Elastic Hyperparameter Tuning on the Cloud

Lisa Dunlap Kirthevasan Kandasamy Ujval Misra

UC Berkeley UC Berkeley UC Berkeley
lisabdunlap@berkeley.edu kandasamy@berkeley.edu ujval@berkeley.edu

Richard Liaw Michael Jordan Ion Stoica

UC Berkeley UC Berkeley UC Berkeley
rliaw@berkeley.edu jordan@cs.berkeley.edu istoica@berkeley.edu

Joseph E. Gonzalez
UC Berkeley
jegonzal@berkeley.edu
ABSTRACT SEER outperforms both existing methods for hyperparame-

Hyperparameter tuning is a necessary step in training and
deploying machine learning models. Most prior work on
hyperparameter tuning has studied methods for maximizing
model accuracy under a time constraint, assuming a fixed
cluster size. While this is appropriate in data center environ-
ments, the increased deployment of machine learning work-
loads in cloud settings necessitates studying hyperparameter
tuning with an elastic cluster size and time and monetary
budgets. While recent work has leveraged the elasticity of the
cloud to minimize the execution cost of a pre-determined hy-
perparameter tuning job originally designed for fixed-cluster
sizes, they do not aim to maximize accuracy.

In this work, we aim to maximize accuracy given time and
cost constraints. We introduce SEER—Sequential Elimination
with Elastic Resources, an algorithm that tests different hy-
perparameter values in the beginning and maintains varying
degrees of parallelism among the promising configurations
to ensure that they are trained sufficiently before the dead-
line. Unlike fixed cluster size methods, it is able to exploit
the flexibility in resource allocation the elastic setting has
to offer in order to avoid undesirable effects of sublinear
scaling. Furthermore, SEER can be easily integrated into ex-
isting systems and makes minimal assumptions about the
workload. On a suite of benchmarks, we demonstrate that

s

This work is licensed under a Creative Commons Attribution International 4.0 License.

SoCC °21, November 1-5, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3486989

33

ter tuning on a fixed cluster as well as naive extensions of
these algorithms to the cloud setting.

ACM Reference Format:

Lisa Dunlap, Kirthevasan Kandasamy, Ujval Misra, Richard Liaw,
Michael Jordan, Ion Stoica, and Joseph E. Gonzalez. 2021. Elas-
tic Hyperparameter Tuning on the Cloud. In ACM Symposium on
Cloud Computing (SoCC "21), November 1-5, 2021, Seattle, WA, USA.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3472883.
3486989

1 INTRODUCTION

The performance of deep learning models depends crucially
on the choice of training hyperparameters. These hyperpa-
rameters affect the runtime and convergence properties of
the entire training process. Hyperparameter tuning refers to
the task of choosing and evaluating several such hyperparam-
eter configurations in order to find a good set of values for the
given learning task. Hyperparameter tuning is computation-
ally intensive and typically requires exhaustive enumeration
and evaluation of hundreds of candidate hyperparameter
configurations. To evaluate each configuration, the corre-
sponding model must be at least partially trained, which can
take hours or even days to complete using multiple parallel
accelerators.

Many of the widely used hyperparameter tuning meth-
ods [20, 21] are based on a single core idea — sequential
elimination. Typically, these methods partially train models
with several configurations, eliminate the poor performing
candidates and continue training the more promising con-
figurations. The freed resources from the early rounds of
elimination can be used to evaluate other candidate con-
figurations or accelerate training of the better performing
configurations. The more configurations that are evaluated,
the better chance we have of evaluating the optimal config-
uration. However, by applying more resources to the most

https://doi.org/10.1145/3472883.3486989
https://doi.org/10.1145/3472883.3486989
https://doi.org/10.1145/3472883.3486989
https://creativecommons.org/licenses/by/4.0/

SoCC 21, November 1-5, 2021, Seattle, WA, USA

[GI’L‘ 7

SH Round 1 * Round 2 : Round 3:

00:00 Time (mins) 10:00 00:00 Time (mins) 10:00
[GPU 1] & }\
[GPU2] W }
[GPU 3 J ______
[GPU 4] ?
[GPU 5] _____ High " >§-‘
gh accuracy | (&
%G"“ 6 % More GPUs * | ™
GPU7
[(;I’l' 8 J [3PU 15 } Low accuracy
GPU 16 Fewer GPUs
() ASHA [ors T2)
00:00 Time (mins) 10:00 [GPU4 }

GPU 1 | J { GPU7 } for)
ﬁ 1] [GPU 8 } >§>_
[(;P['3] GPU9 3

GPUo J GPU 12 .

)
)

[(;Pl' 8

(b) HyperSched (c) SEER

Figure 1: Resource allocation of (a) ASHA [21], (b) Hyper-
sched [22], and (c) SEER (our method) on a 10 minute exper-
iment with a budget of 80 GPU-minutes. Each color repre-
sents a distinct promising configuration while grey repre-
sents configurations that were eliminated in a short time.
The shaded area, which indicates total GPU minutes, is the
same for all methods.

promising configurations, we increase the accuracy of the
final model even if it is not the optimal configuration.

The hyperparameter tuning process is often time con-
strained. For example, in settings like click through rate
(CTR) prediction where accuracy is critical and data is con-
stantly changing, machine learning engineers wish to ensure
that accurate, well-tuned models are released weekly, daily,
or even hourly. Similarly, achieving state-of-the-art results
in Al research requires rapid iteration of model development
and consequently hyperparameter tuning.

Fortunately, hyperparameter tuning exposes multiple de-
grees of parallelism. Early work in hyperparameter tuning
leveraged parallelism (e.g. Fig. 1a) to run multiple concurrent
configurations. However, since parallelism is not applied to
individual configurations, this approach may not adequately
train the best configuration within the allotted time bud-
get. Recent systems work by Liaw et al. [22] explored how
to allocate parallelism between different parallel training
runs (Fig. 1b) to balance the need to explore different hyper-
parameter values and adequately train the best identified
configuration to maximize accuracy within a deadline. Un-
fortunately, the degree to which parallelism can be efficiently
exploited varies throughout the hyperparameter tuning pro-
cess. The exploration of multiple concurrent hyperparameter

34

Dunlap et al.

configurations enjoys perfect scaling while the accelerated
training of any single configuration often has relatively poor
parallel scaling (see Fig. 2). This is usually the result of two
factors: first, synchronizing gradient updates at the end of an
iteration can lead to bottlenecks which decrease the through-
put of the combined workers; second, convergence is faster
if gradient updates are performed sequentially (when the
loss is computed using the updated model) than if they are
done in parallel. This variation in scaling efficiency results in
poor utilization of fixed-sized clusters and presents a unique
opportunity for cloud computing.

As the majority of machine learning workloads move to
the cloud, we are no longer constrained by the assumption of
a fixed pool of resources for hyperparameter tuning. More-
over, rather than operating under the constraint of a fixed
pool of resources, hyperparameter tuning in the cloud is
constrained by a monetary budget that can be spent at a
varying rate throughout the hyperparameter tuning process.
The elasticity available in the cloud offers a unique opportu-
nity to both reduce the cost of hyperparameter tuning and
increase accuracy under a fixed time budget.

The elastic setting, when compared to the fixed cluster
setting, allows flexibility in the allocation of resources and
consequently allows us to minimize the effects of nonlinear
scaling. Since the amount of resources can be scaled up or
down, any number of configurations in an initial exploration
phase can be executed simultaneously; while this takes the
same resource-time as the fixed resource setting, it finishes
much sooner. This allows us to allocate more resource-time
to the promising configurations without having to parallelize
unnecessarily.

In an attempt to adapt fixed-cluster methods to the cloud
setting, Misra et al. [24] proposed Rubberband, a system
that minimizes the execution cost of a fixed-cluster hyper-
parameter tuning policy (e.g., Successive Halving[14]) while
finishing before a given deadline. Rubberband leverages pro-
filing information about the model and cloud environment to
simulate the cost and execution time of a given hyperparam-
eter tuning job under different resource allocations, greedily
searching for an allocation with the cheapest cost that fin-
ishes before a given deadline. While Rubberband enables
these methods to be more cost effective, it heavily relies on
simulation and does not directly derive a policy for elastic
hyperparameter search.

In this paper, we reformulate the hyperparameter tuning
problem in terms of time and cost (resource-time) constraints.
Rather than elastically scaling the execution of a fixed-cluster
policy to reduce cost (i.e., Rubberband), we instead focus on
the design of an elastic policy that given a time deadline and
a cost budget, determines the optimal resource-time allocation
to maximize accuracy.

Elastic Hyperparameter Tuning on the Cloud

®
o

7
/

mm VGG16 ’

4

7/
ResNet50 7 5735x
7/
7/
/
7/
7

-
-
L7 30 5 761x

I
o

e
-
_---T684x 155«
_ .~ = "1049x

Throughput Scaling
N e
o o

o
o

1.0 2.0 4.0

Number of GPUs

Figure 2: Model throughput of VGG16 and ResNet50
models trained on SVHN VS the number of GPUs
per model. While using more GPUs does speed up
training, this speed up is non-ideal due to decreased
throughput and the non-iterative nature of gradient
updates. The dashed green line depicts linear scaling.

We introduce a simple, yet principled, new policy for se-
quential elimination with elastic resources (SEER) which
optimizes the final model accuracy under fixed cost and time
budgets. Taking inspiration from prior works, SEER is able to
balance exploration and exploitation by executing brackets
which run hyperparameter configuration candidates (dubbed
trials) with different levels of model or data parallelism, en-
abling SEER to explore a large amount of configurations in
the beginning, with the more promising trials getting more
resources as the experiment progresses.

We theoretically analyze this new policy and show that
it enjoys guarantees similar to those in the fixed-cluster
setting [20]. Importantly, unlike previous work [20], we are
able to model the sublinear scaling characteristics of a single
training job, and prove that SEER is able to do well even
without knowledge of the scaling characteristics.

We extend Rubberband [24] with the new SEER policy.
This approach leverages the elastic job scaling executor in
Rubberband while eliminating the dependence on the sim-
ulation and search heuristics needed to adapt prior fixed-
resource policies to the elastic setting.

Our contributions are as follows. First, we formalize the
setting of identifying and maximally training the best hyper-
parameter configuration with elastic resources and a fixed
budget. Second we develop a new algorithm, SEER, for this
setting and explain how SEER can be easily incorporated into
the existing Rubberband framework. Third, we evaluate our
method on a suite of benchmarks for classification, image
segmentation, and natural language processing.

To the best of our knowledge, this is the first work to
develop new machine learning methods with the explicit
goal of exploiting the flexibility the cloud has to offer in
allocating resources.

35

SoCC ’21, November 1-5, 2021, Seattle, WA, USA

2 RELATED WORK

Historically, hyperparameter tuning has been viewed as a
global optimization problem in the machine learning com-
munity. Some examples of such approaches include random
search [2], branch-and-bound methods [3, 15], and Bayesian
optimization [1, 8, 12, 16, 30].

One popular line of work in hyperparameter tuning algo-
rithms are built on successive halving (SH) [14, 17], which
eliminates potential configurations in stages, running con-
figurations for a small number of evaluations and allowing
the highest performing configurations advance to the next
stage. Li et al. [20] designed Hyperband which is based
on SH. However, the best configuration may not perform
well in the early stages, and hence Hyperband runs multiple
instances of SH, with each training its configurations to dif-
ferent lengths before elimination. Asynchronous successive
halving (ASHA) (Fig. 1a), which adapts Hyperband to multi-
ple workers, executes successive halving asynchronously on
multiple parallel workers. Finally, Falkner et al. [7] present
a Bayesian version of Hyperband (BOHB) which assumes
a prior on the accuracy over all hyperparameter values and
chooses its recommendation based on the posterior.

However, none of the above works explicitly consider how
to allocate resources when training the candidates chosen,
instead training the chosen models using a single worker for
a desired duration. This can be undesirable, especially when
operating under tight deadlines, since combining workers
can lead to faster training. While it is possible to define a
worker to have multiple resources, e.g. by defining multiple
GPUs to be one worker , this is a rather blunt tool; all models,
including those that are not promising, will be trained using
multiple resources, leading to sub-optimal performance.

To our knowledge, the only works which explicitly studies
resource allocation for hyperparameter tuning are Hyper-
Sched [22] (Fig. 1b) and Rubberband [24]. HyperSched’s
algorithm is similar to ASHA; however, as the deadline ap-
proaches it avoids testing new configurations and allocates
more resources to the promising ones using some simple, yet
intuitive, heuristics. While it performs well for the intended
setting, as we will show, it can suffer from sublinear scaling
and perform poorly when compared to elastic methods. Rub-
berband [24] is a recent hyperparameter tuning system that
aims to minimize the cost of a given hyperparameter tuning
job (e.g. a successive halving run) via profiling models and
greedily searching for the best allocation of resources. While
this work operates in the same setting as ours, Rubberband
assumes that the practitioner wants to execute an existing
hyperparameter tuning job, while our work aims to design a
hyperparameter tuning job that satisfies the time and cost
constraints while maximizing accuracy of the final model.
That is, Rubberband requires a practitioner to design the job

SoCC 21, November 1-5, 2021, Seattle, WA, USA

in the form of training plans, which might require domain
expertise. On the other hand, our policy only requires the
time and budget constraints as input.

Along with HyperSched and Rubberband, there are
multiple frameworks for hyperparameter tuning. Google
Vizier [10], Determined Al [21], and Kitlab [9] target hy-
perparameter tuning in distributed setting. In comparison
to our system, Google Vizier and Katlib do not incorporate
time and cost constraints, which are key characteristics of
our problem. Determined Al supports executing ASHA on
pre-emptible instances but their algorithm does not account
for resource elasticity. Our framework is built on Tune [23],
which is in turn built on Ray [25]; we can therefore leverage
the autoscaling features of Ray to rescale a cluster, run dis-
tributed hyperparameter tuning experiments, and complete
the task within the confines of a given cost and deadline.

Lastly, a new line of work Pollux [27] aims to tune the
batch size and learning rate of a model, allocating resources
considering cluster-wide performance and fairness. While
this system does leverage the ability to provision and de-
provision resources in order to optimize for job performance,
Pollux does not claim to be a general hyperparameter tuning
framework as it focuses solely on optimizing the number of
GPUgs, batch size, and learning rate.

3 METHOD

In order to address the above issues and take advantage of
the elastic setting, we develop SEER (Sequential Elimination
with Elastic Resources). SEER is built on the same intuitions
as Hyperband, and manages the exploration and exploitation
trade-offs by varying the amounts of parallelism; we will
explain these connections in depth at the end of this section.

3.1 Overview

The goal of SEER is to find a final model with high accu-
racy. This requires managing the given resources to search
for good hyperparameter configurations, and then training
them long enough to ensure that the final model is trained
to convergence. To achieve this, SEER leverages the intu-
ition that models with different hyperparameters converge
at different rates and moreover can converge to different
final accuracies (see Fig 3). Therefore, if a trial (a model with
a certain set of hyperparameters) converges quickly, many
trials should be launched and eliminated after few evalu-
ations, and if the trial converges slowly, few trials should
be launched and run for more evaluations. As we make no
assumptions about the convergence rate beforehand, SEER
generates multiple brackets, where each bracket has a differ-
ent number trials and a different number of resources per trials
(Fig 1c). This allows for both cases to be taken care of: if a
trial converges quickly, then the low-performing trials can

36

Dunlap et al.

>‘0.8
o
Q)
—
3506
Q
(&)
<
x 0.4
©
=

0.2

0 25 50 75 100 125 150 175
Epochs

Figure 3: Accuracy curves of running grid search us-
ing ResNet18 trained on CIFAR10. Each line represents a
model with unique hyperparameters. It is clear that dif-
ferent hyperparameters converge to different accuracies,
and some hyperparameters (green line) converge very
quickly while other hyperparameters (yellow and blue
line) take longer to converge. Thus, SEER reasons that as
evaluations come in, more resources should be dedicated
to the yellow and blue lines while less resources should
be dedicated to the green line.

be quickly eliminated and the high performing trials can be
moved to a bracket with more resources per trial. If a trial
converges slowly, then the brackets with more resources will
train fewer trials for longer, giving them the time to converge
before they are eliminated.

The SEER algorithm is outlined in Algorithm 1. Bold-
face upper case letters denote lists (indexing starting at
1). SEER takes in 7 arguments, although only the first 2
are required: a search deadline T (units in minutes), bud-
get B (units in resource-minutes), and optional parameters
Pmaxs> Pmins tmin, 1, and v which we will discuss further in
Sec 3.2. There are no restrictions on the amount of resources
we can acquire at a given time, but we should pay for the
duration we use a resource. Furthermore, resources are inte-
gral (e.g. fractional GPUs cannot be assigned to a task), but
time and cost are continuous.

At a high level, SEER executes multiple brackets, where it
is instructive to think of each bracket as one instantiation
of SH. It is important to note that the start and end time of
each elimination round (stage) of SH is the same among all
brackets. Thus, each bracket finishes in time T, but allocates
a different number of resources per trial resulting in varying
degrees of parallelism.

To formalize SEER’s use of brackets and successive halv-
ing, let X denote the space of hyperparameters. These can be
continuous, discrete, ordinal, or a combination of the above.
We assume that we can draw random samples from X. Each
bracket assigns an amount p resources to each of the trials

Elastic Hyperparameter Tuning on the Cloud SoCC ’21, November 1-5, 2021, Seattle, WA, USA

Algorithm 1 SEER

Require: deadline T, cost budget B, 1, V, Pmin, Pmax tmin (defaults n =4, v = 2, pmin = 1, Pmax = 0, tmin = 1).
1: K, 1, N,P <~ COMPUTE-BRACKET-PARAMETERS (T, B, 1], Pmax> tmin)-

2: Sy « randomly sample le.inl(P) N[i] trials from X. Order them arbitrarily.

3: fork=1,2,...,Kdo

4 s=1 # Starting index for current bracket.

5 fori=1,2,...,len(P) do concurrently in parallel #Each round here takes time ;751

6: S;C « the s to (s + [N[i] /I]k_lj)th trials in S. # Trials in the i bracket at round k.

7 s« [N[i]/n*]

8 Train all trials in Sli< concurrently in parallel for time t;7*~! with P[i] resources each, then evaluate.

9 Remove the lowest | N[i]/5*] performing trials of S,i from Si #SH elimination.
10: end for # Better trials to be moved to a bracket with more resources.
11: Sk+1 < Order the trials in Sy in descending order of loss.

12: end for

13: return The last element in Sk, ;.

Algorithm 2 Compute number of SH rounds (K), time (¢;), number of trials (N), and number of resources per trial (P)

1: procedure COMPUTE-BRACKET-PARAMETERS(T, B, 1, V, Pmin> Pmax> tmin)
2 Let R, be the largest R > 0 which satisfies the following two conditions,

(f—”l) (1 -7 log, R]) < ﬁ, PminR |'log,7 R] < txf’in . #This can be done using binary search
3: K « |'10g,7 R,] #Number of SHA rounds per bracket
4 1 «— tminR*l]_(K -1 #Duration of the first round
5 By < pmintminR« |'10g,, R.]. #Budget of the first round
6: B,P < COMPUTE-BRACKET-BUDGETS(B, By, V, Pmin; Pmax)- #Budget, resources-per-trial per bracket.
7 fori=1,2,...,len(P) do
8 N[i] « I-K];][Pj%i] 1. #Number of trials launched in the i*" bracket.
9: end for

10: return K, t;, N, P
11: end procedure

Algorithm 3 Compute bracket budget (B) and bracket parallelism (P)

1: procedure COMPUTE-BRACKET-BUDGETS(B, By, V, Pmin> Pmax)

2 Let g4 be the largest positive integer g > 0 satisfying qv?~! < B/B,. #qx = number of brackets
3 if Pmin vl < Pmax then # The max number of resources-per-trial is less than ppax
4 P= [pmina PminV; Pmian, S ,Pmian*_l, min(pmax: pminvq*)] .

5: B[i] « Byv®*~! fori < qy, B[gx + 1] « (B - Bygsv?*™1)

6 else #The max number of resources-per-trial is more than pmay, so remove brackets and add trials
7 Let g, be the largest integer q > 0 satisfying pminv? < Pmax- #q, = neq number of brackets
8 P« [pmins PminVs Pmian, “ee ,Pmian;s pmax]s B« (B/len(P)) * 11en(P)-

9: end if

10: return B,P
11: end procedure

in that bracket for some time ¢, at which point they will be assigned to a hyperparameter x € X for time ¢, a trial initi-
evaluated and a subset of them will be eliminated before ated with hyperparameters x is trained for ¢ timesteps using
moving to the next stage of successive halving. In the case p resources, at which point it is evaluated (e.g. evaluate the
of a typical machine learning setting, when p resources are trial on the validation set). For our experiments, we interpret

training a trial with p resources as training this model in a

37

SoCC 21, November 1-5, 2021, Seattle, WA, USA

data-parallel fashion over p GPUs, but one could instead use
pipeline-parallelism or a different parallelization strategy.
Similarly, while our experiments use validation accuracy as
our evaluation metric, one could pick any metric they want
to minimize or maximize (e.g. minimizing loss).

The parameters for each bracket is computed using the
COMPUTE-BRACKET-PARAMETERS (Algorithm 2) subroutine,
which returns K, t;, N, P. The algorithm proceeds in K stages
and trials can be transferred from one bracket to another
at the end of a stage depending on how well it performs.
For this, it maintains an ordered set of trials in S, for k =
1,...,K+1.First, S; is sampled randomly from X and ordered
arbitrarily. In the k™ stage, we evaluate the trials in Sy in
different brackets. At the end of the stage, we order the trials
according to their loss values to produce Si.;. In order to
prioritize the promising trials, in the next stage, the number
of trials evaluated per bracket is reduced to 1/ of its value
in the previous stage, and moreover trials that yields a lower
loss value are assigned to brackets with higher parallelism
(line 3). This also ensures that only (1/n) fraction of the trials
are carried forward from one stage to another.

Since trials are trained for more epochs in brackets with
more resources, a natural question that arises is whether the
trials in the bracket with less resources will ever outperform
trials in the bracket with more resources. While the trials
in the highest bracket will get more evaluations, since we
sample more trials in lower brackets (see Figl(c)), we are
more likely to sample a good trial which can quickly yield
high accuracy. Such trials will be moved to a higher bracket in
the next stage. In our experiments, we found that the optimal
trial was equally likely to have been initially sampled from
low or high brackets.

3.2 Optional Arguments

Along with the required inputs of deadline T and budget B,
SEER takes in 5 other optional parameters 7, Pmax, Pmins fmins
and v which can be set if the user has additional knowledge
of their workload. Unless otherwise stated, we use the default
parameters in our experiments.

The parameter n (> 1) is a standard parameter in succes-
sive halving algorithms that dictate how aggressively we
eliminate poorly performing parameters and v (> 1) dic-
tates how aggressively we increase the number of parallel
resources assigned to a trial. When 7 is large, we eliminate
parameters more aggressively, whereas when v is small we
increase the degree of parallelism aggressively.

Next, pmin and pmay are hard constraints on the minimum
and maximum number of resources that can be assigned
to a configuration. A case in which a user may want to set
Pmin > 1 would be if training a trial for one epoch (aka one
evaluation) on one machine takes a very long time, so the

38

Dunlap et al.

user would set p,;, higher to shorten the experiment time.
On the flip side, a user may want to set ppax < oo if they
knew that a trial’s throughput does not increase when given
more than a certain number of machines [13], so allocating
any more would simply be wasting resource-time.

Lastly, ¢, specifies the minimum training time before we
choose to eliminate a configuration. In practice, this should
be set to roughly how long it takes to train a trial for 1-
2 epochs, unless the user has more information as to the
convergence rate of their trials (if all trials are slower to
converge, this may want to be set higher). We do note that
often it is not known how long it takes to train a trial for 1-2
epochs, but this can be easily profiled and we have observed
in our experiments that this parameter can be set slightly
more or less than the actual training time with minimal
effects on the results.

3.3 Computing Bracket Parameters

The computation of the bracket parameters K, t;, N, P as out-
lined in Algorithm 2 leverages some of the intuitions regard-
ing non-ideal scaling alluded to in Section 1. To illustrate this,
assume, for now, that the deadline T is small, but the budget
B is large; more concretely, when computing R in line 2, the
first inequality is tight, but pminR«[log, Rx] < M. Loosely
speaking, in this case, the algorithm has a large budget, and
it must decide if it should train a small number of trials (N)
using more resources per configuration (p) or if it should
train a large number of trials using fewer resources per trial.
If the problem is such that training each trial can take a long
time to converge, then we should prefer the former. On the
other hand, if convergence is fast, then we should prefer the
latter. In the absence of any prior knowledge, there is no way
to say a priori what the optimal trade-off would be. Therefore
SEER hedges its bets by dividing up its total cost budget and
executing different brackets with different (N, p) values.
When determining the appropriate p values as stated
above, it starts with small values of p. This accounts for
the fact that, like most parallel systems, model training ex-
hibits diminishing returns when more resources are used
in parallel. By starting with small p and stretching out the
cost for as long as possible, we ensure that the cost was
spent as efficiently as possible. However, parallelism can
speed up training, and hence SEER increases the amount
of parallelism with the cost budget B. Specifically, we start
new brackets with successively higher amount of parallelism
when B increases to certain thresholds dependent on v.
Finally, suppose that the specified budget is “too small” for
the given deadline; i.e. in line 2, the second inequality is tight,

but (:Tnn 1- rf“"gv R]) < T. Then, the algorithm creates a

single bracket with P[1] = pmin and N[1] = B/(Kt1pmin),
which exhausts the budget and finishes sooner than the

Elastic Hyperparameter Tuning on the Cloud

deadline. Alternatively, had we attempted to ‘stretch out’
the budget to fill up the deadline, it could result in worse
performance, as we may have to reduce the number of trial
sampled to stay within the budget. In the previous case, when
the inequality for T was tight, increasing the budget could
indeed result in better performance since the additional bud-
get is used to both increase the amount of resources spent
on existing brackets and create new brackets with more re-
sources per-trial. However, in this case, the budget creates a
bottleneck and increasing the deadline further does not alter
the behavior or output of the algorithm.

3.4 Example

To better illustrate this method, let’s consider the plan pro-
duced by SEER for a T = 10 minute experiment with a budget
of T = 80 GPU-minutes and n = 2 as shown in Fig 1c.

Here, we obtain R, = 5.714,K = 3,#; = 1.42, and By =
17.142, meaning that there will be 3 elimination rounds, with
the first round taking 1.42 minutes and requiring 17.142
GPU-minutes. Then, using Algorithm 3 we obtain the num-
ber of brackets g. = 2, the total budget per bracket (B =
[17.142,34.283,11.432]), and the parallelism of each bracket
(P =[1,2]).

From here we can Algorithm 2 to obtain the number of
trials initialized for each bracket N = [8, 4]. Now we have
everything we need to run SEER: first, 12 hyperparameter
configurations will be randomly selected from a predefined
search space. For round 1 of SH (from t = 0 to t = tyn =
1.42 minutes), 8 trials will be trained with 1 GPU each in
bracket 1 and the remaining 4 trials will be trained with
2 GPUs in bracket 2. At the end of round 1, the 4 lowest
performing trials in bracket 1 will be eliminated and the 2
lowest performing trials from bracket 2 will be eliminated.
At the start of round 2, the top 2 performing trials will be
assigned to bracket 2 and the rest will be assigned to bracket
1. From time t = t,,;, = 1.42to t = tminr]k_l = 2.84 minutes,
4 trials will be trained with 1 GPU and 2 trials will be trained
with 2 GPUs. After elimination, the highest performing trial
at the beginning of round 3 will be trained with 2 GPUs and
the 2nd and 3rd highest performing trials will be trained
with 1 GPU from time ¢ = 4.26 to ¢ = 9.94 minutes. Lastly,
the highest performing trial after round 3 will be returned
by SEER. This is visually represented by Fig 1c.

3.5 Comparison with Prior work

SEER uses similar intuitions to SH, Hyperband, ASHA, and
Hypersched. However, SEER is catered to our elastic and
deadline-aware setting. For instance, SEER’s strategy of run-
ning multiple brackets with different amounts of parallelism
is similar in spirit to Hyperband’s stratgy of running multiple
SH instances where each hyperparameter configuration is

39

SoCC ’21, November 1-5, 2021, Seattle, WA, USA

trained for different lengthts of time (or iterations). However,
while the latter strategy works for any time algorithms, it
may not be suitable when there is a deadline. Additionally,
in SEER, trials are transferred from one bracket to another
depending on how well they perform, whereas in Hyper-
band, each SH instance is run independently. We design a
naive elastic variant of Hyperband and show that it performs
worse than SEER.

Furthermore, the generation of a hyperparameter tuning
job is an important distinction from Rubberband [24], which
also takes into account time and cost budgets. Unlike the
other previous works, Rubberband assumes that the user
already has an experiment they want to run, say a succes-
sive halving experiment, and the way in which compute
resources are allocated to execute said plan will not affect
the final accuracy. Thus, Rubberband does not aim to maxi-
mize accuracy but rather to minimize cost of a job with a set
accuracy. In contrast, our work aims to replace the profiling
and simulation step of Rubberband that converts a fixed clus-
ter policy to the elastic setting, and run the job generated by
SEER on Rubberband’s executor.

4 THEORETICAL ANALYSIS

We now present our theoretical analysis. Our proofs are
given in Appendix A, with some technical lemmas skipped
due to space constraints. Our first result simply verifies that
SEER does not exceed the time and cost budgets.

Fact 1. Algorithm 3 completes in time at most T and ex-
pends resource-time at most B.

Our main theoretical results bound the difference between
the configuration returned by SEER and the optimal configu-
ration in X. Intuitively, we show that SEER does well using
varying levels of parallelism. For this, we will begin with
some assumptions on the problem.

Let £ : X X Ry — [0,1] denote the loss functions de-
fined over X, where, for example, £(x,t) denotes the val-
idation loss when we train the model with hyperparame-
ter x € X for time t € R, using a single resource. Let
£* : X — [0,1] denote the terminal losses over X. That
is, £°(x) = lim;_ £(x, t) is the final loss when we train
the model to completion with hyperparameter x. We will
assume that this limit exists for all x € X, and therefore £~
is well defined. Let £* = infycx £ (x) be the optimal loss
value in the given space X. Next, we will definey : R, — R,
to be the pointwise smallest monotonically decreasing func-
tion satisfying sup,. .y [£(x, 1) — £ (x)| < y(t). Intuitively,
if y is small it means all configurations in X converge to
their terminal values fast. We will denote the inverse of y by
vy !(y) = inf{t € Ry;y(¢) < y}. Note that both y and y~! are
decreasing functions.

SoCC 21, November 1-5, 2021, Seattle, WA, USA

Next, recall that each instance of SH in SEER randomly
samples initial hyperparameter configurations from some
distribution P, with supp (P) = X. Let F denote the induced
CDF of terminal losses when configurations are sampled
from P, i.e. F(y) = Px.p({*(X) < y). Clearly, supp (F) C
[£*,1). We will denote the inverse of F by F~1(z) = inf{y :
F(y) < z}. The assumptions above are consistent with simi-
lar assumptions on this problem in previous work (e.g. [14,
20]), except we state all our quantities in terms of (continu-
ous) time, instead of epochs.

However, in a departure from prior work, we will model
the scaling effects of using multiple resources for evaluating
a single model via the function A : Ny — R, which has the
following interpretation: the loss after training x € X for
time ¢ is £(x, A(p)t). Clearly A(1) = 1 as per our definition
of £ above. 1 is an increasing function, which captures the
fact that more resources can help you train faster. The sub-
linear scaling of using multiple resources for the same job
can be modeled via the assumption that A(p)/p is decreasing
with p; i.e. the per resource efficiency decreases with more
resources. For instance, this implies that A(p) < p, mean-
ing that training for time t with p resources is worse than
training for time pt with a single resource.

Observe that many of the above assumptions are stated
in abstract terms. Moreover, the algorithm is agnostic to
quantities such as the loss functions ¢, the convergence rate
Y, and the scaling characteristics A; this is by design—in
practice, it is usually not possible to know them ahead of time
for an arbitrary hyperparameter tuning job. Therefore, while
sequential elimination strategies such as SH are known to
be optimal for stochastic best arm identification [4], our goal
here is less ambitious. We simply wish to (i) demonstrate
that the algorithm will behave reasonably under suitable
assumptions on the problem, and (ii) understand the effects
of the deadline, budget, and parallelism in the elastic setting.

To simplify the exposition we will assume that ppi, = 1
and pp.x = 0. Suppose that the configuration returned
by the algorithm is X and that this was trained using p
resources. Denote the final loss after training for time T
by r=t(x TA(p)). We are interested in bounding the er-

ror £ — £*. We will state our theorem in the case where
T = gl (1-n "
for R, in line 2 is tight. Let g, be as defined in line 2. Under
this, we see that R, is an increasing function of T and g, is
an increasing function of B. Our main result, stated in terms
of R, and g, demonstrates that as both T and B increases,
the loss of the returned model is close to the optimal value
£* with high probability.

). That is, the deadline constraint

THEOREM 2. Consider an execution of Algorithm 3 with
parameters n and v. Moreover, let R, and g, be as defined in
lines 2 and 2. For § > 0, define u,(5) = log(2q4«/5)/Rx. Let

40

Dunlap et al.

d € (0,1) be such that the following holds,

L (FHN) - >
=5

. 2n !
min | ———
J=ax \ A(vax~J) ux (5)

200" (zi) - (F-l(u*w)) -)) <

)dt+ 1)

3RevaiA(vd) e\ 7S 4

Let ¢ be the trained loss of the best model returned by the

algorithm. Then with probability at least 1—8, we have {—£* <
4(F Y (ux(8)) = £*).

We first observe that there always exists some §” € (0, 1)
such that for all § > &', the given condition in the theorem
is satisfied, However 8’ may be large if, intuitively speaking,
either F is a heavy-tailed distribution (i.e. an optimum is
hard to find via randomly sampling from the space) or y
converges slowly to 0 (i.e. the model class converges slowly).
In contrast, when F and y have smaller tails, then we can also
find small § such that the condition is true, and consequently,
we will have a small bound on the error 4(F ! (uy (8) — £*) .

To illustrate this, observe that as u, has just log depen-
dence on g /8. Moreover, as it decreases with R, it also does
so with T. Therefore, the bound 4(F~! (u, (8) — £*) decreases
with the deadline T. Next, fix the deadline T, and assume that
we increase B. Then, g, increases and therefore both terms
in the LHS of (1) decrease; this follows from the fact that
A is an increasing function. Hence, for a given j < gy, the
expression in the LHS becomes smaller with large B, which
means it is likely to be smaller than 1 for small § values.
This improves the probability that the final bound will hold.
Additionally, when g, increases there will be more terms to
account for in the minimisation, which increases the chances
that one of them will be smaller than 1. This reflects the fact
that when the budget increases, it is used to both, increase
the number of configurations in existing SH instantiations
and create more instantiations with higher parallelism.

On the flip side, when R, is large, u, is small which in-
creases the value of both terms in the LHS. However, pro-
vided that y is decaying fast enough, the effect of these terms
can be negligible-see Section 5.3.2 in Li et al. [20]. Moreover,
while large g, does affect the expression (1) and the final
bound negatively, it only does so by log factors.

Next, let us turn to the effects of parallelism on the result,
for which we will fix g, and R,. Since A is an increasing
function of the number of resources, the first term in the
LHS of (1) decreases with a large number of resources. How-
ever, in the second term, since A(p)/p is decreasing due to
sublinear scaling, the coefficient 1/(v9*~/A(v/)) is small for
instances j with fewer resources. The optimal j will depend
on y and F~!. This captures the fact that the optimal level of
parallelism depends on the problem: if training converges
slowly, it might be better to sample few trials and train them
for long, and vice versa if training converges fast.

Elastic Hyperparameter Tuning on the Cloud

It must be stated that an algorithm which accounts for
many of the problem specific quantities such as y, F, and A
will able to achieve better guarantees and better quantify the
dependence of the error £ — £* in terms of these quantities.
That said, it is worth noting that even though SEER is agnos-
tic to these quantities, the above theorem demonstrates that
it behaves sensibly: as B and T increases so do the chances
of the returned model being close to the optimal.

5 SYSTEM DESIGN & IMPLEMENTATION

As stated previously, we employ Rubberband’s executor to
handle the placement of trials and scaling of the cluster. The
executor contains three main components: the trial sched-
uler, placement controller, and cluster manager. Each com-
ponent leverages Tune [23], an open source framework for
distributed hyperparameter tuning and model training, as
well as the distributed framework Ray [25], which is able to
launch training jobs in parallel as well as scale a cluster up
or down.

If the current cluster needs to change or resources need
to be reallocated (e.g. at the end of a stage), the scheduler
requests the cluster manager to provision new nodes or de-
provision existing ones. To reallocate workers, the placement
controller will convert the resource quantity allocated to
each trial into physical resource assignments for its workers.
Parallel workers of a trial should be either colocated on a
single machine or packed onto a minimal set of nodes. By
colocating workers, the distributed training algorithm will
avoid incurring unnecessary network overheads.

We modify Rubberband’s existing scheduler to take in
plans generated by SEER (along with all baselines in Sec-
tion 6) and use Rubberband’s cluster manager and placement
controller for execution.

Rubberband’s current scheduler takes in an allocation pol-
icy, which defines the hyperparameter tuning job to execute.
This allocation policy is comprised of stages, which specify
how many trials to run and how many epochs/evaluations
to run them for. This allocation policy is then used by the
simulator to determine the allocation of resources to each
trial within a stage, with all resources being shared equally.
In contrast, SEER needs an allocation policy which already
specifies how to allocate resources and which allows trials
within each stage to be given a different number of resources.
Thus our allocation plan is a series of skewed stages, each
with start and stop time, a list of trials, and their respective
number of resources. At the end of a stage k, the top 1/p
fraction of trials are chosen to continue onto stage k + 1.
As indicated in Algorithm 3, the best performing trials get
the most resources. When proceeding from one stage to the
next, the configurations that do not progress to the next stage
are eliminated. The cluster manager will determine which

41

SoCC ’21, November 1-5, 2021, Seattle, WA, USA

(if any) instances need to be terminated and the placement
controller will re-allocate the remaining resources to the
surviving trials such that worker colocation is maximized.

Finally, we mention that while prior systems for hyperpa-
rameter tuning [21, 23] use the number of epochs to define
a stage in their design, we use wall clock time because in-
stances charge by the amount of time used, and estimating
the time it takes for a single epoch can be difficult, especially
in the case of stragglers. While our approach avoids wasting
time waiting for stragglers, it is also possible that the time for
a stage may run out before any configurations has finished
a single epoch. In this case, the user can specify a minimum
amount of time per stage via the parameter ¢, to ensure all
configurations have finished at least one epoch before they
are eliminated or promoted.

6 EXPERIMENTS

We present our experimental evaluation in this Section.

6.1 Setup

All experiments are run on AWS p3.8xlarge instances, each
of which provides 4 NVIDIA Tesla V100 GPUs. We utilize
a single r5.8xlarge instance to coordinate experiments and
host model checkpoints. In practice, the price of the CPU
instance is negligible in comparison to that of GPU instances,
and is therefore ignored for the purposes of this evaluation.
To ensure a fair comparison across all benchmarks, we also
provide results only for experiments where there were no
node failures.

Unless otherwise stated, we use a fixed batch size of 2048
throughout the entire experiment. Since scaling up the batch
size with the number of GPUs has been shown to have un-
predictable performance, we set a large batch size and use
gradient accumulation to ensure that the batch size does not
change during learning.

6.2 Search Spaces

Our search space is taken from previous works [20-22]. Tab.
1 depicts the search space for standard image classification
benchmarks used for the image classification benchmarks in
Sec. 6. For the segmentation benchmarks, the search space is
the same except all the learning rate parameters are divided
by 10. For the text classification task, all the learning rate
parameters are multiplied by 3 and we add in a parameter
for the embedding size with choices of 8, 16, 32, 64, and 128.

6.3 Baselines

We do not compare against Rubberband’s simulator as Rub-
berband does not have the objective of maximizing accuracy,
and instead convert some fixed-cluster algorithms into elastic
algorithms to fairly compare how to SEER. We compare SEER

SoCC 21, November 1-5, 2021, Seattle, WA, USA

Hyperparameter Space

Learning Rate le-4, 5e-4, 1e-3, 5e-3,

0.01, 0.05,0.1, 0.5, 1

Weight Decay 0.0001, 0.0005, 0.001, 0.005

Momentum 0.9, 0.95, 0.99, 0.997

Table 1: Standard search space for vision models

to 4 fixed-cluster algorithms: Random, ASHA, HyperSched,
and BOHB; as well as 2 elastic algorithms: Elastic Hyper-
band (E-Hyperband) and Elastic grid searc (E-Grid Search).
Random: This chooses a random configuration in the search
space and trains it for the entire duration using a fixed cluster
size so that the resource-time is equal to the given budget.
This is a natural baseline which indicates whether or not
hyperparameter tuning is necessary for a problem.

ASHA, HyperSched, BOHB: These are methods from
prior work which are based on successive halving. We use
the same parameter 7 for these methods as we did for SEER
and E-Hyperband. They also require specifying a minimum
and maximum resource allocation (which in this case is
number of epochs) as specified in Section 3. We set them
on a per-experiment basis using the guidelines provided in
the respective papers. Additionally, HyperSched requires
specifying a scaling function which maps the number
of resources to throughput. For the vision benchmarks,
we use the functions given in their paper, and for the
NLP and segmentation tasks, we use the default in their
implementation.

It is worth mentioning, that the above methods cannot be
naturally executed in an elastic environment as their policies
explicitly depend on the number of workers available.

E-Hyperband: This adapts Hyperband-which is tradition-
ally run sequentially-to the elastic setting by running all
brackets in parallel, and calculating its input to produce a
plan that satisfies the time and monetary constraints pro-
vided. Hyperband defines its brackets in terms of R, the max-
imum amount of resources to give to a single configuration.
Since the concept of a resource is generic, we could define
R as the largest r which is less than the deadline but also so
that the cost is less than the given budget.

E-Grid Search: This is a simple search technique with a
set exploration and exploitation phase: given a deadline T
(minutes), budget B (GPU-minutes), and max/min parallelism
Pmin/Pmax> 1 /2 minutes are allocated for exploitation of the
top trial using pmax resources, and T /2 minutes are allocated
for exploration, with each trial getting pp;, resources and
the number of trials chosen based on B. Unless otherwise
stated, we set pmin = 1, pmax = 4 for both the elastic grid
search baseline and SEER.

42

Dunlap et al.

6.4 Benchmarks

We evaluate the above methods on five datasets on three
tasks, image classification, image segmentation, and text
classification.

Image Classification: We evaluate 3 different image
classification models/datasets: VGG16 [29] on SVHN [26],
ResNet18 [11] on CIFAR10 [18], and (3) ResNet50 [11] on
TinyImagenet [19]. For our Tinylmagenet experiments, we
begin with a model pretrained on ImageNet. We use an SGD
optmizer and a plateau learning rate scheduler, where the
learning rate halves after the model has trained for 5 epochs
without any accuracy increase.

Image Segmentation: We evaluate FCN ResNet50 [28] on
the PASCAL VOC2012 [6] segmentation dataset. Since this
is a fairly large dataset, for E-Hyperband, E-Grid Seach, and
SEER, we set pmax = 8 and change tyin to 5 minutes. We
use an SGD optimizer with a ploy learning rate scheduler as
described above, and a batch size of 4.

Text Classification We evaluate BERT [5] on the Muli-
Genre Natural Language Inferene corpus (MNLI) dataset
from the General Language Understanding Evaluation
(GLUE) benchmark [31]. Given a premise sentence and
a hypothesis sentence, the task is to predict whether the
premise entails the hypothesis (entail- ment), contradicts
the hypothesis (contradiction), or neither (neutral). We
evaluate on both the matched (in-domain) and mismatched
(cross-domain) sections. We use a model pretrained on
lowercase english text from the Huggingface repository [32].
For Hyperband, E-Grid Seach, and SEER, we set ppax = 8
and changed t,,;, from 1 minute to 10 minutes.

Results. As shown in Tables 2, 4, and 3, SEER outper-
forms the other methods on all benchmarks. One interesting
observation is that the naive E-Grid Search baseline often
outperforms other sophisticated fixed-cluster baselines. As
mentioned before, this suggests that the effects of non-ideal
scaling can be significant in practice and highlights the ben-
efits of cloud-specific algorithms. ASHA performs poorly
since it spends too much time exploring configurations even
close to the deadline, indicating that carefully designed re-
source allocation strategies can make a difference in deadline-
aware settings.

6.5 Different Budgets and Deadlines

Figure 4 shows the performance of SEER and other methods
when we vary the deadline for a fixed budget and when we
vary the budget for a fixed deadline. SEER generally outper-
forms other methods, with the largest performance gains
coming from the short deadline, high budget settings. This
is because HyperSched is able to sufficiently explore trials
in a larger deadline. Figure 4b shows that when the budget
is fixed GPU minutes, SEER outperforms the baselines, but

Elastic Hyperparameter Tuning on the Cloud

SoCC ’21, November 1-5, 2021, Seattle, WA, USA

METHOD MODEL DATASET DEADLINE GPU MINUTES ACCURACY STD-ERROR

Ranpom VGG16 SVHN 15 4% 15 0.19 0.028
ASHA VGG16 SVHN 15 4 X 15 0.819 0.053
HyYPERSCHED VGG16 SVHN 15 4 X 15 0.927 0.021
BOHB VGG16 SVHN 15 4% 15 0.458 0.086

" E-HyperBaAND VGG16 ~ SVHN 5 4x15 0921 0.015
E-GRID SEARCH VGG16 SVHN 15 4x15 0.944 0.010
SEER VGG16 SVHN 15 4% 15 0.956 0.005
Ranpom RESNET18 CIFAR10 60 16 X 60 0.226 0.101
ASHA RESNET18 CIFAR10 60 16 X 60 0.896 0.006
HYPERSCHED RESNET18 CIFAR10 60 16 X 60 0.932 0.005
BOHB RESNET18 CIFAR10 60 16 X 60 0.864 0.000

" E-HyperBAND REsNETI8 CIFAR10 60 16x60 0914 0.005
E-GRID SEARCH RESNET18 CIFAR10 60 16 X 60 0.904 0.001
SEER RESNET18 CIFAR10 60 16 X 60 0.935 0.001
Ranbpom RESNET50 TINYIMAGENET 60 16 X 60 0.091 0.064
ASHA RESNET50 TINYIMAGENET 60 16 X 60 0.212 0.068
HYPERSCHED RESNET50 TINYIMAGENET 60 16 X 60 0.581 0.019
BOHB RESNET50 TINYIMAGENET 60 16 X 60 0.110 0.055

" E-HYPERBAND RESNET50 TINYIMAGENET 60 16x60 0630 0.003
E-GRiD SEARCH RESNET50 TINYIMAGENET 60 16 X 60 0.632 0.049
SEER RESNET50 TINYIMAGENET 60 16 X 60 0.675 0.001

Table 2: Results from training various models and datasets for image classification. Accuracy is averaged across
3 runs. We have separated the elastic and inelastic methods with a dashed line. If the deadline is t and the budget
is n X t GPU-minutes, it means an inelastic algorithm would have used n resources for the entire duration of ¢

minutes.

METHOD M/MM AccURACY STD-ERROR METHOD MEAN-IOU STD-ERROR

RanDOM 0.651/ 0.657 0.078 / 0.098 RanDOM 0.413 0.078

ASHA 0.837 / 0.831 0.002 / 0.001 ASHA 0.519 0.005

HYPERSCHED 0.834 / 0.837 0.001 / 0.001 HYPERSCHED 0.524 0.061

___bBoHB__ 081470817 0.001/0000_ BOHB_ 0474 0078

E-HYPERBAND 0.836 / 0.831 0.002 / 0.001 E-HYPERBAND 0.503 0.003

E-GRID SEARCH 0.833/0.815 0.001 / 0.002 E-GRID SEARCH 0.524 0.006

SEER 0.839/0.840 0.001/ 0.002 SEER 0.541 0.008

Table 3: Results from fine-tuning BERT on MNLI
dataset with a deadline of 120 minutes and a budget
of 16 X 120 GPU-minutes. Accuracy is recorded for
both the matched and mismatched sections.

HyperSched outperforms SEER and ASHA on the smallest
budget 8 x 30, because SEER only evaluates 13 trials and is
less likely to find an optimal configuration than HyperSched
which evaluates more trials.

7 CONCLUSION

Limitations: In this section we list the potential limitations
of our work. Similar to HyperSched with a similar problem
formulation, ASHA will outperform SEER given a very large

43

Table 4: Results from training FCN ResNet50 on the
Pascal VOC2012 segmentation dataset with a dead-
line of 180 minutes and a budget of 16 x 180 GPU-
minutes.

deadline since it tests more configurations and has enough
time to train them to convergence. Furthermore, HyperSched
will match or outperform SEER given a small budget, because
SEER tests much fewer configurations and the wasted re-
sources due to sub-linear model scaling is minimized. As
mentioned in Sec. 6.4 and 6.5, SEER may also perform poorly
when the the deadline is very small (~10-15 minutes) because
of cluster resizing overheads.

SoCC 21, November 1-5, 2021, Seattle, WA, USA

s SEER

0.932} 0
0.9147
i
60

(a) CIFAR10 Different Deadlines

mm ASHA
B HyperSched

s E-Hyperband
B E-Grid Search

Accuracy
o
©
(3]

30
Deadline (mins)

Dunlap et al.

mmm SEER

mm ASHA
B HyperSched

mmm E-Hyperband
B E-Grid Search

16
Budget (GPU-mins)

10.911)
0

Accuracy
o
@
a

0.912]
0
i
8

(b) CIFAR10 Different Budgets

Figure 4: Results of tuning ResNet18 on CIFAR10 with (a) a fixed budget of 16 xdeadline GPU-minutes for deadlines
of 15, 30, and 60 minutes and (b) a fixed deadline of 30 minutes and budgets of 8 X 30, 16 X 30, and 32 X 30 GPU-
minutes. HyperSched outperforms SEER on a budget of 8 x 30 GPU-minutes because SEER evaluates very few
trials and the effects of sublinear scaling are minimized.

Summary: In this work, we formalize the problem of elas-
tic hyperparameter tuning in terms of time and cost con-
straints to find a model with high accuracy. We introduce
SEER, which produces a resource allocation plan to evalu-
ate several hyperparameters, and train the promising one to
completion based on the stipulated time and cost budgets.
It leverages elasticity to sufficiently explore configurations
while maintaining different levels of parallelism to identify
the best trade-off for the problem. The proposed method out-
performs fixed-cluster methods and naive elastic heuristics
on a variety of deep learning benchmarks.

The cloud introduces new opportunities and challenges for
machine learning. While the existing literature has focused
on system design for the cloud, this work demonstrates that
more algorithmic work is needed to fully realize the benefits
of the cloud for emerging machine learning workloads.

A PROOFS OF THEORETICAL RESULTS

In order to prove Theorem 2, we will require two intermedi-
ate results. The first of these is a technical result taken from Li
et al. [20] which shows that if we draw many samples from
X, the small terminal losses of the samples should be close to
the optimal loss in X. Its proof is similar to the above paper,
and therefore we skip it due to space constraints.. Recall the
definitions of P, F and y from Section 4.

LEMMA 3 (ADAPTED FROM LEMMA 2, L1 ET AL. [20]).
Let & € (0,1). Suppose we draw N = MN’ ii.d. samples
X1,...,xXN from P such that, M, N 1 are integers and

£2(x1) < £2(x2) < --+ < £2(xN). Denote uny = lmg(.IZ\I—A//I/(S).

>

44

Define,
1 —1(4) _ p*
H(N,5)=2N/ y—l(u) dt
Uun’ 4

10 2\ . (F'gn) —t*
P 5 ()

+—1

Then, with probability at least 1 — 5 £ (xp1) < F~(unv), and

N

o o £20x) = £ (xamr)
Y
=1

(max {F‘l(uN/) A 2 }) < H(N,).

i

Our next result states that a SH procedure can achieve low
loss if enough resource time is allocated to it.

LEmMa 4. Consider a set of N configurations {x1,x2, ..., XN}
such that £(x1) < £(x2) < ...L0(xN). Assume that we executed
successive halving with parameter n for K (< log, (N)) stages

using p workers for each configuration. Let M = [N/nX].
Define Bsy as follows,
€ £7(x;) — £ (x1)
max{-, ——————
4 4

Let ¢ denote the smallest observed loss among all surviving
configurations at the end of the K* stage. If B > Bsy, then
7 < by +3€/4.

Knp _,

Bsu(e) = Tp))’

Proor. For brevity, denote £*(x;) = ¢; and #(xj,t) =
¢;+. Denote the time taken for round k by t, and let ;. =
2k <k tir. Let the arms surviving at the end of round k by Sk.
Let Sk+1 denote the arms surviving after the K™ stage. Recall,
that SH chooses the best arm at the end of the K* stage.

Elastic Hyperparameter Tuning on the Cloud

First, consider the time taken for the k* round,

B/K n

> N -1 € fj—fM
—|sku<p>gy (m‘“{i’ 4 })

B = ——
7 plSkl =
T max_ iy~ (max{f —[j_[w(xM)})
|5k|/1(P) 4 4

> LR (max{e w}) (2)
i’ 4 4

First, assume that at least one of the first M arms, say x,,

survived after K stages. By (2), we have t; > y~1(e/4)/A(p),

and therefore, |4, (7, = tml < y(tkA(p)) < €/4. For the

model with the best loss we therefore have,

=ty < bz — b+ b — by < €/4.

Here, we have used the fact that £ < £, 7, and that £, < fy.
This proves the result if one of the first M arms survives the
K rounds. In the remainder of the proof we will prove the

result assuming that none of them do.

-1 (@) Ift > 7j, forany i =
., N after time t of training with p workers, we have
[eacp) — il < y(tA(p)) < (& — tm)/2. Applying this to M
and j we have, £; :1(p) = tm,ea(p) = Ejen(p) — €+ — v+ —
teap) = WGieap) =€) + (bt = bmeap)) + 4 — tm 2 0. In
particular, this implies that if £;;3(p) < fam,sa(p), thent < ;.
If none of the first M arms survived the K rounds, this
means there must exist k < K and m < M such that x,,, € S,
but x,,, & Si41. Therefore,

First define 7; = #p)y

Xm € Sk A X € Spyp = Z 1 nr(p) < Oina(p) =
JESK

N
- Z 1(ty < Tj) > _kJ = Ik < T[N/pk]-
€Sk n
Combining the above result with (2), we have, for k as defined
above, the following two conclusions.
€ _ g~ tm -1
_ _— 4
177 2 A() Y
Let ¢ = min{j € [N];({; — €m)/2 > €/4}. The first of the
above two conclusions implies that ¢ > [N/7*]. Addition-
ally, the second conclusion implies that for all j > g,

_ 1 fj—fM | _
b THY (2)Sm))y (e/4) = .

as y~! is decreasing. Therefore, for all j > g, we have
i) > Muap) > fmua(p)- This means that all arms
i > g will have been eliminated before or at the same time
as m. And hence, for all remaining arms, by the definition
of g, we have & — £y < €/2. Since this is true for all
configurations surviving at stage k + 1, it is also true for
configurations at the very end, including, in particular, .

)

45

SoCC ’21, November 1-5, 2021, Seattle, WA, USA

Finally, we note that since tx > tx > y '(e/4), we have,
T—ty <T— (X)) +1°(X) -ty < e/4+€/2<3e/4. O

The next result combines the above two results to provide
a guarantee on a given SH instance in Algorithm 3.

LEMMA 5. Consider a SH instance in Algorithm 3 with pa-
rameter n, N = MyX=' arms, and p workers for each configu-
ration, which has been executed for K stages with the time for
first stage t,. Let u = log(2M/8) /X1, If,

(1) -
> A(p) / ()d”

2 “t(u) - *

m(p) °g(')y (z)

Then, £ — £* < 4(F~'(u) — £*) with probability at least 1 — 8.
Proor. Assume that the two events specified in Lemma 3
hold, which they do with probability > 1 — . By starting
with given condition we can show (steps skipped due to
space constraints), NKt;p > Bsp(4(F~!(u) — £*)). We can
now apply Lemma 4 to obtain - (xp) < 3(FHu) - £%),
where x,s is the M configuration when the N configurations
are ordered according to their terminal losses. Applylng the

first event of Lemma 3, we have £ — £* < — £¥(xy) +
22 (xpy) — £* < 4(F7H(u) — £%). o

We are now ready to prove Theorem 2.

Proor oF THEOREM 2. Recall that Algorithm 3 executes
at least g, instantiations where g, is as defined in line 2.
Here, the it stage will have N[i] = nX~1v9*~! configurations
and use P[i] = v/ workers per configuration.

We will now apply Lemma 5 with § < /g, for each
of g, instances. Now assume that the condition stated in
the theorem holds for a given § € (0, 1). This means, for
some j < g4 the expression inside the minimum is smaller
than 1. Let u, = log(2/8)/Rx and u = log(2Mqx /&) /n 1.
By noting that u, > u and that y~! is a decreasing function,
we can show (steps skipped due to space constraints),

A(P[l])

(@ _[*)dt+
20

1 2q%\ _ _1(u)—t’*
SN[APL]) Og(5)Y (4)

That is, the condition in Lemma 5 holds for j. Applying its
conclusion yields, — £* < 4(F~1(log(2qx/8)/Ry) —£*). O

SoCC 21, November 1-5, 2021, Seattle, WA, USA

REFERENCES

[1] Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton,

[10

[11

[12

(14

(15

[16

[17

[18

=

—

—

—_

flan!

]

=

]

—

Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2019.
Botorch: Programmable bayesian optimization in pytorch. arXiv
preprint arXiv:1910.06403 (2019).

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balazs Kégl.
2011. Algorithms for Hyper-Parameter Optimization. In Advances in
Neural Information Processing Systems.

Sébastien Bubeck and Nicolo Cesa-Bianchi. 2012. Regret Analysis of
Stochastic and Nonstochastic Multi-armed Bandit Problems. Founda-
tions and Trends in Machine Learning (2012).

Alexandra Carpentier and Andrea Locatelli. 2016. Tight (lower) bounds
for the fixed budget best arm identification bandit problem. In Confer-
ence on Learning Theory. 590-604.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. 2010. The Pascal Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision 88, 2 (June 2010), 303-338.
Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and
Efficient Hyperparameter Optimization at Scale. CoRR abs/1807.01774
(2018). arXiv:1807.01774 http://arxiv.org/abs/1807.01774

Matthias Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter. 2015. Efficient and robust automated machine learning.
Advances in Neural Information Processing Systems 28 (01 2015), 2944—
2952.

Johnu George, Ce Gao, Richard Liu, Hou Gang Liu, Yuan Tang, Ram-
doot Pydipaty, and Amit Kumar Saha. 2020. A Scalable and Cloud-
Native Hyperparameter Tuning System. arXiv:2006.02085 [cs.DC]
Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and D Sculley. 2017. Google vizier: A service for black-box
optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1487-1495.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequen-
tial Model-based Optimization for General Algorithm Configuration.
In LION.

Changho Hwang, Taehyun Kim, Sunghyun Kim, Jinwoo Shin, and
KyoungSoo Park. 2021. Elastic Resource Sharing for Distributed Deep
Learning. In USENIX Symposium on Network Design and Implementa-
tion (NDSI 21). USENIX Association.

Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic best arm
identification and hyperparameter optimization. In Artificial Intelli-
gence and Statistics. 240-248.

D.R. Jones, C. D. Perttunen, and B. E. Stuckman. 1993. Lipschitzian
Optimization Without the Lipschitz Constant. J. Optim. Theory Appl.
(1993).

Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger,
Biswajit Paria, Christopher R Collins, Jeff Schneider, Barnabas Poczos,
and Eric P Xing. 2020. Tuning hyperparameters without grad students:
Scalable and robust bayesian optimisation with dragonfly. Journal of
Machine Learning Research 21, 81 (2020), 1-27.

Zohar Karnin, Tomer Koren, and Oren Somekh. 2013. Almost optimal
exploration in multi-armed bandits. In International Conference on
Machine Learning. 1238-1246.

Alex Krizhevsky. 2009. Learning multiple layers of features from tiny
images. Technical Report.

46

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Dunlap et al.

Ya Le and Xuan Yang. 2015. Tiny ImageNet Visual Recognition Chal-
lenge.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2017. Hyperband: A novel bandit-based approach
to hyperparameter optimization. The journal of Machine Learning
Research 18, 1 (2017), 6765-6816.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina,
Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2018. Massively
Parallel Hyperparameter Tuning. In Proceedings of Workshop on ML
Systems in The Thirty-second Annual Conference on Neural Information
Processing Systems (NIPS).

Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E.
Gonzalez, Ion Stoica, and Alexey Tumanov. 2019. HyperSched: Dy-
namic Resource Reallocation for Model Development on a Dead-
line. In Proceedings of the ACM Symposium on Cloud Computing
(Santa Cruz, CA, USA) (SoCC ’19). ACM, New York, NY, USA, 61-73.
https://doi.org/10.1145/3357223.3362719

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E
Gonzalez, and Ion Stoica. 2018. Tune: A Research Platform for Dis-
tributed Model Selection and Training. arXiv preprint arXiv:1807.05118
(2018).

Richard Liaw, Ujval Misra, Lisa Dunlap, Romil Bhardwaj, Alexey Tu-
manov, Joey E. Gonzalez, and Ion Stoica. 2021. Rubberband: Cloud
Based Hyperparameter Tuning. EuroSys (2021).

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I Jordan, et al. 2018. Ray: A distributed framework for emerg-
ing {Al} applications. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 561-577.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y. Ng. 2011. Reading Digits in Natural Images with
Unsupervised Feature Learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning.

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association,
1-18. https://www.usenix.org/conference/osdi21/presentation/qgiao

Bing Shuai, Ting Liu, and Gang Wang. 2016. Improving Fully Con-
volution Network for Semantic Segmentation. CoRR abs/1611.08986
(2016). arXiv:1611.08986 http://arxiv.org/abs/1611.08986

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical
Bayesian Optimization of Machine Learning Algorithms. In Advances
in Neural Information Processing Systems.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2018. GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding. (2018). arXiv
preprint 1804.07461.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, and Jamie Brew. 2019. HuggingFace’s
Transformers: State-of-the-art Natural Language Processing. CoRR
abs/1910.03771 (2019). arXiv:1910.03771 http://arxiv.org/abs/1910.
03771

https://arxiv.org/abs/1807.01774
http://arxiv.org/abs/1807.01774
https://arxiv.org/abs/2006.02085
https://doi.org/10.1145/3357223.3362719
https://www.usenix.org/conference/osdi21/presentation/qiao
https://arxiv.org/abs/1611.08986
http://arxiv.org/abs/1611.08986
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Optional Arguments
	3.3 Computing Bracket Parameters
	3.4 Example
	3.5 Comparison with Prior work

	4 Theoretical Analysis
	5 System Design & Implementation
	6 Experiments
	6.1 Setup
	6.2 Search Spaces
	6.3 Baselines
	6.4 Benchmarks
	6.5 Different Budgets and Deadlines

	7 Conclusion
	A Proofs of Theoretical Results
	References

