
DEMOCRATIZING PRODUCTION-SCALE DISTRIBUTED DEEP LEARNING

Minghuang Ma 1 Hadi Pouransari 1 Daniel Chao 1 Saurabh Adya 1 Santiago Akle Serrano 1 Yi Qin 1

Dan Gimnicher 1 Dominic Walsh 1

ABSTRACT
The interest and demand for training deep neural networks have been experiencing rapid growth, spanning a wide
range of applications in both academia and industry. However, training them distributed and at scale remains
difficult due to the complex ecosystem of tools and hardware involved. One consequence is that the responsibility
of orchestrating these complex components is often left to one-off scripts and glue code customized for specific
problems. To address these restrictions, we introduce Alchemist - an internal service built at Apple from the ground
up for easy, fast, and scalable distributed training. We discuss its design, implementation, and examples of running
different flavors of distributed training. We also present case studies of its internal adoption in the development
of autonomous systems, where training times have been reduced by 10x to keep up with the ever-growing data
collection.

1 INTRODUCTION

In recent years, deep learning has become one of the most
effective machine learning methodologies in many applica-
tion domains including computer vision (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2014; Szegedy et al., 2014;
He et al., 2015), speech recognition (Hannun et al., 2014;
Amodei et al., 2015; Battenberg et al., 2017) and natural lan-
guage processing (Cho et al., 2014; Wu et al., 2016). Despite
the widespread adoption of deep neural networks (DNNs),
training them quickly and at scale still poses significant
computational, algorithmic, and engineering challenges.

To address the computational challenge, the most direct way
is to simply obtain better hardware. However, using a single
state-of-the-art GPU to train the ResNet-50 model (He et al.,
2015) on the ImageNet dataset (Russakovsky et al., 2015)
can still take a few days. Despite the increase in compu-
tational power of GPUs and the development of powerful
alternative hardware like TPUs (Jouppi et al., 2017), the
most common approach to reduce training time is to paral-
lelize the computation across multiple GPUs hosted across
multiple compute instances.

The algorithmic challenge, especially as distributed train-
ing is scaled out, lies in at least two aspects. Firstly, when
large mini-batches are used, the model’s ability to gener-

1Apple Inc., Cupertino, California, USA. Correspondence to:
Minghuang Ma <minghuang_ma@apple.com>, Hadi Pouransari
<mpouransari@apple.com>.

alize tends to degrade (Keskar et al., 2016). Secondly, as
more compute nodes participate, the communication over-
head grows. Luckily, these issues can all be mitigated. The
first by carefully scheduling the changes in learning rate
(Goyal et al., 2017), and the second, by adopting high per-
formance computing (HPC1) techniques for efficient com-
munication. Algorithmic advancements such as these have
made distributed training tremendously successful, allowing
researchers to train ImageNet in an hour (Goyal et al., 2017)
and even in just a few minutes (Akiba et al., 2017; Jia et al.,
2018).

Last but not least, a real-world ML system requires signif-
icant infrastructure engineering in addition to ML code as
mentioned in (Sculley et al., 2015). And the complexity of
this infrastructure increases as it is leveraged by multiple
teams of engineers, researchers, and data scientists. Each
with different requirements and use cases. The engineering
challenge can be further divided into the following:

Interacting with compute resources. We find two com-
mon patterns used in DNN training - interactive and batch.
By interactive we mean the user logs into a remote shell to
prototype and debug. By batch we mean the jobs are sent
to a job queue where they are executed by the ML system.
Interactive mode is usually preferred in the research and
prototyping phase. On the other hand, batch mode is more
suitable for large-scale parameter tuning and production
pipelines. For both patterns, distributed training introduces

1http://research.baidu.com/bringing-hpc-techniques-deep-
learning

ar
X

iv
:1

81
1.

00
14

3v
2 

 [
cs

.C
V

] 
 3

 N
ov

 2
01

8

http://research.baidu.com/bringing-hpc-techniques-deep-learning
http://research.baidu.com/bringing-hpc-techniques-deep-learning


Democratizing Production-Scale Distributed Deep Learning

additional overhead. Examples of challenges include man-
agement of IP addresses, starting and stopping processes,
managing the synchronization of multiple processes pos-
sibly in multiple machines and integrating logs emanating
from each process.

Interacting with data resources. Datasets tend to be
shared by multiple training jobs, users, and teams. Given the
write-once-read-many-times usage pattern, it is common to
store and distribute the data using a distributed file system.
The challenge becomes creating a performant and easy to
access setup of this type. For example, Tensorflow provides
an interface to implement custom plugins for different file
systems, but we have found that a POSIX interface is often
preferred by the users for its simplicity.

Managing software and dependencies. The software
stack to train DNNs has become more complete than ever,
ranging from low-level GPU libraries(CUDA, CUDNN) to
high-level frameworks(Keras, Horovod (Sergeev & Balso,
2018)). Integrating these valuable software tools comes
dependency management overhead. And in a remote and/or
distributed environments, deploying the right software to the
compute node is both complex and essential. Moreover, the
software environment has to be the same on the cloud and
the engineer’s desk to simplify the development, debugging
and code sharing.

Availability of monitoring tools. Monitoring the health
and performance of a training job requires tools at the appli-
cation level (e.g. Tensorboard, Tensorflow-timeline) as well
as at the system level (e.g. to monitor CPU, memory, and
GPU usage). Furthermore, distributed training requires us to
also measure the communication between nodes in order to
identify health issues and performance bottlenecks. Having
tools for all of the above is essential for a dependable DNN
development environment.

To address the above challenges, we discuss a system we
built at Apple known as Alchemist. Alchemist adopts a
cloud-native architecture and is portable among private and
public clouds. It supports multiple training frameworks
like Tensorflow or PyTorch and multiple distributed training
paradigms. The compute cluster is managed by, but not lim-
ited to, Kubernetes 2. We chose a containerized workflow
to ensure uniformity and repeatability of the software envi-
ronment. In the following sections, we refer to engineers,
researchers, and data scientists using Alchemist as users.

2https://kubernetes.io

1.1 Related Work

Multiple groups have developed systems to facilitate ma-
chine learning (ML) research and engineering workflows.
Google’s TensorFlow Extended (TFX) (Baylor et al., 2017)
is a ML platform that integrates all components of a ML
pipeline and helps reduce time to production. Kubeflow 3

aims to provide a straightforward way to deploy open-source
systems for ML over infrastructure managed by Kubernetes.
Uber’s Michelangelo 4 is an internal ML-as-a-service plat-
form designed to build and deploy ML related services.
Twitter’s DeepBird 5 is an end-to-end solution for training
and serving deep learning models. Alchemist is similar in
many aspects to these platforms, but with more focus on
model training. Unlike Kubeflow’s Kubernetes native ap-
proach, Alchemist is only using Kubernetes as a container
orchestration platform.

There are many libraries and frameworks aimed at dis-
tributed training. Kubernetes’s custom resource operators
like tf-operator and mpi-operator have been integrated into
Kubeflow. Horovod is a distributed training framework for
Tensorflow, Keras, and PyTorch, which leverages the ma-
ture message passing interface (MPI) standard together with
NCCL 6 to provide efficient communication. BigDL (Wang
et al., 2018) is a distributed deep learning library which
allows users to write deep learning applications as standard
Apache Spark programs. Ray (Moritz et al., 2017) provides
a distributed framework with dynamic task scheduling to
perform large-scale ML training jobs. Primitives for dis-
tributed training in Ray was introduced in (Bulatov et al.,
2017). In addition, Tune (Liaw et al., 2018) is used to handle
hyper-parameter tuning and model selection in conjunction
with Ray. Alchemist is agnostic to the choice of distributed
training framework and allows users to choose the tools
most suitable for their needs.

2 SYSTEM OVERVIEW

2.1 Parallelization Strategies

Since Alchemist’s design is informed by various strategies
in performing distributed stochastic gradient descent (SGD),
we shall briefly review the possibilities below. Recall that
each iteration of SGD consists of two phases: the forward
and the backward passes. The forward pass uses the weights
in the current iteration to compute the value of the activa-
tions and the loss function. These values are cached and

3https://www.kubeflow.org
4http://eng.uber.com/michelangelo/
5https://blog.twitter.com/engineering/en_us/topics/insights/

2018/twittertensorflow.html
6https://github.com/NVIDIA/nccl

https://kubernetes.io
https://www.kubeflow.org
http://eng.uber.com/michelangelo/
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twittertensorflow.html
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twittertensorflow.html
https://github.com/NVIDIA/nccl


Democratizing Production-Scale Distributed Deep Learning

used by the backward pass to compute gradients, which
are subsequently applied to obtain the weights for the next
iteration.

The strategies for distributing the SGD compute can be
grouped into two main categories; those that are model or
data parallel7.

Model parallel. This paradigm is suitable for very large
models that cannot fit in the memory of a single compute
node. In this approach, model weights are partitioned into
groups, each of which are assigned to different compute
nodes. It follows that completing a single SGD iteration
requires intermediate values such as activations and gradi-
ents to be communicated across node boundaries, with the
pattern of communication being dependent on the network
topology and connectivity. Although model parallel strate-
gies have conventionally been thought to exhibit limited
scaling for convolutional neural networks(CNNs) that have
spatially shared weights, works such as (Coates et al., 2013;
Ngiam et al., 2010) have shown that they are promising.

Data parallel. In this paradigm, every compute node main-
tains a full copy of the model as well as its weights. Each
node updates weights independently by performing the en-
tirety of a single SGD iteration on a different subset of the
data. Communication between nodes only happens when
weight estimates are shared, which can be done either syn-
chronously or asynchronously. In the synchronous case,
gradients computed by each node is gathered and averaged
before the weights are updated. In the asynchronous case,
each node is allowed to update weights as soon as their gra-
dients are ready without having to consult those computed
by the others. The synchronous case typically exhibits better
convergence while the asynchronous case typically exhibits
lower communication costs.

Compared to the model parallel paradigm, the data parallel
paradigm is both model agnostic and simpler to implement.
This is not without its drawbacks; in particular, the amount
of data processed for a single gradient estimate grows as the
number of compute nodes participating grows. If unchecked
this increase in the global batch-size can result in poor con-
vergence (Goyal et al., 2017; Akiba et al., 2017) as well as
the degradation of the model’s ability to generalize (Keskar
et al., 2016).

The patterns for SGD data communication can also be
grouped into two main categories; those that are central-
ized and those that are not.

Centralized communication. In this pattern, one or a few

7See (Ben-Nun & Hoefler, 2018) for a more detailed discus-
sion.

compute nodes are designated as parameter servers while
the others are designated as workers. Workers are respon-
sible for computing gradients and publishing them to the
parameter servers, while the parameter servers simply act as
a hub where gradient estimates are gathered and broadcasted.
An advantage of this pattern is that it is more resilient to the
addition or removal of individual workers; this is especially
helpful since machines do fail in practice.

Decentralized communication. Unlike the centralized pat-
tern, there are no special roles and all nodes compute gra-
dients and update weights. Communication occurs when
gradient estimates are averaged, which typically proceeds
through a ring all-reduce. Compared to the centralized pat-
tern, this approach demonstrates better performance while
being less fault-tolerant. Efficient implementation primitives
have been developed over decades by the HPC community
and are available in libraries like OpenMPI 8, NCCL, and
MLSL 9. These primitives are then leveraged by higher level
frameworks such as Horovod.

2.2 Design Principles and Constraints

Alchemist adheres to the following design principles with
the objective of allowing users to easily leverage distributed
optimization, for both research and production pipelines and
do so efficiently.

Easy distributed computing. When writing distributed
training code, users should not have to worry about the
compute infrastructure, its orchestration, or its configura-
tion. These complexities are the system’s responsibility to
abstract away. The users should be able to focus on their
domain problem, provide code that defines the experiments,
and be able to straightforwardly specify the runtime envi-
ronment that they wish to work in.

Portable architecture. The system should be portable
among private data centers and the public cloud. The sys-
tem should be easily deployed into a different cloud in
order to support legacy private compute clusters, isolate
confidential product teams, isolate research and production
environments, support multiple regions for fault tolerance,
and to leverage additional GPU resources on public clouds.

Full observability. To enable a pleasant debugging experi-
ence and to facilitate the triaging of performance problems,
the system should be fully observable. For example, it
should be easy for users to leverage tools like Tensorboard
to monitor the training progress. Furthermore, training task
logs and compute metrics such as CPU, GPU, and memory

8https://www.open-mpi.org
9https://github.com/intel/MLSL

https://www.open-mpi.org
https://github.com/intel/MLSL


Democratizing Production-Scale Distributed Deep Learning

usage should be easily accessible.

Agnostic to training frameworks. While there is a benefit
in adopting a single training framework within a team or
throughout an organization, users in practice choose differ-
ent frameworks for different problems at different phases of
a project. In response, the system should aim to enable and
support different training frameworks.

2.3 System Architecture

Alchemist is designed with a layered micro-service architec-
ture. This is illustrated in Figure 1 and discussed below.

Distributed FilesystemStorage Object Storage System

Logging/Monitoring Tools

Compute

Training/Eval Tasks

Datasets Caching

Job Orchestration
API

Code Assets

Logs/Metrics

CLIUI Web UI

Cluster Autoscaler

Authentication

Figure 1. System components fall into four layers. Layers are
decoupled to simplify the support of new compute and storage
platforms. For example, the compute layer components can be
implemented using different container orchestration platforms.

Storage Layer. This layer contains the distributed file sys-
tems and object storage systems that maintain the training
and evaluation datasets, the trained model artifacts, and
the code assets. Depending on the size and location of the
datasets and annotations, there are many options ranging
from using solely NFS, solely an object store, or a mixture
of different storage systems. We discuss our choices of
storage solutions in section 3.

Compute Layer. This layer contains the compute-intensive
workloads; in particular, the training and evaluation tasks
orchestrated by the job scheduler. System monitoring and
logging tools are preinstalled alongside to provide full ob-
servability. To improve compute resource utilization, a
cluster auto-scaler watches the job queues and dynamically
adjusts for the size of the cluster. Optionally, dedicated
compute instances are deployed to provide dataset caching
or to speed up data loading.

API Layer. This layer exposes services to users, which
allows them to upload and browse the code assets, submit
distributed jobs, and query the logs and metrics. Several API
services are deployed behind a gateway that uses a central

user authentication and authorization mechanism.

UI Layer. This layer is composed of a command line inter-
face (CLI) and a web UI. The CLI tool provides a practical
way to submit and manage experiments. Most importantly,
this enables the integration with CI/CD pipelines through
scripting. The web UI allows the user to easily browse exper-
iments, datasets, and artifacts. It also exposes the system’s
status and metrics to help with debugging and performance
tuning. Figure 2 shows an example of an 32-instance(256-
GPU) distributed training experiment.

3 IMPLEMENTATION

We describe the implementation of the key components of
Alchemist below.

3.1 Distributed job orchestration

One of the most important features of Alchemist is the abil-
ity to launch and manage the lifecycle of a distributed batch
compute job. Alchemist is a fully containerized system. We
chose Kubernetes as the container orchestration platform
in the current implementation. Other than leveraging the
Custom Resource Definitions (CRD) feature in Kubernetes
and implementing a distributed training job resource, we
took a different approach to decouple distributed job orches-
tration and the underlying container orchestration platform.
This makes the container orchestration platform stateless
and makes it possible to leverage other platforms such as
Mesos in the future. Support for the cluster federation across
different data centers in multiple regions is also simplified
as illustrated in Figure 3.

Gang scheduling. We implemented a scheduler mechanism
that allocates and manages the set of tasks required for a
training job. A submitted job is placed in a job queue for
the scheduler to process. When the required CPU, GPU,
memory, and storage resources become available, the sched-
uler launches the necessary task containers. It then monitors
their status, and in case one fails, it will either terminate all
of the job’s tasks or re-launch the failed task. Upon com-
pletion of a job, the scheduler claims the free resources and
resets the state in the container platform. Figure 4 shows an
example of how the job scheduler schedules a distributed
training job in Kubernetes.

Job harness. Our job initialization step, which we call
job harness, consists of two parts: a system initialization
container that runs before the user’s task container, and, op-
tionally, code that runs inside the user’s task container. The
scheduler launches a system initialization container before
delegating the execution to the user task container. The



Democratizing Production-Scale Distributed Deep Learning

Figure 2. Through the web UI, users can browse job histories, monitor job statuses, view their logs and resource utilization. The web UI
also shows system health metrics, and provides a file browser to list datasets and model artifacts.

Kubernetes Cluster 1

Kubernetes Cluster 2

Mesos Cluster 1

Control Plane
(UI + API)

DC-1

DC-2

Mesos Cluster 2

Figure 3. Components in the UI and API layers are decoupled from
container orchestration platform to form the control plane of the
system, which can be deployed into a separate service platform.
This makes it easy to support multiple orchestration platforms in
different data centers.

initialization container downloads the user’s code and runs
a series of compatibility and performance tests. These tests
detect common issues with the infrastructure, like network-
ing failures and GPU driver mismatches. Making sure jobs
fail fast is important for maintaining the system’s perfor-
mance and ease of maintenance. Depending on the job’s
characteristics, we might need to execute code in the user’s
task container. For example, a distributed training job that

Scheduler

Job Queue

Job CRUD API

API Server

Task Pod/Volume 1

Task Pod/Volume 2

Task Pod/Volume 3

Kubernetes ClusterJob Orchestration

Service

Figure 4. Using Kubernetes as the container orchestration platform:
the job scheduler launches multiple Pods for a distributed training
job. It manages the life cycle of all the associated resources,
e.g. storage volumes. Upon completion, the scheduler deletes all
Kubernetes resources to keep the cluster stateless.

uses MPI requires proper configuration of SSH credentials
and cannot start until all nodes are accessible via SSH. We
use a small remote procedure call (RPC) server to set the cre-
dentials and to synchronize all the nodes. We also use this
server to gracefully stop workers upon completion. Figure
5 illustrates the execution workflow.

3.2 Storage system choices

There are mainly four types of files stored in the system:
container images, training code, datasets and model arti-
facts. Container images are treated separately and stored in



Democratizing Production-Scale Distributed Deep Learning

start RPC 
server

wait for RPC 
servers

task-1(master)

start RPC 
server

download code 
assets

run compatibility 
tests

rpc_sync_setup_ssh()

rpc_sync_exit()

download code 
assets

run compatibility 
tests

download code 
assets

run compatibility 
tests

all-reduce training

wait for mpirun

mpirun with 

user code

task-2 task-n

task containers

init containers

Figure 5. Task preparation is done in separate initialization contain-
ers so that users can specify their own task images with a custom
software environment. In MPI all-reduce training jobs, additional
task setup is provided by the system so that users can focus on the
training code without having to explicitly setup the MPI execution
environment.

an image registry. Users’ code is stored in an object stor-
age system. For the other two, we allow the use of either
an object store or a shared filesystem. For small datasets,
users can access an object storage systems by downloading
the datasets before training. For medium sized datasets,
a shared distributed filesystem with a POSIX compatible
interface can be mounted inside task containers. For large
datasets and large-scale hyper parameter tuning jobs, a high-
performance in-memory storage system or streaming system
is often preferred. Leveraging our gang scheduling, we are
able to launch task containers on memory-optimized in-
stances alongside GPU instances to cache and stream the
datasets as the GPU instances train the model.

3.3 Cluster auto scaling

Alchemist automatically scales the compute cluster based
on job requests and utilization statistics. Although many pri-
vate or public clouds provide out-of-the-box compute scal-
ing based on metrics like CPU usage, a distributed training
platform like Alchemist requires auto scaling on more gran-
ular metrics such as job resource requests and task status.
We implemented a cluster auto scaling service optimized for

distributed training as shown in Figure 6. This auto scaling
service inspects the job queue for resource requirements.
It uses knowledge of the available resources and launches
more instances through the cloud provider API when nec-
essary. If worker resources have been idle over a period of
time, the service then terminates their host instances.

Job API
Auto Scaling 

Service

A. watch resources requirement
B. launch new instance
C. new instance joins cluster
D. watch available workers
E. cordon unused workers
F. terminate cordoned instance

Kubernetes API 
Server

Cloud Provider
API

A

B

C

D

E

F

Figure 6. The auto scaling service dynamically adjusts the size of
the compute cluster by inspecting resource requests from the job
queue and available workers through the container platform API
(Kubernetes).

4 DISTRIBUTED TRAINING IN ALCHEMIST

4.1 Submitting a distributed training job

Alchemist requires users to provide a YAML configuration
file to specify compute requirements. Listing 1 shows an ex-
ample configuration, config.yaml, for a distributed training
job using Horovod with 3 GPU instances:

1. Each job can optionally specify a read-only dataset lo-
cation and a read-writable shared workspace to save
model artifacts. Datasets are available inside the con-
tainer filesystem when user code execution starts. The
shared workspace can be used to save artifacts or syn-
chronize data among tasks.

2. Before the tasks are started the user’s code will be down-
loaded into the container’s filesystems. Each instance
will see the code in the same location.

3. Each task is given a unique name within a job. Tasks
can communicate with each other using this name as
hostname. This avoids the need to code a mechanism
for instance discovery, or worse, have hard-coded IP
addresses. For example, constructing a ClusterSpec for
a distributed Tensorflow job becomes trivial.

4. Each task can use different container images and re-
quest different types of compute instances. For exam-
ple, when using parameter servers, these often require



Democratizing Production-Scale Distributed Deep Learning

Listing 1. Example distributed job configuration YAML.
labels:
name: object-detection
optimizer: adam

spec:
datasets_url: file-system.server:/shared/datasets/object-detection
workspace_url: file-system.server:/object-detection/run1
task_specs:
- name: task-1

image_id: tensorflow/tensorflow-gpu
node_type: gpu-instance-type
command: mpi-harness -np 12 -H task-1:4,task-2:4,task-3:4 python train.py

- name: task-2
image_id: tensorflow/tensorflow-gpu
node_type: gpu-instance-type
command: mpi-harness --master=false

- name: task-3
image_id: tensorflow/tensorflow-gpu
node_type: gpu-instance-type
command: mpi-harness --master=false

large memory and high network bandwidth whereas
workers require GPUs.

5. In a Horovod (MPI) training job, our mpi-harness pre-
pares SSH credentials, launches a Horovod job, and
terminates workers upon completion.

Alchemist provides a CLI - acmctl for users to interact with
its API. To submit the above job, the incantation

$ acmctl submit --config=config.yaml
--tar=/local/code/path

would be used.

The CLI will upload the user’s code to the service and
create a job in the queue, using the RESTful API. When the
compute resources are available, the scheduler will launch
the tasks for the job. In the meantime, users can track the
job status, view job logs and metrics through the CLI or the
web UI.

4.2 Practical considerations in distributed training

In this section, we further share our experiences of running
distributed training jobs using Alchemist.

There are a few considerations we followed in order to
decouple the DNN model development from the distributed
training infrastructure.

One GPU per MPI process. We explored various assign-
ments between GPUs and processes. Assume that there are
m machines, that we can have p MPI processes per machine,

and that we can assign g GPUs to each process. That is,
there are p · g GPUs per machine, and m · p · g total GPUs.
For our models we found that g = 1, i.e., one GPU per MPI
process, is an optimal choice. This brings several benefits.
Firstly it simplifies the ML model code. There is no need
to handle multiple-GPUs inside the training code. All inter-
GPU communication is handled by the distributed training
framework. Since NCCL detects fast communication chan-
nels between GPUs, e.g. through NVLink, this does not
lead to throughput degradation. Furthermore, splitting an
8 GPU python process into 8 single GPU processes makes
better use of a multi-core architecture by lessening the effect
of the global interpreter lock (GIL).

For many DNN training tasks, a significant portion of time
is spent on data pre-processing, e.g., image decoding, data
augmentation, and forming the mini batch by shuffling and
data selection. This is typically done using the CPU. We ob-
serve that splitting the process makes the data pipeline more
efficient since each GPU has a process dedicated to populate
its data input queue. With this configuration, moving some
of the CPU pre-processing computation to the GPU does not
need another scheduling since each pool of pre-processed
data is assigned to exactly one GPU as demonstrated in 7.

Batch-size dependent parameters. Many model hyper-
parameters such as learning-rate scheduling, number of
training steps, and evaluation frequency depend on the
global batch-size. This is in turn a function of the num-
ber of GPUs used. We discovered that it’s convenient to
normalize all parameters to a standard batch-size, and ad-
just them for the particular global batch-size used in the



Democratizing Production-Scale Distributed Deep Learning

GPU 0 

data 
pool

MPI P8

CPU

GPU 1

data 
pool

MPI P9

GPU 2

data 
pool

MPI P10

GPU 3

data 
pool

MPI P11

GPU 4

GPU 5 GPU 6

GPU 7

data 
pool

data 
pool

data 
pool

data 
pool

CPU

NODE 1

MPI P12 MPI P13 MPI P14 MPI P15

GPU 0 

data 
pool

MPI P0

CPU

GPU 1

data 
pool

MPI P1

GPU 2

data 
pool

MPI P2

GPU 3

data 
pool

MPI P3

GPU 4

GPU 5 GPU 6

GPU 7

data 
pool

data 
pool

data 
pool

data 
pool

CPU

NODE 0

MPI P4 MPI P5 MPI P6 MPI P7

Figure 7. GPU assignment schematic. One GPU per MPI process
with one dedicated pool of pre-processed data. Several communi-
cation links (ethernet, sockets, NVLink, etc.) are shown. Optimal
communication path between GPUs is handled by NCCL.

individual the training jobs.

Parallel evaluation. It is common to construct training
loops by alternating training and evaluation in order to
monitor the model performance. In distributed settings,
as training scales, more frequent evaluation is often needed.
Depending on the size of the dataset and implementation
details, the evaluation can occupy a large portion of the
total wall time. With Alchemist, users can launch parallel
evaluation tasks within a distributed training job, or launch
a separate evaluation job altogether. The evaluation tasks
can monitor an artifacts directory shared with the training
tasks and run the evaluations in parallel. This way training
tasks are not interrupted during evaluation runs.

Distributing early. With libraries like Horovod, imple-
menting distributed training is simple. With Alchemist, the
training infrastructure and orchestration is also simple. By
adopting a containerized workflow, users can debug locally
and run experiments in Alchemist remotely with the same
software environment. Together, these tools enable a seam-
less and scalable workflow for distributed training from the
beginning. In our experience adopting distributed training
early reduces future integration risks and allows code to
scale easily.

4.3 Throughput scaling results

Experiments setup. Unless listed otherwise, results we
show below were generated on GPU servers. Each server
has 64 virtual CPU cores, 488 GB memory and 8 NVIDIA
Tesla V100 GPUs with peer-to-peer connection through
NVLink. These servers are connected through 25GbE net-
work. We use the Tensorflow benchmark code 10 for all

10https://github.com/tensorflow/benchmarks

experiments (git commit: 9815f5f ). Major software compo-
nents are NVIDIA Driver 396.26, CUDA 9.2, cuDNN 7.1,
NCCL 2.2, OpenMPI 3.1.1, Tensorflow 1.9, Horovod 0.13.

0 10 20 30 40 50 60 70
Number of Parameter Servers

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Im
ag

es
/s

ec

Figure 8. Throughput vs number of parameter servers for ResNet-
101 with synthesized ImageNet data. Batch size per GPU is 64.
Variable update mode is parameter server. All parameter servers
are running on different hosts. Workers are fixed as 8 servers with
64 GPUs.

Results. We first ran a naive parameter server experiment
to demonstrate the capability of the system. A ResNet-101
benchmark experiment can be launched easily using the
Tensorflow benchmark code and an additional Alchemist
job configuration YAML. Figure 8 shows the scaling results
with different numbers of parameter servers for a fixed num-
ber of workers with 64 GPUs. In practice, it is challenging
to decide the best ratio of workers to parameter servers and
the optimal placement of parameters to balance the load.

In addition, we ran experiments with different models com-
paring parameter server and Horovod based distributed train-
ing. To simplify the setup, we used replicated variables for
parameter servers which is similar to but often better than
the standard use of parameter servers 11. Figure 9 shows the
scaling results of different models as the number of GPU
workers increases. In most cases, Horovod scales better
than parameter server and it scales consistently well across
different number of GPUs and different models. Note that
parameter server scales poorly for VGG-16 due to uneven
load balancing of parameter operations (fc layers have sub-
stantially much larger weights).

5 CASE STUDY - AUTONOMOUS SYSTEMS

We now present how Alchemist has been adopted by inter-
nal teams doing research and development in autonomous
systems.

The development process of a neural network in autonomous
systems consists of continuous data preparation, model train-

11https://www.tensorflow.org/performance

https://github.com/tensorflow/benchmarks
https://www.tensorflow.org/performance


Democratizing Production-Scale Distributed Deep Learning

1 4 8 16 32 64 128 256 384 512
ResNet101

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Im
ag

es
/s

ec

1 4 8 16 32 64 128 256 384 512
InceptionV3

0

10000

20000

30000

40000

50000

60000

70000

1 4 8 16 32 64 128 256 384 512
VGG16

0

2000

4000

6000

8000

10000

12000

14000

16000

Horovod Parameter Server

Figure 9. Throughput vs GPUs using Horovod ring all-reduce vs parameter server for distributed training of synthesized ImageNet data
for RestNet-101, Inception V3 and VGG-16. Variable update mode for parameter server is distributed replicated and each server runs a
parameter server and a worker.

0 5 10 15 20 25 30
Training time in hours

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

ac
cu

ra
cy

Batchsize = 32
Batchsize = 1024

Figure 10. Convergence rate of synchronized single instance (4
GPUs, batch-size = 32) vs distributed training (64 GPUs, batch-
size = 1024) for 2D object detection DNN training. Single instance
training is implemented in Tensorflow across 4 GPUs. Distributed
training is implemented with Horovod ring all-reduce and NCCL
enabled.

ing, and deployment. Especially in perception systems, due
to a huge diversity of training examples and complexity of
the models, DNN training requires an efficient machinery
to enable rapid development cycle. This is analogous to
the coding/debugging, compile, and release processes in a
regular software development project. An efficient software
development process requires all these components to be
fast, reproducible, and traceable. Alchemist, as a powerful
compute backbone for training distributed DNNs, has been
one of the key components in this process.

5.1 2D object detection in images

Detection and classification of 2D objects in images (Ren
et al., 2015) is an essential perception task. In this case
a training sample consists of an image with a set of 2D
bounding-boxes that indicate the location and class of the
objects. Due to the diversity of scenes and number of object
types, training robust models requires very large amounts

of annotated images. Using Alchemist we have been able
to reduce training times from days to a few hours. This
significantly accelerated the development cycle of the algo-
rithms and allowed for the use of large-scale datasets more
effectively. Figure 10 shows an example comparing single
instance training (batch-size = 32) and distributed training
(batch-size = 1024). Note that as the number of GPUs is
increased the global batch-size increases accordingly. This
can degrade the convergence rate of batch SGD. To recover
the original convergence, we used a scaled learning-rate
(proportional to global batch-size) with an initial warm-up
as suggested by (Goyal et al., 2017).

SyncSGD(4GPUs)

SyncSGD(32GPUs)

BMSGD(32GPUs)

EASGD(32GPUs)

AsyncSGD(32GPUs)
0.0

0.2

0.4

0.6

0.8

1.0 Time to 30 epochs
Normalized accuracy

Figure 11. Comparison of throughput and convergence of 2D im-
age detection DNN training using various distributed training algo-
rithms: Synchronous SGD with parameter server, Block Momen-
tum SGD (Chen & Huo, 2016), Elastic Averaging SGD (Zhang
et al., 2014), Asynchronous SGD.

Fully synchronous SGD is not the only distributed training
algorithm. To explore our options we ran several experi-
ments with other asynchronous variants and validated that
(for the case of our 2D object detection models) our choice
of fully synchronous distributed SGD achieved low wall-
time and highest accuracy. As shown in Figure 11 we ob-
serve that the asynchronous algorithms (asynchronous SGD,
Block Momentum SGD, Elastic Averaging SGD) have bet-



Democratizing Production-Scale Distributed Deep Learning

ter throughput but converge more slowly than synchronous
algorithms.

5.2 3D object detection in point cloud

Besides cameras, another commonly used sensor in au-
tonomous perception systems is LiDAR. It provides rich
depth information used by applications like 3D mapping
and 3D object detection. Recent work like (Zhou & Tuzel,
2017) proposes an end-to-end trainable network for 3D ob-
ject detection. Similar to 2D object detection, with minimal
modifications to single-machine training code we were able
to use Alchemist and distribute VoxelNets training. Us-
ing 64 GPUs (on 8 machines) we were able to reduce the
training time by a factor of 14 w.r.t our baseline, which
uses 4 GPUs on a single machine. We must reiterate that
the model’s accuracy is also preserved when large batches
are used, as long as the learning rate schedule is corrected
appropriately.

5.3 Semantic segmentation

Another common task for perception systems is semantic
segmentation. In this task each pixel in an image receives
the label of its semantic class. With Alchemist we were
able to train distributed image segmentation models easily.
Porting our training job from a single machine with 4 GPUs
to a distributed training setup with 64 GPUs, with no further
runtime optimization, we were able to reduce the training
time by a factor of 11, again with no accuracy loss.

6 FUTURE WORK AND CONCLUSION

6.1 Convergence of training with very large batches

To leverage distributed training with synchronous SGD one
must compensate for the large global batch size. This is
done in practice by adjusting the learning rates appropriately
(Goyal et al., 2017). We ran experiments to determine the
limits of this large batch training strategy and observed that
(for our 2D image detection model) at about batch sizes
of 103 we were unable to maintain the accuracy by simply
adjusting the learning rates. See Figure 12 for a plot of
our results. We intend to devise better algorithms to further
scale distributed training, to this end we follow work like
(You et al., 2017; Jia et al., 2018) closely.

6.2 Hyper parameter tuning

In a typical DNN workflow, hyper parameter tuning is a
vital step. Naive searches over the hyper parameter space
(grid or random) are commonly used but often wasteful.
On the other hand Bayesian Optimization (Brochu et al.,

102 103 104

Batch size (logscale)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

ac
cu

ra
cy

Figure 12. Batch size limit of synchronous DNN training. After
batch size is increased to a certain size, the accuracy of the model
starts degrading for the same number of training epochs.

2010) techniques can be used to reduce the total computation
required for the same accuracy (Golovin et al., 2017). We
intend to support both the naive search strategies together
with a Bayesian optimization strategy.

6.3 Workflow management

Utilizing deep neural networks involves a pipeline consists
of data preparation, model training, and deployment. It is
desired to automate the workflow on this pipeline in order
to increase efficiency, clarity, and traceability. Solutions
such as Airflow 12 have already been introduced to automate
workflow pipelines represented as a directed acyclic graph
(DAG) of tasks. We plan to integrate Alchemist into such
workflow management systems.

6.4 Conclusion

We presented the motivation, design and implementation
of Alchemist: a service to enable easy, fast, and scalable
distributed training for multiple teams within Apple. Its
value has been proven in developing autonomous systems.
We expect the adoption to grow further as we explore more
in the future work mentioned above.

ACKNOWLEDGEMENTS

We would like to thank Anders Boesen Lindbo Larsen,
Wenda Wang, Yin Zhou, Shreyas Saxena, Vinay Palakkode,
Jort Gemmeke, Luciano Spinello for providing early feed-
back of the system. We would like to thank Michael An-
drews, Jarrod Nettles for infrastructure support. We would
like to thank Young Park, Niko Milonopoulos for project
management. We would like to thank Mark Reid, Cheng
Leong, Joelle Lam for many helpful discussions.

12https://airflow.apache.org

https://airflow.apache.org


Democratizing Production-Scale Distributed Deep Learning

REFERENCES

Akiba, T., Suzuki, S., and Fukuda, K. Extremely large
minibatch sgd: Training resnet-50 on imagenet in 15
minutes. arXiv preprint arXiv:1711.04325, 2017.

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper,
J., Catanzaro, B., Chen, J., Chrzanowski, M., Coates, A.,
Diamos, G., Elsen, E., Engel, J., Fan, L., Fougner, C.,
Han, T., Hannun, A. Y., Jun, B., LeGresley, P., Lin, L.,
Narang, S., Ng, A. Y., Ozair, S., Prenger, R., Raiman, J.,
Satheesh, S., Seetapun, D., Sengupta, S., Wang, Y., Wang,
Z., Wang, C., Xiao, B., Yogatama, D., Zhan, J., and
Zhu, Z. Deep speech 2: End-to-end speech recognition
in english and mandarin. CoRR, abs/1512.02595, 2015.
URL http://arxiv.org/abs/1512.02595.

Battenberg, E., Chen, J., Child, R., Coates, A., Gaur, Y.,
Li, Y., Liu, H., Satheesh, S., Seetapun, D., Sriram, A.,
and Zhu, Z. Exploring neural transducers for end-to-end
speech recognition. CoRR, abs/1707.07413, 2017. URL
http://arxiv.org/abs/1707.07413.

Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C. Y.,
Haque, Z., Haykal, S., Ispir, M., Jain, V., Koc, L., Koo,
C. Y., Lew, L., Mewald, C., Modi, A. N., Polyzotis,
N., Ramesh, S., Roy, S., Whang, S. E., Wicke, M.,
Wilkiewicz, J., Zhang, X., and Zinkevich, M. Tfx: A
tensorflow-based production-scale machine learning plat-
form. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, KDD ’17, pp. 1387–1395, New York,
NY, USA, 2017. ACM. ISBN 978-1-4503-4887-4. doi:
10.1145/3097983.3098021. URL http://doi.acm.org/10.
1145/3097983.3098021.

Ben-Nun, T. and Hoefler, T. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis.
arXiv preprint arXiv:1802.09941, 2018.

Brochu, E., Cora, V. M., and de Freitas, N. A tutorial on
bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical rein-
forcement learning. CoRR, abs/1012.2599, 2010. URL
http://arxiv.org/abs/1012.2599.

Bulatov, Y., Nishihara, R., Moritz, P., Elibol, M., Stoica, I.,
and Jordan, M. I. Flexible primitives for distributed deep
learning in ray. CoRR, 2017.

Chen, K. and Huo, Q. Scalable training of deep learning
machines by incremental block training with intra-block
parallel optimization and blockwise model-update filter-
ing. March 2016.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078, 2014. URL
http://arxiv.org/abs/1406.1078.

Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B.,
and Andrew, N. Deep learning with cots hpc systems.
In International Conference on Machine Learning, pp.
1337–1345, 2013.

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro,
J. E., and Sculley, D. (eds.). Google Vizier: A Service for
Black-Box Optimization, 2017. URL http://www.kdd.org/
kdd2017/papers/view/google-vizier-a-service-for-black-
box-optimization.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Hannun, A. Y., Case, C., Casper, J., Catanzaro, B., Diamos,
G., Elsen, E., Prenger, R., Satheesh, S., Sengupta, S.,
Coates, A., and Ng, A. Y. Deep speech: Scaling up end-
to-end speech recognition. CoRR, abs/1412.5567, 2014.
URL http://arxiv.org/abs/1412.5567.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. CoRR, abs/1512.03385,
2015. URL http://arxiv.org/abs/1512.03385.

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F.,
Xie, L., Guo, Z., Yang, Y., Yu, L., Chen, T., Hu, G., Shi,
S., and Chu, X. Highly scalable deep learning training
system with mixed-precision: Training imagenet in four
minutes. arXiv preprint arXiv:1807.11205, 2018.

Jouppi, N. P., Young, C., Patil, N., Patterson, D. A., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell,
J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaem-
maghami, T. V., Gottipati, R., Gulland, W., Hagmann,
R., Ho, R. C., Hogberg, D., Hu, J., Hundt, R., Hurt,
D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khai-
tan, H., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law,
J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin, A.,
MacKean, G., Maggiore, A., Mahony, M., Miller, K., Na-
garajan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie,
T., Omernick, M., Penukonda, N., Phelps, A., Ross, J.,
Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snel-
ham, M., Souter, J., Steinberg, D., Swing, A., Tan, M.,
Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasude-
van, V., Walter, R., Wang, W., Wilcox, E., and Yoon,

http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1707.07413
http://doi.acm.org/10.1145/3097983.3098021
http://doi.acm.org/10.1145/3097983.3098021
http://arxiv.org/abs/1012.2599
http://arxiv.org/abs/1406.1078
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1512.03385


Democratizing Production-Scale Distributed Deep Learning

D. H. In-datacenter performance analysis of a tensor
processing unit. CoRR, abs/1704.04760, 2017. URL
http://arxiv.org/abs/1704.04760.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,
M., and Tang, P. T. P. On large-batch training for deep
learning: Generalization gap and sharp minima. CoRR,
abs/1609.04836, 2016. URL http://arxiv.org/abs/1609.
04836.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In
Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,
K. Q. (eds.), Advances in Neural Information Process-
ing Systems 25, pp. 1097–1105. Curran Associates, Inc.,
2012. URL http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.
pdf.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez,
J. E., and Stoica, I. Tune: A research platform for dis-
tributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Paul, W., Jordan, M. I., and Stoica, I. Ray: A
distributed framework for emerging ai applications. arXiv
preprint arXiv:1712.05889, 2017.

Ngiam, J., Chen, Z., Chia, D., Koh, P. W., Le, Q. V., and Ng,
A. Y. Tiled convolutional neural networks. In Advances
in neural information processing systems, pp. 1279–1287,
2010.

Ren, S., He, K., Girshick, R. B., and Sun, J. Faster R-CNN:
towards real-time object detection with region proposal
networks. CoRR, abs/1506.01497, 2015. URL http://
arxiv.org/abs/1506.01497.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T.,
Ebner, D., Chaudhary, V., Young, M., Crespo, J.-F., and
Dennison, D. Hidden technical debt in machine learning
systems. In Advances in neural information processing
systems, pp. 2503–2511, 2015.

Sergeev, A. and Balso, M. D. Horovod: fast and easy
distributed deep learning in TensorFlow. arXiv preprint
arXiv:1802.05799, 2018.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.
1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. Going deeper with convolutions. CoRR,
abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.
4842.

Wang, Y., Qiu, X., Ding, D., Zhang, Y., Wang, Y., Jia, X.,
Wan, Y., Li, Z., Wang, J., Huang, S., et al. Bigdl: A
distributed deep learning framework for big data. arXiv
preprint arXiv:1804.05839, 2018.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey,
K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser,
L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens,
K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J.,
Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes,
M., and Dean, J. Google’s neural machine translation
system: Bridging the gap between human and machine
translation. CoRR, abs/1609.08144, 2016. URL http:
//arxiv.org/abs/1609.08144.

You, Y., Gitman, I., and Ginsburg, B. Scaling SGD batch
size to 32k for imagenet training. CoRR, abs/1708.03888,
2017. URL http://arxiv.org/abs/1708.03888.

Zhang, S., Choromanska, A., and LeCun, Y. Deep learning
with elastic averaging SGD. CoRR, abs/1412.6651, 2014.
URL http://arxiv.org/abs/1412.6651.

Zhou, Y. and Tuzel, O. Voxelnet: End-to-end learn-
ing for point cloud based 3d object detection. CoRR,
abs/1711.06396, 2017. URL http://arxiv.org/abs/1711.
06396.

http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1412.6651
http://arxiv.org/abs/1711.06396
http://arxiv.org/abs/1711.06396

