, thus saving both global
memory consumption and execution time. However, it is non-
trivial to apply operator fusion to GNN operations. Existing
DL systems can only generate simple fused kernels such as
fusing several element-wise operations and generally require
manual efforts to develop high-performance kernels such
as fused conv2d-element-wise [2, 50]. DL compilers such
as TVM [17] divide operators into four categories, injective,
reduction, complex-out-fusible and opaque (non-fusible), and
devise fusion rules for them. Polyhedral model based DL
compilers [5, 57] can apply fusion among operators with
automatic polyhedron transformation. However, GNN con-
sists of irregular computations due to the irregularity of
graph structured data, which requires data-dependent data
accessing and aggregations and goes beyond the capability
of current DL compilers. In fact, identifying and fusing com-
plex patterns remains to be a difficult problem in general for
DL compilers [41].
DGL [59] proposes tailored optimizations for common

patterns. DGL merges one edge-wise operation (e.g., adding
the features of the two end vertices of an edge) with an
aggregation (e.g., sum) on edges into a fused BinaryReduce
kernel. By avoiding materializing the result of binary opera-
tion (which is usually a tensor whose size is proportional to

the number of edges), it achieves significant memory saving.
However, BinaryReduce only represents a very small subset
of operator combinations in the whole GNN design space and
delivers poor performance due to its kernel design as we will
show in §7. A recent work [31] proposes generalized SpMM
(spare-dense matrix multiplication) and SDDMM (sample
dense-dense matrix multiplication) and generates kernels
using TVM [17]. However, users are required to program us-
ing TVM’s compute and schedule primitives to develop new
GNN layers, which requires good understanding of GPU’s
architecture and low-level graph data representation details.

3 Overview
We first give an overview of Seastar in this section, which
also provides an outline of the presentation in §4-§6. Seastar
differs from existing GNN training frameworks mainly in
its vertex-centric programming model (for better usability)
and execution plan generation (for higher performance).
Seastar’s programming model allows users to easily pro-
gram GNN models with vertex-centric user-defined func-
tions (UDFs). In §4, we present this vertex-centric program-
ming model and compare it with DGL’s tensor-centric pro-
gramming model using GCN and GAT as examples to high-
light its benefits. Given a vertex-centric UDF, Seastar gen-
erates an efficient execution plan (§5) and applies operator
fusion and kernel-level optimizations (§6). Seastar first trans-
lates the vertex-centric logic into tensor operations by a
tracer (§5) and then identifies operator fusion opportunities
by the notion of Seastar computation pattern (§6.2). Seastar
effectively utilizes the massive parallelism of GPU by feature-
adaptive thread grouping (§6.3.1) and locality-centric execu-
tion (§6.3.2), which delineate the key differences (in terms
of SIMT parallelization strategy) between Seastar and other
solutions such as DGL. Seastar also supports dynamic load
balancing to handle skewed loading (§6.3.3).

4 Vertex-Centric GNN Programming
To address the limitations discussed in §2.2, we propose a new
vertex-centric GNN programming model, which is inspired
by Pregel’s vertex-centric model [45] for programming dis-
tributed graph algorithms such as PageRank. Our objective
is more natural GNN programming so that users’ learning
curve is flattened. Our key observation is that Equation 1
takes a form of vertex-centric computation, i.e., it computes the
features of a center vertex 𝑣 by aggregating the features of its
neighbors.
To support vertex-centric programming, we introduce a

function decorator, compile. A function 𝑓 decorated by
compile has a single argument 𝑣 and users only need to
program the operation on 𝑣 . Users only need to include
the line “@Seastar.compile()” before the decorated function
vc_compute(v), and Seastar will compile vc_compute(v) and
operate on each vertex in the input graph. Users may use
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1 #-----------------Seastar GCN -------------------#
2 def gcn_forward(self, h, norm):
3 @Seastar.compile(v_feature ={'norm':norm ,'h':h})
4 def vc_compute(v):
5 return sum([torch.mm(u.h, self.W) * u.norm
6 for u in v.innbs ])
7 return torch.sigmoid(vc_compute () + self.bias)
8
9 #-----------------Seastar GAT -------------------#
10 def gat_forward(self, h):
11 h = torch.mm(self.W, h)
12 eu = h * self.attn_u.sum(dim=-1)
13 ev = h * self.attn_v.sum(dim=-1)
14 @Seastar.compile(
15 v_feature ={"eu" : eu, "ev" : ev, "h" : h})
16 def vc_compute(v):
17 e = [torch.exp(self.leakyRelu(u.eu+u.ev))
18 for u in v.innbs]
19 a = [c/sum(e) for c in e]
20 hu = [u.hu for u in v.innbs]
21 return sum([a[i]*hu[i]
22 for i in range(len(v.innbs ))])
23 return vc_compute ()

Figure 3. Seastar’s implementation of GCN and GAT

native Python syntax in a decorated function, e.g., using the
‘dot’ operator to access the features of neighbors, and using
list comprehension and reduction to compute and aggregate
on the neighbor features.
The code snippet in Figure 3 shows how GCN and GAT

are implemented in Seastar. The key step of GCN can be
implemented succinctly with only one line of code (Line 5).
More importantly, we can see a clear correspondence be-
tween the GNN formulas in Figure 1 and Figure 2 and the
vertex-centric implementations (i.e., vc_compute(v)) in Fig-
ure 3. The benefit is bi-directional: users can implement a
GNN model easily and users can learn the GNN model by
directly checking its implementation.
In Figure 4, we also present the implementation of GCN

and GAT using DGL, which is one of the most popular
message-passing GNN training frameworks. Consider the
GCN implementation of DGL in Figure 4. Line 5 stores a ten-
sor ℎ in 𝑔𝑟𝑎𝑝ℎ.𝑠𝑟𝑐𝑑𝑎𝑡𝑎 with key ′ℎ′. Line 6 executes the mes-
sage passing step for the whole graph, where 𝑓 𝑛.𝑐𝑜𝑝𝑦_𝑠𝑟𝑐 is
themessage step, which copies the tensor stored in𝑔𝑟𝑎𝑝ℎ.𝑠𝑟𝑐𝑑𝑎𝑡𝑎
with key ′ℎ′ and produces a message tensor with key ′𝑚′.
Then the reduce step 𝑓 𝑛.𝑠𝑢𝑚 aggregates the ′𝑚′ tensor and
stores the output in 𝑔𝑟𝑎𝑝ℎ.𝑑𝑠𝑡𝑑𝑎𝑡𝑎 with key ′ℎ′. Line 8 re-
trieves the aggregated result from 𝑔𝑟𝑎𝑝ℎ.𝑑𝑠𝑡𝑑𝑎𝑡𝑎.
Compared with Seastar’s GCN implementation in Fig-

ure 3, the above GCN implementation in DGL is more com-
plicated due to the extensive use of specialized functions (e.g.,
𝑓 𝑛.𝑐𝑜𝑝𝑦_𝑠𝑟𝑐 ,𝑔𝑟𝑎𝑝ℎ.𝑢𝑝𝑑𝑎𝑡𝑒_𝑎𝑙𝑙 , 𝑓 𝑛.𝑒𝑑𝑔𝑒_𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ). Moreover,
referring to the formula of GCN in Figure 1, it is hard to find
a correspondence between the GCN formula and DGL’s GCN
code in Figure 4.

1 #-----------------DGL GCN -------------------#
2 def gcn_forward(self, graph , h, norm):
3 h = torch.mm(h, self.W)
4 h = h * norm
5 graph.srcdata['h'] = h
6 graph.update_all(fn.copy_src(src='h', out='m'),
7 fn.sum(msg='m', out='h'))
8 h = graph.dstdata['h']
9 return torch.sigmoid(h + self.bias)
10
11 #-----------------DGL GAT -------------------#
12 def gat_forward(self, graph , h):
13 h = torch.mm(self.W, h)
14 eu = h * self.attn_u.sum(dim=-1)
15 ev = h * self.attn_v.sum(dim=-1)
16 graph.srcdata.update ({'h': h, 'eu': eu})
17 graph.dstdata.update ({'ev': ev})
18 graph.apply_edges(fn.u_add_v('eu', 'ev', 'e'))
19 e = self.leaky_relu(graph.edata.pop('e'))
20 graph.edata['a'] = self.attn_drop(
21 fn.edge_softmax(graph , e))
22 graph.update_all(fn.u_mul_e('h', 'a', 'm'),
23 fn.sum('m', 'h'))
24 rst = graph.dstdata['h']
25 return rst

Figure 4. DGL’s implementation of GCN and GAT

Table 1. Seastar API

Attribute Explanation
Seastar compile Vetex-centric decorator

v
innbs list of in-neighbors
inedges list of in-edges
key_name value of vertex features

e

src src vertex
dst dst vertex
type edge type
key_name value of edge features

In addition, DGL imperatively executes the operators one
by one and materializes intermediate results between oper-
ators. In contrast, Seastar separates the operator definition
from the operator execution, which allows us to identify
patterns (from the UDF, vc_compute(v)) for kernel-level opti-
mizations that significantly increase the training through-
put (§6).

We summarize some of API of Seastar in Table 1. The API
only includes the compile decorator and the attributes of a
vertex and edge, as users may simply use Python syntax in
their code. With this simple API, we can already implement
most of the homogeneous and heterogeneous GNN models
that are supported by PYG and DGL.

5 Seastar Code Generation
This section describes the code generation process of Seastar,
i.e., how Seastar translates a vertex-centric program into a
computational graph composed of tensor operations and how
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# Vertex-Centric programming
@Seastar.compile()

def vc_compute(v):
return sum([... for u in v.innbs])

# Invoke compiled function
h = vc_compute()

Tracer Auto-Differentiation

Graph-Level Optimizations

Operator Fusion
Dead Code Elimination
Constant Folding
Common Subexpression Elimination
Symbolic Simplification
Materialization Planning

Code 
Generator

Forward Unit 0

Forward Unit 1

Backward Unit 3

Backward Unit 2

Forward GIR Backward GIR

Figure 5. The architecture of Seastar

Seastar integrates with a DL backend’s runtime. Seastar’s
primary DL backend is MindSpore [32]. MindSpore features
auto-parallel training that simplifies and accelerates dis-
tributed model training and leverages tensor-compilation
techniques for optimal performance, which in turn also im-
proves the performance of GNN training using Seastar. How-
ever, Seastar decouples its code generation and compilation
process from the backend DL system, and it can also be in-
tegrated with other popular DL backends. This design is
driven by following reasons. First, we find that merging with
a specific DL backend such as MindSpore or PyTorch would
require many changes in its intermediate representation
and code optimization process, which is a non-trivial task
(for both merging and update maintenance) as popular DL
systems are being actively upgraded. More importantly, a
decoupled design allows us to easily use the vertex-centric
programming model in different DL backends by writing a
light-weight interfacing code. For example, in this paper we
used PyTorch as the DL backend for Seastar in our experi-
ments for fair comparison with DGL and PyG, as they both
use PyTorch as the DL backend.

Figure 5 shows the major components of Seastar and the
overall code generation process. In the vertex-centric func-
tion, all operations conducted on each center node and its
neighbors are traced and recorded using a graph-aware inter-
mediate representation (GIR) in §5.1. We embed an automatic
differentiation engine for GIR in §5.2. The generated code
will then be compiled and wrapped into a generic kernel
executed by a DL backend as described in §5.3. We illustrate
each component with the code snippet of GAT in Figure 3
as a running example.

5.1 Tracer and GIR
Operator tracing. Similar to PyTorch’s JIT tracer [50], we
use operator overloading to record the operations executed
in the vertex-centric function. The features of each vertex
and edge can be accessed using the keys in the vertex_feature
and edge_feature dictionary with the ‘dot’ operator. Each
feature vector is a symbolic tensor that inherits various at-
tributes (e.g., data type, shape, device information, whether

Div Mul Mul Add

Mul

Mul Mul

BackwardLeakyRelu

AggSum

AggSum

Mul AggSum

Add LeakyRelu Exp AggSum Div Mul AggSum

Tensor A-type E-type D-type Fused Op

Backward GIR

Mul

Div

Add

Div

Forward GIR

Figure 6. The computational graph of GAT

requiring gradient) from the corresponding tensor given in
the dictionary. For the shape attribute, since the correspond-
ing tensor batches vertex/edge feature vectors along the first
dimension, we strip away the first dimension and assign
the remaining dimensions as the shape. All operators in a
DL backend and the methods of the tensors will be monkey-
patched with a new version inside the decorator. The patched
version records the operation together with the features it
operates on and produces new features. The patched version
also creates tensors with the attributes of the input features
and executes the operators with the original version to enjoy
the type inference provided by the DL backend. The traced
program is a DAG since tracing essentially unrolls loops and
branches. Traced DAGs are then compiled and cached after
the first run so that later on it can be executed directly.

As shown in the vertex-centric implementation of GAT in
Figure 3, users provide a 𝑣_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 dictionary as an argu-
ment of the compile decorator. The values in the dictionary
(i.e., 𝑒𝑢, 𝑒𝑣 and ℎ) are tensors and each row in them is to be
interpreted as the embedding feature of a vertex by Seastar.
When the decorated function (or UDF for short) is invoked
for the first time, Seastar will create an attribute for the cen-
ter vertex 𝑣 and its neighbor 𝑢 for each key-value pair in
the dictionary, where the name of the attribute is the key
(e.g.,𝑢.𝑒𝑢 and 𝑣 .𝑒𝑣) and the content of the attribute is a sliced
version of the original tensor (e.g., the first row of the tensor)
to reflect the fact that the attribute belongs to a single vertex.
Note that the sliced tensor is only used in Tracer and will be
discarded after the first run. Then, the operators in the UDF
are to be invoked one by one. Besides carrying out the com-
putation on the sliced tensors and producing the results as
normal operators, they additionally create a node in a global
DAG using their signatures, input and output information.
The resulting DAG of GAT is shown in the forward GIR in
Figure 6.

GIR. The DAG produced by Tracer follows the compu-
tational graph representation that is commonly adopted in
DNN systems [2, 16, 50]. The nodes in a computational graph
represent operations, which take one or more tensors as in-
put and produce new tensors as output. Operations can also
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have attributes such as the slope of the leakyRelu operation.
The DAG specifies the computation for each vertex 𝑣 . This
DAG can be separately executed for each vertex, but this
approach will severely damage the performance of GPU due
to limited parallelism. Seastar groups the vertex-centric op-
erations for all vertices and executes them together. To this
end, Seastar annotates the tensor in the vertex-centric DAG
with a graph type 𝑆 (source), 𝐷 (destination), 𝐸 (edge), or 𝑃
(parameter). 𝑆 , 𝐷 and 𝐸 mean that the tensor corresponds to
a row of full tensor that is a source-wise, destination-wise,
and edge-wise embedding, respectively. 𝑃 means that the
tensor is a parameter shared by all vertices (e.g., the slope of
leakyRelu). A tensor’s graph type can be determined from
the way in which the vertex-centric program accesses it. In
the GAT example, 𝑒𝑢 is accessed by source vertex 𝑢 and thus
its graph type is 𝑆 , while 𝑒𝑣 is accessed by destination vertex
𝑣 and thus has a graph type 𝐷 . Knowing the graph type of
𝑒𝑢 and 𝑒𝑣 , we can then batch all 𝑢.𝑒𝑢 + 𝑣 .𝑒𝑣 operation in
GAT into one kernel by mapping a thread on GPU to each
edge and use the source or destination vertex id of each
edge as an index to query the corresponding rows in the
original tensor, i.e., the tensors 𝑒𝑢 and 𝑒𝑣 in the 𝑣_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒
dictionary. We will discuss more usage of graph types in
automatic differentiation and optimizations in §5.2 and §6.

Graph type inference. We infer the graph type of inter-
mediate results according to the following rules:

1. For operators conducting edge-wise aggregation (e.g.,
the sum operator in GAT), if the input type is 𝑆 (or 𝐷),
its return type is the opposite type, i.e., 𝐷 (or 𝑆). If the
input is of type 𝐸, the return type is determined by
the direction of training. By default, for forward (or
backward) pass of GNN training, the return type is 𝐷
(or 𝑆).

2. For operators taking single graph-type inputs, its out-
put tensor has the same type as the input.

3. For operators having more than two types from 𝑆 , 𝐷 ,
𝐸, its output is of type 𝐸.

4. When used as one of the inputs together with other
graph types, type 𝑃 does not have effect on the outputs’
graph type.

The graph type of operators.We define an operator’s
graph type based on their output’s graph type. Specifically,
an operator is defined as type 𝑆 , 𝐷 or 𝐸 if its output is of
type 𝑆 , 𝐷 or 𝐸, respectively. The graph type of operator
summarizes what kind of index is required to carry out the
computation of this operator. For examples, for an 𝑆-type or
𝐷-type operator, vertex ids are used as indices to access the
embedding. 𝐸-type operator requires both vertex id and/or
edge ids in order to access all required embedding since its
input can be of type 𝑆 , 𝐷 and 𝐸. Additionally, we define
the graph type of aggregation operators (e.g., the AggSum
operator in GAT) as a new type 𝐴 to differentiate its unique
data access and execution pattern.

We show the DAG of GAT with operator-type annotation
in Figure 6 and explain the forward GIR in details to illustrate
the concept. Initially, the operands of the Add operator are of
𝑆 type (𝑒𝑢) and𝐷 type (𝑒𝑣). According to graph type inference
Rule 3, its output will be 𝐸-type. Thus, the graph type of the
Add operator is also 𝐸-type. The type of LeakyRelu is 𝐸 since
it has only one 𝐸-type input (Rule 2). Similarly, Exp is also 𝐸-
type and produce an 𝐸-type output (Rule 2). For the AggSum
operator, it is 𝐴-type by definition and it returns a 𝐷-type
input since the GIR is for forward pass. Similarly, we can
determine the graph type of the remaining operators.

5.2 Auto-Differentiation on GIRs
At compilation time, we do not have the actual value of gradi-
ent, we use placeholders to represent it and the actual value
will be either provided by the auto-differentiation system
of the DL backend or computed during backward execution
at runtime. We start from the output of the whole vertex-
centric computation. We find its producer and generate the
backward operators to compute gradients for producer’s in-
puts using the output and its gradient. If an input already
has gradient, an additional Add operator will be generated
to accumulate the newly computed gradient. The process
then goes recursively for each input. We make sure that an
operator’s all downstream operators are differentiated be-
fore itself to avoid propagating back partially aggregated
gradient by tracking its downstream dependencies. Besides,
we need to pay attention to the graph type of the operators
and follow the graph type inference rule when implementing
the backward logic of the operators to obtain the correct gra-
dient. For example, for 𝐸-type operators, we need to ingest
edge-wise aggregation operators to compute the gradient of
𝑆-type or 𝐷-type input. We depict the backward GIR of GAT
in Figure 6.

5.3 Code Generation and Execution
Generating executionunit. For GIR, we run various graph-
level optimizations to generate an optimized computational
graph (§6). Among them, Seastar operator fusion combines
multiple operators of the computational graph into a single
operator.

We then divide the computational graph into fused and un-
fused execution units, where a fused/un-fused unit consists
of a set of fused/un-fused operators. For un-fused execution
units, we directly emit the operators in the DL backend.
For each fused unit, we generate a kernel according to the
Seastar fusion template and compile it. We determine the
dependency among the execution units according to the data
dependency between the operators in the units. At runtime,
we follow the dependency to execute the units one by one.

Runtime execution.At runtime, we wrap each compiled
execution unit into a user-defined function to be plugged
into a DL backend (e.g., by inheriting the function autograd
in PyTorch). When users call the compiled vertex-centric

6

364



function. Seastar dispatches the execution unit following
the dependency among the units. For un-compiled kernels,
Seastar simply invokes the DL backend’s implementation.
The output is recorded in a tensor map if it is required by a
subsequent program. For compiled kernels, we look for their
required inputs in the tensor map, invoke the compiled ker-
nels and record their outputs. During backward propagation,
the DL backend invokes the backward logic of an execution
unit and provides the gradient as input. Seastar then takes
control and invokes the corresponding backward execution
unit. We clear the tensors in the state map eagerly once there
is no dependency on them to avoid memory leakage.

6 Seastar Optimizations
The computational graphs obtained from the tracer and auto-
differentiation engine usually consist of redundant or useless
computations and, most importantly, plenty of operator fu-
sion opportunities that existing GNN frameworks fail to
exploit (§2.3). To address these problems, we present Seastar
operator fusion and its kernel-level designs. We also remove
redundant/useless computations using classic optimizations
such as common sub-expression elimination, constant fold-
ing, and mathematical simplification.

6.1 Graph and Data Representation
We first introduce the graph and data representation in
Seastar. Datasets used in GNN training usually consist of
two parts: a sparse directed graph and the feature vectors for
vertices and edges. Vertex/edge features are represented as
tensors, whose first dimension is indexed by the vertex/edge
id (starting from zero). For graph representation, we adopt
the widely used Compressed Sparse Row (CSR) format be-
cause of its low memory consumption and access efficiency
for sparse graphs. We also store a reverse CSR format for
the backward pass. Figure 7 shows the data layout for an
example graph. We sort vertices in descending order of (out-
)in-degrees for generating the (reverse) CSR format. The
sorting is necessary for kernel-level optimizations in §6.3.
We create a separate array for edge ids following DGL [59],
which is of the same length as the vertex id array for ac-
cessing 𝐸-typed tensor. It may be tempting to directly use
the index of the vertex id array as edge ids to save memory
consumption, but the mapping between the index and edge
ids is invalidated in the reverse CSR format. We will discuss
this issue in greater details in §6.3.4. At the start of a GNN
program, the graph and feature tensors are constructed from
the input dataset and then moved to GPU memory together
with the parameter tensors in the GNN model to be trained.

6.2 Seastar Operator Fusion
Two operators in a producer-consumer relationship can be
fused into a single operator if and only if the result of the
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Figure 7. Graph and data representation in Seastar

producer can be directly pipelined to the consumer with-
out writing intermediate results to the global memory of
GPU. TVM [17] categorizes fusible operators into three cat-
egories: injective, reduction and complex. Then it exploits
the following fusion opportunities: injective-injective, injec-
tive-reduction, and complex-injective. But graph convolution
does not belong to any of the categories due to its graph-
dependent execution.

Seastar pattern.To devise a generic operator fusion scheme
for GNN workloads, we characterize GNN models and ob-
serve that despite the variety of GNN models, they share a
similar execution pattern, which we name as the Source-
Edge-Aggregation star (seastar) pattern. The pattern is of
a star shape as the computation is vertex-centric with edges
around a center vertex. We explain the seastar pattern with
the graph and data layout presented in §6.1 and show its con-
nection with Equation 1. GNNs usually start with processing
vertex-wise features of type 𝑆 . Operators access the 𝑆-type
inputs according to the vertex’s id and produce outputs that
correspond to ℎ𝑙𝑢 or ℎ𝑙𝑣 . Then the outputs are processed by
𝐸-type operators, where we conduct the computation on
each edge following the destination, source, and edge ids
retrieved from the CSR indexes. Specifically, the destination
vertex’s id is assigned to be its location in the vertex offset
array. The source and edge ids for the 𝑘-th vertex can be
accessed using the offset range stored at the 𝑘 and (𝑘 + 1)-th
position of the vertex offset array. We then use these ids
to access the embedding stored in the corresponding row
of the tensors and then apply the 𝐸-type operator on these
rows (i.e., function 𝑓 in Equation 1). Finally, values produced
by edge-wise computations are aggregated according to the
destination vertices’ ids with 𝐴-type operators and written
to the corresponding row in the output tensor (i.e., function
⊕). The result can be further processed using a Dropout layer
or activation layer such as LeakyRelu (i.e., function 𝑔).

Fusion opportunities in Seastar.Wedescribe three kinds
of fusion opportunities: 𝑆-𝐸, 𝐸-𝐸 and 𝐸-𝐴. 𝑆-𝐸 fusion com-
bines a producer in the Source stage and a consumer in the
Edge stage into one operator. In the Edge stage, we have
access to the edge id as well as the source and destination
vertex ids. Thus, we can defer the Source stage computation
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to the Edge stage. Specifically, in the Edge stage, we query
the corresponding row of the tensor by the vertex’s id and
execute the Source stage computation using the retrieved
vector. Now each edge will have the resultant vector of the
Source stage. We can then feed the output of the Source stage
directly to the downstream operator in the Edge stage. 𝐸-𝐸
fusion is more straightforward, as they require the same set
of indices to access the embedding. The LeakyRelu and Exp
operation in the forward pass of GAT can be fused following
the 𝐸-𝐸 fusion. 𝐸-𝐴 fusion is done by first conducting the
computation on the Edge stage and then using the destina-
tion vertex’s id to carry out the aggregation (e.g., the Exp
and AggSum operators in the forward pass of GAT can be
fused.).

Identifying seastar patterns. To identify seastar pat-
terns in a computational graph automatically, we summarize
Seastar’s valid fusions as a finite state machine in Figure 8.
We associate each operator with a state that is determined by
its own graph type and its upstream operator. For example,
if an upstream operator is in State 3, a fusible downstream
operator must be of type 𝑆 . We differentiate two types of ag-
gregation operators𝐴 : 𝐷 and𝐴 : 𝑆 .𝐴 : 𝐷 returns a 𝐷-typed
tensor and𝐴 : 𝑆 returns an 𝑆-type tensor. The differentiation
is necessary as their fusible downstream operators are of dif-
ferent graph types. To match seastar patterns, we visit each
operator in the computational graph following the topologi-
cal order. We set each root’s state by transiting from State 0
according to its graph type. Then for each visited operator,
we set the state of their children. If the graph type of a child
is a valid transition from its parent’s state, its state will be set
following the transition. The parent operator is added to the
the child’s transition upstream set. Otherwise, the transition
upstream set of the child operator is set to be null and its
state is set by transiting from 0 according to its graph type.
Operators having multiple upstream operators will be set
more than once. To break ties, we adopt the last-write-wins
scheme. The rationale is that due to the topological order,
operators will try to be fused with its “nearest” parent to
avoid the scenario where an operator 𝑄 is fused with a par-
ent operator 𝑃 , but 𝑃 has a downstream operator that cannot
be fused with 𝑄 (e.g., we encounter such a case in the for-
ward pass of GAT). After all operators are visited, for each
operator in States 1, 2 and 3, we trace back to its transition
upstream recursively and merge them into a fused operator.
We use the forward pass of GAT in Figure 6 to illustrate

the fusion algorithm. Initially, the Add operator is in State 0
and of type 𝐸, and thus it moves to State 1 after transitioning

according to type 𝐸. Its child operator LeakyRelu is also of
type 𝐸, which is a valid transition from State 1 itself. Thus,
LeakyRelu stays in State 1 and it can be fused with its parent
Add operator. Similarly, Exp and AggSum are transitioned
to State 1 and State 2, respectively. They can be fused with
all the previous operators. For the Div operator, its nearest
parent in topologically sorted order is AggSum, which is
in State 2. However, Div is of type E and the only valid
transition from State 2 is by type 𝐷 . Thus, Div is not fused
with its parent and the FSM is re-started.

6.3 Kernel-Level Optimizations
In order to support efficient execution of fused kernels, we
need to carefully map the massive parallelism of a GPU to
the computation and data. We find three types of parallel
execution opportunities: feature-wise parallelism (FP), vertex-
wise (VP) and edge-wise (EP). FP is themost notable difference
of GNNs from traditional graph processing workloads such
as PageRank and is not exploited by GPU graph processing
systems. In GNN training, each vertex is associated with
an embedding vector (or tensor) with up to hundreds or
thousands of elements. In contrast, in PageRank there is only
a single PageRank value. Massive performance gain can thus
be achieved by exploiting FP.
DGL delegates execution to minigun, which is a GPU

execution engine for graph operations. Its execution strategy
is heavily influenced by GPU graph processing systems [20,
61]. Minigun exploits EP and FP by first assigning thread
blocks to edges and then mapping threads in a block to the
embedding dimension. One key step is to determine the id
of the destination vertex of an edge. Threads assigned to
an edge conducts a binary search on the vertex offset array
to look for an offset range that this edge belongs to. For
example, for the sample graph shown on the left of Figure 7,
threads that are assigned edge id 4 will find that range [3, 5)
contains the edge and thus return 𝐵 as the target destination
vertex.

By exploiting EP, DGL balances the loads among threads
and blocks regardless of vertex degrees skewness. However,
there are two key limitations of this approach. First, the bi-
nary searches require 𝑂 (𝑙𝑜𝑔(𝑁 )) search instructions, where
𝑁 is the number of vertices in the graph. It incurs a sig-
nificant overhead when the number of vertices is large as
we will show in §7. Second, the data locality is poor. Edges
incident to the same vertex may be assigned to different
blocks. Thus, atomic instructions are required to avoid data
race when writing to the same destination vertex, e.g., in the
case of aggregation. Besides, the embedding for the same
destination vertex may be loaded by different thread blocks,
which further increases the number of load instructions.

Seastar proposes feature-adaptive group (§ 6.3.1) to in-
crease the occupancy of GPUs and exploits FP. Seastar ex-
ploits VP with the locality-centric execution strategy (§ 6.3.2)
and leverage dynamic load balancing (§ 6.3.3) to address the
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Figure 9. An illustration of Seastar’s kernel execution when
the feature size is 16 and the thread block size is 256

vertex degree skewness in real-world graphs. We provide an
overview of Seastars’ design in Figure 9 when the feature
size is set to 16.

6.3.1 Feature-Adaptive Groups. The original feature of
vertices may have dimension up to a few thousands but
as the GNN layers stack up, the hidden features shrinks to
a more compact representation, e.g., one or a few scalars.
When the feature dimension is large, we can directly assign
one or more thread blocks to work on the features (denote
its dimension as 𝐷). Each block consists of 2𝑘 threads, where
𝑘 is the largest integer satisfying 2𝑘 ≤ 𝐷 . Threads in a block
focus on the computation for a consecutive range of values
in a feature vector, resulting in coalesced memory access and
SIMT execution (except a small amount of leftovers when
the feature size is not divisible by the number of threads).
However, each block will consist a very small number of

threads if 𝐷 is small, which leads to severe low GPU occu-
pancy due to the hardware limit: the number of blocks that
can concurrently run on a streaming multi-processor. For
example, 16 threads per block will reduce the theoretical
upper-bound occupancy to 25% on a 1080Ti GPU. This mo-
tivates us to only reduce the number of threads assigned
to features based on the feature dimension while keeping
the block size large enough. We propose the abstraction of
feature-adaptive thread (FAT) group. A FAT group con-
sists of 2𝑘 threads as defined previously to best adapt to
the change of feature dimensions. The block size is fixed to
a constant (e.g., a block size of 256 is commonly adopted).
Physically, a FAT group can share a block with other groups
or be mapped to one or more blocks. For each thread, its
group id can be calculated from dividing global thread id by
block size and its thread id in the FAT group is the remainder.

6.3.2 Locality-Centric Execution. Seastar exploits VP,
which emphasizes on data locality. Seastar assigns each ver-
tex to a FAT group and for each vertex, the FAT group carries
out edge-wise computation edge by edge — a pattern we
name as vertex-parallel edge-sequential. This looks un-
desirable as we ignore edge-wise parallelism, but it is actually
preferable for the following reasons. First, parallel edge-wise

computation results in either hierarchical or atomic opera-
tions for aggregation, introducing frequent synchronization
among threads explicitly or implicitly. In contrast, when
threads visit edges sequentially, they can accumulate the par-
tial results in registers without any form of synchronization.
Second, the destination vertices’ features can be loaded only
once and stored in registers, thus resulting in excellent data
locality. This approach basically reduces the number of load
instructions for the destination vertices from the number
of edges to the number of vertices, as the former is usually
much larger.

6.3.3 Dynamic Load Balancing. Different FAT groups
may end up with skewed loading in the locality-centric
scheme of Seastar since real-world graphs usually follow
a power-law degree distribution. We propose dynamic load
balancing to address the problem of skewed loading as fol-
lows.

Dynamic scheduling. Load stealing is a commonly used
strategy for load balancing [7, 10]. A simple and straight-
forward design is to use the trick of “persistent threads”,
where threads in a FAT group run in an indefinite loop and
atomically increase a global vertex counter once they finish
the current execution until no vertices are left. However, the
atomic operation onGPUmemory incurs an overhead, which
can be large when the amount of vertices is large. To solve
this, we leverage the block schedulers on GPU hardware
to help us with the scheduling since the overhead of block
scheduler hardware is negligible. Specifically, we launch as
many blocks as it requires to cover all vertices and rely on
the block scheduler of GPU to dynamically launch and re-
tire the blocks (hence the name dynamic scheduling). With
dynamic scheduling, the time-consuming computation for
high-degree vertices can be overlapped with short ones, thus
reducing the effect of skewed workloads.

Degree sorting. To further reduce the overhead caused
by unbalanced load, we propose to sort vertices according to
their degrees. The benefits for degree sorting are two-folds.
First, even though high-degree vertices still exist, we know
that they are ordered in the front of vertex array and we
can process them earlier so that their computation can be
better overlapped with the execution of a large number of
low-degree vertices. Second, a consecutive range of vertices
in sorted vertex offset array have similar (if not identical)
degrees. When the feature dimension 𝐷 is small, the FAT
groups assigned to consecutive vertices will be from the
same thread block. A uniform workload within this small
range helps eliminate intra-block load imbalancing.
Though sorting incurs overhead, our key insight is that

for GNNs, the graph structure is either fixed (for full graph
training) or can be prepared to be independent of the current
training iteration (e.g., sampling the mini-batches in back-
ground). We could sort the vertices without slowing down
the current training.
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Algorithm 1: Seastar CUDA template
Input: group_size: size of each group,
csr: graph stored in csr format

1 thread_id = threadIdx.x + blockIdx.x * blockDim.x;
2 vid = thread_id / group_size;
3 tid = thread_id % group_size;
4 if (vid < num_vertices) then
5 beg = __ldg(csr.vertex_offset + vid);
6 end = __ldg(csr.vertex_offset + vid);
7 Emit Aggregation initialization;
8 for (;beg < end; ++beg) do
9 eid = __ldg(csr.edge_ids + beg);

10 uid = __ldg(csr.vertex_ids + beg);
11 // S and E stage
12 Emit Edge-wise instructions;
13 Emit Aggregation computation;
14 end
15 // A stage
16 Emit Aggregation output;
17 Emit Vertex-wise instructions;
18 end

Block scheduling. Given the fact that high-degree ver-
tices are clustered in the front of the array, Seastar uses the
order of block scheduling as the order of processing vertices:
earlier scheduled blocks process vertices in the front. How-
ever, the built-in block id available in each kernel does not
provide the guarantee directly, i.e., blocks with smaller ids
do not necessarily get scheduled earlier. Luckily, based on
the results obtained by others [35, 40] as well as in our own
benchmarking, there does exist a strong correlation between
block id and the time it gets scheduled for 1-D grid, which
means that we can simply use the block id and avoid atomic
instruction. Note that violation of the observed correlation
will slightly affect the processing order but have no effect
on the correctness of processing.
To summarize, we start from the feature dimension and

assign a FAT group to perform data parallel operations on the
features. The remaining parallelism (if any) in a block is then
distributed to vertices for edge-wise computation and aggre-
gation. The vertices are sorted according to their degrees and
we can use atomic blockId or built-in blockId to schedule the
execution on the vertices. For example, if the feature dimen-
sion 𝐷 is 16, we fix the group size to 16 and suppose that
we set the block size to be 128 (a tunable parameter 𝐵) then
the block will be assigned 8 vertices with similar degrees
to process. Effectively, each warp of 32 threads will be di-
vided to work on 2 vertices. We launch as many blocks as the
number of vertices divided by 8 so that when the previous
block retires, subsequent blocks can fill the SM dynamically.
Such a strategy achieves load balancing within blocks and
warps, coalesced memory access on features, and fast ag-
gregation using registers. We design a micro-benchmark of
accessing neighbors’ feature vectors to verify the effective-
ness of this design and compare with DGL’s load-balancing

method. Seastar outperforms DGL significantly, with up to
946 times speedup for the largest reddit dataset. Detailed
decomposition of the contributions of individual designs are
presented in §7.
We show the CUDA template of Seastar in Algorithm 1.

For each thread, Lines 1-3 compute its group id and thread id
within the group. Lines 8-14 conduct the edge-sequential exe-
cution. Lines starting with Emit are instruction placeholders,
which will be replaced with the specific implementation of
operators during the code generation process. To make the
implementation of the operators easier, we abstract away
the data-accessing step of operators so that developers only
need to write sequential code for scalar inputs.

6.3.4 BackwardPropagation of Seastar. Wediscuss how
we conduct the backward execution of Seastar. Forward and
backward training present a perfect symmetry: if the for-
ward computation follows the Seastar pattern, so will the
backward pass. This can be reasoned using the flow of data.
In the forward training, each center vertex receives data
from its neighbors. In the backward pass, the gradient of the
center vertex needs to be sent to all its neighbors following
the reverse direction of edges. But from its neighbors’ point
view, we find that in the backward pass it aggregates from
all out-going edges. It is also easy to verify that for source-
wise (destination-wise) operations in the Source (Aggrega-
tion) stage of the forward pass is now Aggregation (Source)
stage of the backward pass. This means that we can reuse
all the designs except that we should flip the in-edges to
out-edges and sort the vertices again (which can be done in
a pre-processing stage).

But we need to carefully handle the edge ids. As after we
flip the direction of the CSR representation, the same edge
index does not correspond to the original edge anymore.
Thus, we need to remember the edge ids in the forward pass
and sort/flip them together with the vertex index array.

6.3.5 Heterogeneous Seastar. Heterogeneous graphs bring
a new type of parallelism: edge type parallelism (ETP). The
aggregation operation among edges may be different with
the aggregation on edge types. Existing systems either exe-
cute for each edge type one by one or use batched operations
such as batached_matrix_multiplication (BMM). The latter
falls back to dataflow programming.

A generic hierarchical aggregation scheme first aggregates
over edges of the same type and stores the results, and then
aggregates over edge types. Due to the same reasoning for
sequentially executing the edge-wise computation, it may
be preferred to conduct aggregations sequentially. Our key
observation here is that common hierarchical aggregation
operations such as max, sum and min permit a sequential
algorithm. For example, sum aggregation over edges then
max aggregation over edge types can be conducted by two
for-loops: the outer loop using max and iterating over edge
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types, while the inner loop iterating over edges. This effec-
tively transforms the problem of heterogeneous training to
the homogeneous case.
Implementing this design requires us to introduce a sec-

ondary sorting key, the edge type, to sort the edges of each
vertex in addition to vertices’ degree. Then we can unroll the
outer loop and detect changes of edge types, and use it as a
signal to conduct the original outer loop accumulation. Edge
types are stored alongside with edge ids and can be indexed
using edge ids. We have also considered a more compressed
way of storing edge types using a similar scheme as CSR.
Basically, we add one more layer of indirection between the
vertex offset array and the vertex id array by introducing
a type offset array. Intuitively, this scheme saves memory
by sharing the edge type value among edges of the same
type. We do not choose this scheme for two reasons: type
offsets need to be stored for both forward and backward
passes, while storing edge types alongside with edge ids
can be shared for both passes. In fact, the compressed for-
mat is only useful when the dataset satisfies the condition
𝑁𝑒/𝑁𝑡 > 2, where 𝑁𝑒 is the number of edges of the graph
and 𝑁𝑡 is the summation of the unique types of all vertices.
For the four popular datasets used in our experiments, the
highest and lowest ratios are 1.923 and 1.385, indicating that
using the edge-type array is a better option.

7 Experimental Evaluation
We ran Seastar using PyTorch 1.6.0 as the DL backend and
compared with DGL-0.4 [59] and PyG-1.6.0 [22]. Both DGL
and PyG also use PyTorch as the backend. We used DGL
and PyG as the baselines as they are the most popular and
state-of-the-art GNN training frameworks.

We used three hardware platforms. The first one is equipped
with an Intel(R) Xeon(R) E5-2660 v4 CPU (56 logical CPUs,
2.00GHz), 256 GB of memory and NVIDIA GTX 1080Ti GPUs
with 11 GB device memory. The second one is equipped with
NVIDIA GTX 2080Ti with 11 GB device memory. The third
one is equipped with NVIDIA Tesla V100 with 16 GB device
memory. We compiled generated kernels using CUDA 10.1
with the highest optimization level. Note that Seastar only
uses a single GPU.
We evaluated the systems with four models: GAT [58],

GCN [37], APPNP [38] and R-GCN [53], since they are widely
adopted in academia and industry. For all models, we used
their default configurations in DGL’s implementation. We
created unit tests for each model to verify the correctness
of generated kernels by making sure that they produced the
same results as DGL does. For all the models, we trained
them for 200 epochs and report the average training time
per epoch. We discarded the time of first 3 epochs for GPU
to warm up. We also report the peak memory usage of the
systems.

Table 2. Datasets

Dataset #vertices #edges #feature #relation
cora [54] 2,709 10,556 1,433 1
citeseer [54] 3,328 9,228 3,703 1
pubmed [49] 19,718 88,651 500 1
coraFull [8] 19,794 130,622 8,710 1
ca_cs [29] 18,334 327,576 6,805 1
ca_physics [29] 34,494 991,848 8,415 1
amz_photo [46] 7,651 287,326 745 1
amz_comp [46] 13,753 574,418 767 1
reddit [28] 198,021 84,120,742 602 1
aifb [53] 8,285 58,086 - 90
mutag [53] 23,644 148,454 - 46
bgs [53] 333,845 1,832,398 - 206

Table 2 lists some statistics of the datasets used in the ex-
periments. GAT, GCN and APPNP are homogeneous models
and we trained them using the first 9 datasets (with #rela-
tion to be 1). For RGCN, we used the last 3 heterogeneous
datasets. We used 85% of the vertices in the reddit graph so
that at least one system did not run OOM.

7.1 Comparison with Existing Systems
Per-epoch time.We report the per-epoch time of Seastar,
DGL and PyG for the homogeneous models in Figure 10.
Seastar outperforms DGL and PyG on all the datasets. Com-
pared with DGL, Seastar achieves up to 14 times speed-up.
Compared with PyG, the speed-up is up to 3 times. The per-
formance gain comes from two aspects. First, by applying the
Seastar fusion, intermediate results can be directly pipelined
to downstream operators without dumping into GPU mem-
ory, which leads to better data locality. Second, the kernel
design in §6 allows us to achieve much better performance
compared with DGL when conducting graph convolution op-
erations. Seastar performs better when a dataset has higher
average vertex degree (e.g., amz_comp and reddit), thanks to
the efficient locality-centric aggregation. In addition, Seastar
also achieves better performance whenmodels are more com-
plicated (e.g., GAT) because there are more opportunities of
applying Seastar operator fusion.

Memory consumption.We report thememory consump-
tion in Figure 11. We omit the results for the small datasets
as for them the peak memory usage is mostly below 100MB.
Seastar is the only system that can run all the three GNN
models on all datasets. Our materialization planning opti-
mizes all intermediate results within execution units. Most of
the intermediate results are resided on edges, whose memory
consumption can be large when a graph consists of many
edges. In contrast, PyG has a much higher peak memory us-
age and fails to run any of the models on the reddit dataset.
This is due to the fact that it explicitly materializes edge-
wise tensors. DGL has similar peak memory usage as Seastar
since it can avoid producing large edge-wise tensors using
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Figure 10. Per-epoch time (ms) of training homogeneous GNN models using DGL, PyG, and Seastar
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Figure 11. Peak memory consumption (GB) of training homogeneous GNN models using DGL, PyG, and Seastar

the binaryReduce primitive. But Seastar uses only 40% of the
memory used by DGL for training APPNP on reddit.

Training heterogeneous model. DGL and PyG have
two versions of implementations for RGCN. The first version
of both systems uses their native heterogeneous program-
ming model, which processes different edge types sequen-
tially and then aggregates among edge types. The second

version is manually optimized using batched matrix mul-
tiplication (bmm), denoted as DGL-bmm and PyG-bmm.
We report the results of training RGCN in Tables 3 and 4.
Seastar is orders of magnitude faster than PyG and DGL.
Even compared with the manually optimized DGL-bmm and
PyG-bmm, Seastar can still be 2.3 and 3.4 times faster, respec-
tively. Both PyG and PyG-bmm ran OOM on the bgs dataset
as they explicitly materialize edge-wise tensors. Seastar is
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Figure 12. Neighbor access speed-up compared with DGL

Table 3. Per-epoch time (ms) of training RGCN

Dataset GPU Seastar PyG-bmm PyG DGL-bmm DGL

aifb
V100 3.1 10.8 106.2 7.3 624.5
2080Ti 3.8 11.4 122.2 8.7 646.8
1080Ti 5.2 10.6 211.2 14.8 932.7

mutag
V100 8.4 23.2 63.3 8.4 334.9
2080Ti 8.5 22.8 72.8 10.5 350.4
1080Ti 13.3 15.9 136.0 31.4 858.2

bgs
V100 141.7 - - 104.3 -
2080Ti 138.1 - - 144.2 -
1080Ti 289.9 - - 309.6 -

Table 4. Peak memory consumption (MB) of training RGCN

Dataset Seastar PyG-bmm PyG DGL-bmm DGL
aifb 148 318 323 146 197
mutag 361 475 483 354 282
bgs 8262 - - 8159 -

slower than DGL-bmm on the bgs dataset using V100 GPU,
because DGL-bmm was implemented using cuBLAS which
has been optimized by leveraging architecture-specific de-
signs (e.g., tensor cores in V100). Currently, Seastar has not
implemented such optimizations. In terms of peak memory
usage, only DGL-bmm and Seastar finished training on bgs.

7.2 The Effects of Various Designs
Next we evaluate our kernel-level designs in §6 by design-
ing a neighbor access benchmark. The benchmark tests the
time taken to access the neighbors’ features for all vertices,
which is a necessary step for GNN training. The benchmark
is intentionally designed to be simple in order to reveal the
bottleneck in kernel designs. For this experiment, we used
reddit as the evaluation dataset. We used reddit’s original fea-
ture and created synthetic features. We set synthetic features’
sizes to the exponent of 2, ranging from 21 to 28.

We use DGL’s binary-search based approach as the base-
line. We denote the vertex-parallel edge-sequential execu-
tion as Basic. For Basic, we fix its block size to 256 and
assign a single vertex to each block. The second alternative

is FA+Unsorted, which changes the static configuration of
blocks to feature-adaptive. Then, FA+Sorting+Atomic uses
atomic instructions to ensure that earlier launched blocks are
assigned with high-degree vertices. FA+Sorting+Dynamic
removes the atomic instructions and uses built-in block id.
Figure 12 presents the speed-up ratio with respect to the

baseline. The result shows that our designs outperform the
baseline by a large margin (up to 946 times faster). When the
feature size is 602 (i.e., the original feature size), the baseline
takes 1.57 sec while FA only takes 2.36 msec on 1080 Ti.
When the feature size is 1, the baseline takes 5.92 msec while
FA+Sorting+Dynamic only takes 38.5 𝜇sec. Profiling shows
that binary-search-based approach executes 830 times more
instructions than the Basic version.
FA+Unsorted improves upon Basic by incorporating the

feature-adaptive optimization. When the feature size is less
than 64, FA+Unsorted achieves up to 8.2 times speedup com-
paredwith Basic.When the feature size is large, FA+Unsorted
has similar performance with Basic since there is enough
feature-level parallelism for Basic to exploit. FA+Sorting+Atomic
improves upon feature-adaptive optimization by sorting ver-
tices according to their degrees and relying on atomic instruc-
tions to achieve load balancing. But FA+Sorting+Atomic can
sometimes be slower than FA+Unsorted due to the overhead
of atomic instructions. We observe that when the feature
size is large (over 64), sorting does not improve much over
FA+Unsorted. This is because the vertex degree distribution
in the reddit dataset is not skewed enough. Thus, even if
the high-degree vertices are processed late, they will not be-
come serious stragglers. Another reason is that in the original
dataset, high-degree vertices are distributed rather randomly.
Thus, they may have the chance of being processed earlier
even if the vertices are not sorted by their degrees. Sorting
leads to more benefits when the feature size is small. When
vertices are sorted by their degrees, FAT groups in the same
block have more balanced loads than when vertices are not
sorted. FA+Sorting+Dynamic achieves better performance
compared with using atomic instructions in all cases, indi-
cating that dynamic block ids are indeed useful.
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8 Related Work
GNN frameworks. DGL [59] is one of the most popular
GNN frameworks. DGL proposes a message-passing style
programming model, and it optimizes training by fusing
some commonly used operators and executes the fused op-
erator by exploiting edge-wise parallelism. In comparison,
Seastar adopts a vertex-centric programming model and
demonstrates better performance thanks to its kernel-level
optimizations presented in §6. FeatGraph [31] is an accelera-
tion engine targeted for GNN systems such as DGL. Imple-
menting new GNN operators for the FeatGraph’s kernel tem-
plates requires programming in low-level TVM primitives.
In contrast, Seastar allows users to program UDFs in na-
tive Python expressions and automatically generates a high-
performance kernel for both forward and backward training.
In terms of kernel design, Seastar proposes novel designs
such as FAT group, locality-centric execution and dynamic
load balancing to maximize data locality and improve load
balancing, while FeatGraph puts more focus on the efficient
execution of feature-wise computation through partitioning
and tiling. Roc [33] and NueGraph [44] mainly focus on effi-
cient training of GNNs on very large graphs using several
GPUs. Their techniques can be combined with Seastar to sup-
port distributed training. Euler [3] and AliGraph [68] scale
GNN training to large graphs using sampling-based training.
Seastar can be used as their GNN training engine to improve
their single GPU training performance. For distributed GNN
training, we also developed an efficient distributed graph
communication library (DGCL) [11], which enables us to run
Seastar on distributed GPUs for scalable GNN training.

Graph computing systems.Many graph computing sys-
tems [4, 13, 14, 27, 34, 45, 63] and graph database systems [1,
12, 15, 21] have been developed in recent years. These sys-
tems are mainly based on CPUs and their designs are very
different from Seastar. Existing GPU-based graph comput-
ing systems optimize graph workloads such as breadth first
search [47], betweenness centrality [9] and single source
shortest path [20] on GPUs. General purpose GPU graph
processing engines provide different types of programming
models. For example, MapGraph [24] and Cusha [36] adopt
the vertex-centric programming model for GPU graph pro-
cessing. Medusa [66] proposes the Edge-Message-Vertex pro-
gramming model. Gunrock [61] divides graph processing
into advance-compute-filter. In comparison, Seastar does not
introduce stages explicitly and enables users to use idiomatic
python syntax to program GNN models.

To handle the irregularity of graph data, the CTA+Warp+Scan
scheme [24, 43, 47] partitions vertices into three categories,
larger, medium and small, based on their degrees and vertex
arbitrates for processing using blocks, warps and threads, re-
spectively. Gunrock [61] switches between this scheme and
the load-balancing approach in [20] according to a graph’s

structure. Groute [6] designs asynchronous multi-GPU con-
structs to speed up multi-GPU processing. XBFS [25] lever-
ages various runtime optimizations and uses dynamic sched-
uling using atomics. CuSha [36] proposes G-Shards and Con-
catenated Windows (CW) to allow fully coalesced memory
access and concurrent execution of different shards. Tigr [52]
proposes to transform the unbalanced edge distribution into
regular one by vertex splitting. Digraph [55] exploits the idea
of applying GPU graph processing on a compressed graph to
address the bottleneck in memory access. Contrary to these
graph workloads, GNN training is iterative and vertex fea-
tures are dense vectors. Based on these observations, Seastar
proposes feature-adaptive thread mapping, degree sorting
and dynamic load balancing to train GNNs efficiently.

Deep learning compilers.ManyDL compilers have been
proposed in recent years [5, 17, 19, 39, 51, 57, 62]. TVM [17]
combines graph-level optimization and automatic operator-
level optimization to generate kernels that are comparable
with highly optimized libraries such as cuDNN [18]. Tensor-
Comprehension [57] and Tiramisu [5] represent a compu-
tational graph using the polyhedral model, which supports
various combinations of affine transformation such as tiling,
fusion and shifting. Seastar is different from these works in
the following aspects. First, Seastar provides a user-friendly
vertex-centric programming model for programming GNNs.
Existing DL compilers usually use the computational graph
generated from popular DL frameworks and do not directly
interact with model developers. Second, for the code genera-
tion process, Seastar introduces graph type into a computa-
tional graph to make sure that the optimizations work cor-
rectly. Third, Seastar designs high-performance template for
GNN workloads by leveraging domain knowledge of GNN
training. The techniques we propose may also be adopted in
DL compilers.

9 Conclusions
We presented the design of a novel GNN training frame-
work, called Seastar. Seastar offers a vertex-centric program-
ming model so that users can focus on the logic of a single
vertex and program GNNs with idiomatic Python syntax.
Seastar identifies abundant operator fusion opportunities
in the computational graphs of GNN training. With novel
designs such feature-adaptive groups, locality-centric exe-
cution and dynamic load balancing, Seastar generates high-
performance fused kernels for forward and backward passes.
Seastar achieves significant performance improvements over
popular systems such as DGL and PyG.
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