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Abstract
We introduce instancewise feature selection as
a methodology for model interpretation. Our
method is based on learning a function to ex-
tract a subset of features that are most informative
for each given example. This feature selector is
trained to maximize the mutual information be-
tween selected features and the response variable,
where the conditional distribution of the response
variable given the input is the model to be ex-
plained. We develop an efficient variational ap-
proximation to the mutual information, and show
the effectiveness of our method on a variety of
synthetic and real data sets using both quantitative
metrics and human evaluation.

1. Introduction
Interpretability is an extremely important criterion when a
machine learning model is applied in areas such as medicine,
financial markets, and criminal justice (e.g., see the discus-
sion paper by Lipton ((Lipton, 2016)), as well as references
therein). Many complex models, such as random forests,
kernel methods, and deep neural networks, have been devel-
oped and employed to optimize prediction accuracy, which
can compromise their ease of interpretation.

In this paper, we focus on instancewise feature selection as a
specific approach for model interpretation. Given a machine
learning model, instancewise feature selection asks for the
importance scores of each feature on the prediction of a
given instance, and the relative importance of each feature
are allowed to vary across instances. Thus, the importance
scores can act as an explanation for the specific instance,
indicating which features are the key for the model to make
its prediction on that instance. A related concept in ma-
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chine learning is feature selection, which selects a subset of
features that are useful to build a good predictor for a spec-
ified response variable (Guyon & Elisseeff, 2003). While
feature selection produces a global importance of features
with respect to the entire labeled data set, instancewise fea-
ture selection measures feature importance locally for each
instance labeled by the model.

Existing work on interpreting models approach the problem
from two directions. The first line of work computes the
gradient of the output of the correct class with respect to the
input vector for the given model, and uses it as a saliency
map for masking the input (Simonyan et al., 2013; Springen-
berg et al., 2014). The gradient is computed using a Parzen
window approximation of the original classifier if the origi-
nal one is not available (Baehrens et al., 2010). Another line
of research approximates the model to be interpreted via
a locally additive model in order to explain the difference
between the model output and some “reference” output in
terms of the difference between the input and some “ref-
erence” input (Bach et al., 2015; Kindermans et al., 2016;
Ribeiro et al., 2016; Lundberg & Lee, 2017; Shrikumar et al.,
2017). Ribeiro et al. (2016) proposed the LIME, methods
which randomly draws instances from a density centered at
the sample to be explained, and fits a sparse linear model
to predict the model outputs for these instances. Shrikumar
et al. (2017) presented DeepLIFT, a method designed specif-
ically for neural networks, which decomposes the output of
a neural network on a specific input by backpropagating the
contribution back to every feature of the input. Lundberg &
Lee (2017) used Shapley values to quantify the importance
of features of a given input, and proposed a sampling based
method “kernel SHAP” for approximating Shapley values.
Essentially, the two directions both approximate the model
locally via an additive model, with different definitions of
locality. While the first one considers infinitesimal regions
on the decision surface and takes the first-order term in the
Taylor expansion as the additive model, the second one con-
siders the finite difference between an input vector and a
reference vector.

In this paper, our approach to instancewise feature selection
is via mutual information, a conceptually different perspec-
tive from existing approaches. We define an “explainer,” or
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Training Efficiency Additive Model-agnostic
LIME (Ribeiro et al., 2016) No Low Yes Yes

Kernel SHAP (Lundberg & Lee, 2017) No Low Yes Yes
DeepLIFT (Shrikumar et al., 2017) No High Yes No
Salient map (Simonyan et al., 2013) No High Yes No

Parzen (Baehrens et al., 2010) Yes High Yes Yes
LRP (Bach et al., 2015) No High Yes No

L2X Yes High No Yes

Table 1. Summary of the properties of different methods. “Train-
ing” indicates whether a method requires training on an unlabeled
data set. “Efficiency” qualitatively evaluates the computational
time during single interpretation. “Additive” indicates whether a
method is locally additive. “Model-agnostic” indicates whether a
method is generic to black-box models.

instancewise feature selector, as a model which returns a
distribution over the subset of features given the input vector.
For a given instance, an ideal explainer should assign the
highest probability to the subset of features that are most in-
formative for the associated model response. This motivates
us to maximize the mutual information between the selected
subset of features and the response variable with respect
to the instancewise feature selector. Direct estimation of
mutual information and discrete feature subset sampling are
intractable; accordingly, we derive a tractable method by
first applying a variational lower bound for mutual informa-
tion, and then developing a continuous reparametrization of
the sampling distribution.

At a high level, the primary differences between our ap-
proach and past work are the following. First, our frame-
work globally learns a local explainer, and therefore takes
the distribution of inputs into consideration. Second, our
framework removes the constraint of local feature additivity
on an explainer. These distinctions enable our framework to
yield a more efficient, flexible, and natural approach for in-
stancewise feature selection. In summary, our contributions
in this work are as follows (see also Table 1 for systematic
comparisons):

• We propose an information-based framework for in-
stancewise feature selection.

• We introduce a learning-based method for instancewise
feature selection, which is both efficient and model-
agnostic.

Furthermore, we show that the effectiveness of our method
on a variety of synthetic and real data sets using both quanti-
tative metric and human evaluation on Amazon Mechanical
Turk.

2. A framework
We now lay out the primary ingredients of our general ap-
proach. While our framework is generic and can be applied
to both classification and regression models, the current
discussion is restricted to classification models. We assume
one has access to the output of a model as a conditional
distribution, Pm(· | x), of the response variable Y given the
realization of the input random variable X = x ∈ Rd.

X XS

S

E

Figure 1. The graphical model of obtaining XS from X .

2.1. Mutual information

Our method is derived from considering the mutual infor-
mation between a particular pair of random vectors, so we
begin by providing some basic background. Given two ran-
dom vectors X and Y , the mutual information I(X;Y ) is
a measure of dependence between them; intuitively, it cor-
responds to how much knowledge of one random vector
reduces the uncertainty about the other. More precisely, the
mutual information is given by the Kullback-Leibler diver-
gence of the product of marginal distributions of X and Y
from the joint distribution of X and Y (Cover & Thomas,
2012); it takes the form

I(X;Y ) = EX,Y
[
log

pXY (X,Y )

pX(X)pY (Y )

]
,

where pXY and pX , pY are the joint and marginal prob-
ability densities if X,Y are continuous, or the joint and
marginal probability mass functions if they are discrete. The
expectation is taken with respect to the joint distribution of
X and Y . One can show the mutual information is nonneg-
ative and symmetric in two random variables. The mutual
information has been a popular criteria in feature selection,
where one selects the subset of features that approximately
maximizes the mutual information between the response
variable and the selected features (Gao et al., 2016; Peng
et al., 2005). Here we propose to use mutual information as
a criteria for instancewise feature selection.

2.2. How to construct explanations

We now describe how to construct explanations using mu-
tual information. In our specific setting, the pair (X,Y )
are characterized by the marginal distribution X ∼ PX(·),
and a family of conditional distributions of the form
(Y | x) ∼ Pm(· | x). For a given positive integer k, let
℘k = {S ⊂ 2d | |S| = k} be the set of all subsets of
size k. An explainer E of size k is a mapping from the
feature space Rd to the power set ℘k; we allow the map-
ping to be randomized, meaning that we can also think of
E as mapping x to a conditional distribution P(S | x) over
S ∈ ℘k. Given the chosen subset S = E(x), we use xS to
denote the sub-vector formed by the chosen features. We
view the choice of the number of explaining features k as
best left in the hands of the user, but it can also be tuned as
a hyper-parameter.
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We have thus defined a new random vector XS ∈ Rk; see
Figure 1 for a probabilistic graphical model representing its
construction. We formulate instancewise feature selection
as seeking explainer that optimizes the criterion

max
E

I(XS ;Y ) subject to S ∼ E(X). (1)

In words, we aim to maximize the mutual information be-
tween the response variable from the model and the selected
features, as a function of the choice of selection rule.

It turns out that a global optimum of Problem (1) has a nat-
ural information-theoretic interpretation: it corresponds to
the minimization of the expected length of encoded mes-
sage for the model Pm(Y | x) using Pm(Y |xS), where the
latter corresponds to the conditional distribution of Y upon
observing the selected sub-vector. More concretely, we have
the following:

Theorem 1. Letting Em[· | x] denote the expectation over
Pm(· | x), define

E∗(x) : = arg min
S

Em
[
log

1

Pm(Y | xS)

∣∣∣ x] . (2)

Then E∗ is a global optimum of Problem (1). Conversely,
any global optimum of Problem (1) degenerates to E∗ al-
most surely over the marginal distribution PX .

The proof of Theorem 1 is left to Appendix. In practice, the
above global optimum is obtained only if the explanation
family E is sufficiently large. In the case when Pm(Y |xS)
is unknown or computationally expensive to estimate ac-
curately, we can choose to restrict E to suitably controlled
families so as to prevent overfitting.

3. Proposed method
A direct solution to Problem (1) is not possible, so that we
need to approach it by a variational approximation. In par-
ticular, we derive a lower bound on the mutual information,
and we approximate the model conditional distribution Pm
by a suitably rich family of functions.

3.1. Obtaining a tractable variational formulation

We now describe the steps taken to obtain a tractable varia-
tional formulation.

A variational lower bound: Mutual information between
XS and Y can be expressed in terms of the conditional
distribution of Y given XS :

I(XS , Y ) = E
[

log
Pm(XS , Y )

P(XS)Pm(Y )

]
= E

[
log

Pm(Y |XS)

Pm(Y )

]
= E

[
logPm(Y |XS)

]
+ Const.

= EXES|XEY |XS

[
logPm(Y |XS)

]
+ Const.

For a generic model, it is impossible to compute expecta-
tions under the conditional distribution Pm(· | xs). Hence
we introduce a variational family for approximation:

Q : =
{
Q | Q = {xS → QS(Y |xS), S ∈ ℘k}

}
. (3)

Note each member Q of the family Q is a collection of
conditional distributions QS(Y |xS), one for each choice
of k-sized feature subset S. For any Q, an application of
Jensen’s inequality yields the lower bound

EY |XS
[logPm(Y |XS)] ≥

∫
Pm(Y |XS) logQS(Y |XS)

= EY |XS
[logQS(Y |XS)],

where equality holds if and only if Pm(Y | XS) and
QS(Y |XS) are equal in distribution. We have thus ob-
tained a variational lower bound of the mutual information
I(XS ;Y ). Problem (1) can thus be relaxed as maximizing
the variational lower bound, over both the explanation E
and the conditional distribution Q:

max
E,Q

E
[

logQS(Y | XS)
]

such that S ∼ E(X). (4)

For generic choices Q and E , it is still difficult to solve the
variational approximation (4). In order to obtain a tractable
method, we need to restrict both Q and E to suitable families
over which it is efficient to perform optimization.

A single neural network for parametrizing Q: Recall
that Q = {QS(· | xS), S ∈ ℘k} is a collection of
conditional distributions with cardinality |Q| =

(
d
k

)
. We

assume X is a continuous random vector, and Pm(Y |
x) is continuous with respect to x. Then we introduce
a single neural network function gα : Rd → ∆c−1
for parametrizing Q, where the codomain is a (c − 1)-
simplex ∆c−1 = {y ∈ [0, 1]c : 0 ≤ yi ≤ 1,

∑c
i=1 yi = 1}

for the class distribution, and α denotes the learnable param-
eters. We define QS(Y |xS) : = gα(x̃S), where x̃S ∈ Rd is
transformed from x with entries not in S replaced by zeros:

(x̃S)i =

{
xi, i ∈ S,
0, i /∈ S.

When X contains discrete features, we embed each discrete
feature with a vector, and the vector representing a specific
feature is set to zero simultaneously when the corresponding
feature is not in S.

3.2. Continuous relaxation of subset sampling

Direct estimation of the objective function in equation (4)
requires summing over

(
d
k

)
combinations of feature sub-

sets after the variational approximation. Several tricks
exist for tackling this issue, like REINFORCE-type Al-
gorithms (Williams, 1992), or weighted sum of features
parametrized by deterministic functions of X . (A similar
concept to the second trick is the “soft attention” struc-
ture in vision (Ba et al., 2014) and NLP (Bahdanau et al.,
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2014) where the weight of each feature is parametrized by
a function of the respective feature itself.) We employ an
alternative approach generalized from Concrete Relaxation
(Gumbel-softmax trick) (Jang et al., 2017; Maddison et al.,
2014; 2016), which empirically has a lower variance than
REINFORCE and encourages discreteness (Raffel et al.,
2017).

The Gumbel-softmax trick uses the concrete distribution as
a continuous differentiable approximation to a categorical
distribution. In particular, suppose we want to approximate a
categorical random variable represented as a one-hot vector
in Rd with category probability p1, p2, . . . , pd. The random
perturbation for each category is independently generated
from a Gumbel(0, 1) distribution:

Gi = − log(− log ui), ui ∼ Uniform(0, 1).

We add the random perturbation to the log probability of
each category and take a temperature-dependent softmax
over the d-dimensional vector:

Ci =
exp{(log pi +Gi)/τ}∑d
j=1 exp{(log pj +Gj)/τ}

.

The resulting random vector C = (C1, . . . , Cd) is called a
Concrete random vector, which we denote by

C ∼ Concrete(log p1, . . . , log pd).

We apply the Gumbel-softmax trick to approximate
weighted subset sampling. We would like to sample a sub-
set S of k distinct features out of the d dimensions. The
sampling scheme for S can be equivalently viewed as sam-
pling a k-hot random vector Z from Dd

k : = {z ∈ {0, 1}d |∑
zi = k}, with each entry of z being one if it is in the

selected subset S and being zero otherwise. An importance
score which depends on the input vector is assigned for each
feature. Concretely, we define wθ : Rd → Rd that maps the
input to a d-dimensional vector, with the ith entry of wθ(X)
representing the importance score of the ith feature.

We start with approximating sampling k distinct features
out of d features by the sampling scheme below: Sam-
ple a single feature out of d features independently for k
times. Discard the overlapping features and keep the rest.
Such a scheme samples at most k features, and is easier
to approximate by a continuous relaxation. We further ap-
proximate the above scheme by independently sampling k
independent Concrete random vectors, and then we define
a d-dimensional random vector V that is the elementwise
maximum of C1, C2, . . . , Ck:

Cj ∼ Concrete(wθ(X)) i.i.d. for j = 1, 2, . . . , k,

V = (V1, V2, . . . , Vd), Vi = max
j
Cji .

The random vector V is then used to approximate the k-hot
random vector Z during training.

We write V = V (θ, ζ) as V is a function of θ and a collec-

tion of auxiliary random variables ζ sampled independently
from the Gumbel distribution. Then we use the elementwise
product V (θ, ζ)�X between V andX as an approximation
of X̃S .

3.3. The final objective and its optimization

After having applied the continuous approximation of fea-
ture subset sampling, we have reduced Problem (4) to the
following:

max
θ,α

EX,Y,ζ
[

log gα(V (θ, ζ)�X,Y )
]
, (5)

where gα denotes the neural network used to approximate
the model conditional distribution, and the quantity θ is used
to parametrize the explainer. In the case of classification
with c classes, we can write

EX,ζ
[ c∑
y=1

[Pm(y | X) log gα(V (θ, ζ)�X, y)
]
. (6)

Note that the expectation operator EX,ζ does not depend on
the parameters (α, θ), so that during the training stage, we
can apply stochastic gradient methods to jointly optimize
the pair (α, θ). In each update, we sample a mini-batch of
unlabeled data with their class distributions from the model
to be explained, and the auxiliary random variables ζ, and
we then compute a Monte Carlo estimate of the gradient of
the objective function (6).

3.4. The explaining stage

During the explaining stage, the learned explainer maps
each sample X to a weight vector wθ(X) of dimension d,
each entry representing the importance of the corresponding
feature for the specific sample X . In order to provide a de-
terministic explanation for a given sample, we rank features
according to the weight vector, and the k features with the
largest weights are picked as the explaining features.

For each sample, only a single forward pass through the neu-
ral network parametrizing the explainer is required to yield
explanation. Thus our algorithm is much more efficient
in the explaining stage compared to other model-agnostic
explainers like LIME or Kernel SHAP which require thou-
sands of evaluations of the original model per sample.

4. Experiments
We carry out experiments on both synthetic and real data
sets. For all experiments, we use RMSprop (Maddison et al.,
2016) with the default hyperparameters for optimization.
We also fix the step size to be 0.001 across experiments.
The temperature for Gumbel-softmax approximation is fixed
to be 0.1. Codes for reproducing the key results are avail-
able online at https://github.com/Jianbo-Lab/
L2X.

https://github.com/Jianbo-Lab/L2X
https://github.com/Jianbo-Lab/L2X
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Figure 2. The clock time (in log scale) of explaining 10, 000 sam-
ples for each method. The training time of L2X is shown in
translucent bars.
4.1. Synthetic Data

We begin with experiments on four synthetic data sets:

• 2-dimensional XOR as binary classification. The input
vector X is generated from a 10-dimensional standard
Gaussian. The response variable Y is generated from
P (Y = 1|X) ∝ exp{X1X2}.

• Orange Skin. The input vector X is generated from a 10-
dimensional standard Gaussian. The response variable Y
is generated from P (Y = 1|X) ∝ exp{

∑4
i=1X

2
i − 4}.

• Nonlinear additive model. Generate X from a
10-dimensional standard Gaussian. The response
variable Y is generated from P (Y = 1|X) ∝
exp{−100 sin(2X1) + 2|X2|+X3 + exp{−X4}}.

• Switch feature. GenerateX1 from a mixture of two Gaus-
sians centered at ±3 respectively with equal probability.
If X1 is generated from the Gaussian centered at 3, the
2−5th dimensions are used to generate Y like the orange
skin model. Otherwise, the 6− 9th dimensions are used
to generate Y from the nonlinear additive model.

The first three data sets are modified from commonly used
data sets in the feature selection literature (Chen et al., 2017).
The fourth data set is designed specifically for instancewise
feature selection. Every sample in the first data set has the
first two dimensions as true features, where each dimension
itself is independent of the response variable Y but the
combination of them has a joint effect on Y . In the second
data set, the samples with positive labels centered around a
sphere in a four-dimensional space. The sufficient statistic
is formed by an additive model of the first four features. The
response variable in the third data set is generated from a
nonlinear additive model using the first four features. The
last data set switches important features (roughly) based on
the sign of the first feature. The 1− 5 features are true for
samples with X1 generated from the Gaussian centered at
−3, and the 1, 6− 9 features are true otherwise.

We compare our method L2X (for “Learning to Explain”)
with several strong existing algorithms for instancewise

feature selection, including Saliency (Simonyan et al., 2013),
DeepLIFT (Shrikumar et al., 2017), SHAP (Lundberg &
Lee, 2017), LIME (Ribeiro et al., 2016). Saliency refers to
the method that computes the gradient of the selected class
with respect to the input feature and uses the absolute values
as importance scores. SHAP refers to Kernel SHAP. The
number of samples used for explaining each instance for
LIME and SHAP is set as default for all experiments. We
also compare with a method that ranks features by the input
feature times the gradient of the selected class with respect
to the input feature. Shrikumar et al. (2017) showed it is
equivalent to LRP (Bach et al., 2015) when activations are
piecewise linear, and used it in Shrikumar et al. (2017) as
a strong baseline. We call it “Taylor” as it is the first-order
Taylor approximation of the model.

Our experimental setup is as follows. For each data set, we
train a neural network model with three hidden dense lay-
ers. We can safely assume the neural network has success-
fully captured the important features, and ignored noise fea-
tures, based on its error rate. Then we use Taylor, Saliency,
DeepLIFT, SHAP, LIME, and L2X for instancewise feature
selection on the trained neural network models. For L2X,
the explainer is a neural network composed of two hidden
layers. The variational family is composed of three hid-
den layers. All layers are linear with dimension 200. The
number of desired features k is set to the number of true
features.

The underlying true features are known for each sample,
and hence the median ranks of selected features for each
sample in a validation data set are reported as a performance
metric, the box plots of which have been plotted in Figure 3.
We observe that L2X outperforms all other methods on
nonlinear additive and feature switching data sets. On the
XOR model, DeepLIFT, SHAP and L2X achieve the best
performance. On the orange skin model, all algorithms have
near optimal performance, with L2X and LIME achieving
the most stable performance across samples.

We also report the clock time of each method in Figure 2,
where all experiments were performed on a single NVidia
Tesla k80 GPU, coded in TensorFlow. Across all the four
data sets, SHAP and LIME are the least efficient as they
require multiple evaluations of the model. DeepLIFT, Tay-
lor and Saliency requires a backward pass of the model.
DeepLIFT is the slowest among the three, probably due to
the fact that backpropagation of gradients for Taylor and
Saliency are built-in operations of TensorFlow, while back-
propagation in DeepLIFT is implemented with high-level
operations in TensorFlow. Our method L2X is the most
efficient in the explanation stage as it only requires a for-
ward pass of the subset sampler. It is much more efficient
compared to SHAP and LIME even after the training time
has been taken into consideration, when a moderate number
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Figure 3. The box plots for the median ranks of the influential features by each sample, over 10, 000 samples for each data set. The red
line and the dotted blue line on each box is the median and the mean respectively. Lower median ranks are better. The dotted green lines
indicate the optimal median rank.

Truth Model Key words

positive positive Ray Liotta and Tom Hulce shine in this sterling example of brotherly love and commitment. Hulce plays
Dominick, (nicky) a mildly mentally handicapped young man who is putting his 12 minutes younger, twin
brother, Liotta, who plays Eugene, through medical school. It is set in Baltimore and deals with the issues
of sibling rivalry, the unbreakable bond of twins, child abuse and good always winning out over evil. It is
captivating, and filled with laughter and tears. If you have not yet seen this film, please rent it, I promise,
you’ll be amazed at how such a wonderful film could go unnoticed.

negative negative Sorry to go against the flow but I thought this film was unrealistic, boring and way too long. I got tired of
watching Gena Rowlands long arduous battle with herself and the crisis she was experiencing. Maybe the
film has some cinematic value or represented an important step for the director but for pure entertainment
value. I wish I would have skipped it.

negative positive This movie is chilling reminder of Bollywood being just a parasite of Hollywood. Bollywood also tends
to feed on past blockbusters for furthering its industry. Vidhu Vinod Chopra made this movie with the
reasoning that a cocktail mix of deewar and on the waterfront will bring home an oscar. It turned out to be
rookie mistake. Even the idea of the title is inspired from the Elia Kazan classic. In the original, Brando
is shown as raising doves as symbolism of peace. Bollywood must move out of Hollywoods shadow if it
needs to be taken seriously.

positive negative When a small town is threatened by a child killer, a lady police officer goes after him by pretending to be
his friend. As she becomes more and more emotionally involved with the murderer her psyche begins to
take a beating causing her to lose focus on the job of catching the criminal. Not a film of high voltage
excitement, but solid police work and a good depiction of the faulty mind of a psychotic loser.

Table 2. True labels and labels predicted by the model are in the first two columns. Key words picked by L2X are highlighted in yellow.

of samples (10,000) need to be explained. As the scale of
the data to be explained increases, the training of L2X ac-
counts for a smaller proportion of the over-all time. Thus
the relative efficiency of L2X to other algorithms increases
with the size of a data set.

4.2. IMDB

The Large Movie Review Dataset (IMDB) is a dataset of
movie reviews for sentiment classification (Maas et al.,
2011). It contains 50, 000 labeled movie reviews, with a

split of 25, 000 for training and 25, 000 for testing. The
average document length is 231 words, and 10.7 sentences.
We use L2X to study two popular classes of models for
sentiment analysis on the IMDB data set.

4.2.1. EXPLAINING A CNN MODEL WITH KEY WORDS

Convolutional neural networks (CNN) have shown excel-
lent performance for sentiment analysis (Kim, 2014; Zhang
& Wallace, 2015). We use a simple CNN model on
Keras (Chollet et al., 2015) for the IMDB data set, which
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Truth Predicted Key sentence

positive positive There are few really hilarious films about science fiction but this one will knock your sox off. The lead
Martians Jack Nicholson take-off is side-splitting. The plot has a very clever twist that has be seen to be
enjoyed. This is a movie with heart and excellent acting by all. Make some popcorn and have a great
evening.

negative negative You get 5 writers together, have each write a different story with a different genre, and then you try to
make one movie out of it. Its action, its adventure, its sci-fi, its western, its a mess. Sorry, but this movie
absolutely stinks. 4.5 is giving it an awefully high rating. That said, its movies like this that make me
think I could write movies, and I can barely write.

negative positive This movie is not the same as the 1954 version with Judy garland and James mason, and that is a shame
because the 1954 version is, in my opinion, much better. I am not denying Barbra Streisand’s talent at all.
She is a good actress and brilliant singer. I am not acquainted with Kris Kristofferson’s other work and
therefore I can’t pass judgment on it. However, this movie leaves much to be desired. It is paced slowly, it
has gratuitous nudity and foul language, and can be very difficult to sit through. However, I am not a big
fan of rock music, so its only natural that I would like the judy garland version better. See the 1976 film
with Barbra and Kris, and judge for yourself.

positive negative The first time you see the second renaissance it may look boring. Look at it at least twice and definitely
watch part 2. it will change your view of the matrix. Are the human people the ones who started the war?
Is ai a bad thing?

Table 3. True labels and labels from the model are shown in the first two columns. Key sentences picked by L2X highlighted in yellow.

is composed of a word embedding of dimension 50, a 1-D
convolutional layer of kernel size 3 with 250 filters, a max-
pooling layer and a dense layer of dimension 250 as hidden
layers. Both the convolutional and the dense layers are fol-
lowed by ReLU as nonlinearity, and Dropout (Srivastava
et al., 2014) as regularization. Each review is padded/cut to
400 words. The CNN model achieves 90% accuracy on the
test data, close to the state-of-the-art performance (around
94%). We would like to find out which k words make the
most influence on the decision of the model in a specific
review. The number of key words is fixed to be k = 10 for
all the experiments.

The explainer of L2X is composed of a global component
and a local component (See Figure 2 in Yang et al. (2018)).
The input is initially fed into a common embedding layer
followed by a convolutional layer with 100 filters. Then
the local component processes the common output using
two convolutional layers with 50 filters, and the global com-
ponent processes the common output using a max-pooling
layer followed by a 100-dimensional dense layer. Then we
concatenate the global and local outputs corresponding to
each feature, and process them through one convolutional
layer with 50 filters, followed by a Dropout layer (Srivastava
et al., 2014). Finally a convolutional network with kernel
size 1 is used to yield the output. All previous convolutional
layers are of kernel size 3, and ReLU is used as nonlinearity.
The variational family is composed of an word embedding
layer of the same size, followed by an average pooling and
a 250-dimensional dense layer. Each entry of the output
vector V from the explainer is multiplied with the embed-
ding of the respective word in the variational family. We use
both automatic metrics and human annotators to validate
the effectiveness of L2X.

Post-hoc accuracy. We introduce post-hoc accuracy for
quantitatively validating the effectiveness of our method.

Each model explainer outputs a subset of features XS for
each specific sample X . We use Pm(y|X̃S) to approximate
Pm(y|XS). That is, we feed in the sample X to the model
with unselected words masked by zero paddings. Then
we compute the accuracy of using Pm(y|X̃S) to predict
samples in the test data set labeled by Pm(y|X), which we
call post-hoc accuracy as it is computed after instancewise
feature selection.

Human accuracy. When designing human experiments,
we assume that the key words convey an attitude toward a
movie, and can thus be used by a human to infer the review
sentiment. This assumption has been partially validated
given the aligned outcomes provided by post-hoc accuracy
and by human judges, because the alignment implies the
consistency between the sentiment judgement based on se-
lected words from the original model and that from humans.
Based on this assumption, we ask humans on Amazon Me-
chanical Turk (AMT) to infer the sentiment of a review
given the ten key words selected by each explainer. The
words adjacent to each other, like “not good at all,” keep
their adjacency on the AMT interface if they are selected
simultaneously. The reviews from different explainers have
been mixed randomly, and the final sentiment of each review
is averaged over the results of multiple human annotators.
We measure whether the labels from human based on se-
lected words align with the labels provided by the model,
in terms of the average accuracy over 500 reviews in the
test data set. Some reviews are labeled as “neutral” based
on selected words, which is because the selected key words
do not contain sentiment, or the selected key words contain
comparable numbers of positive and negative words. Thus
these reviews are neither put in the positive nor in the nega-
tive class when we compute accuracy. We call this metric
human accuracy.

The result is reported in Table 4. We observe that the model
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prediction based on only ten words selected by L2X align
with the original prediction for over 90% of the data. The hu-
man judgement given ten words also aligns with the model
prediction for 84.4% of the data. The human accuracy is
even higher than that based on the original review, which is
83.3% (Yang et al., 2018). This indicates the selected words
by L2X can serve as key words for human to understand the
model behavior. Table 2 shows the results of our model on
four examples.

4.2.2. EXPLAINING HIERARCHICAL LSTM

Another competitive class of models in sentiment analysis
uses hierarchical LSTM (Hochreiter & Schmidhuber, 1997;
Li et al., 2015). We build a simple hierarchical LSTM by
putting one layer of LSTM on top of word embeddings,
which yields a representation vector for each sentence, and
then using another LSTM to encoder all sentence vectors.
The output representation vector by the second LSTM is
passed to the class distribution via a linear layer. Both
the two LSTMs and the word embedding are of dimension
100. The word embedding is pretrained on a large cor-
pus (Mikolov et al., 2013). Each review is padded to contain
15 sentences. The hierarchical LSTM model gets around
90% accuracy on the test data. We take each sentence as a
single feature group, and study which sentence is the most
important in each review for the model.

The explainer of L2X is composed of a 100-dimensional
word embedding followed by a convolutional layer and a
max pooling layer to encode each sentence. The encoded
sentence vectors are fed through three convolutional layers
and a dense layer to get sampling weights for each sentence.
The variational family also encodes each sentence with a
convolutional layer and a max pooling layer. The encoding
vectors are weighted by the output of the subset sampler,
and passed through an average pooling layer and a dense
layer to the class probability. All convolutional layers are of
filter size 150 and kernel size 3. In this setting, L2X can be
interpreted as a hard attention model (Xu et al., 2015) that
employs the Gumbel-softmax trick.

Comparison is carried out with the same metrics. For human
accuracy, one selected sentence for each review is shown
to human annotators. The other experimental setups are
kept the same as above. We observe that post-hoc accu-
racy reaches 84.4% with one sentence selected by L2X, and
human judgements using one sentence align with the origi-
nal model prediction for 77.4% of data. Table 3 shows the
explanations from our model on four examples.

4.3. MNIST

The MNIST data set contains 28×28 images of handwritten
digits (LeCun et al., 1998). We form a subset of the MNIST
data set by choosing images of digits 3 and 8, with 11, 982

Figure 4. The above figure shows ten randomly selected figures
of 3 and 8 in the validation set. The first line include the original
digits while the second line does not. The selected patches are
colored with red if the pixel is activated (white) and blue otherwise.

IMDB-Word IMDB-Sent MNIST
Post-hoc accuracy 0.90.8 0.849 0.958
Human accuracy 0.844 0.774 NA

Table 4. Post-hoc accuracy and human accuracy of L2X on three
models: a word-based CNN model on IMDB, a hierarchical LSTM
model on IMDB, and a CNN model on MNIST.

images for training and 1, 984 images for testing. Then we
train a simple neural network for binary classification over
the subset, which achieves accuracy 99.7% on the test data
set. The neural network is composed of two convolutional
layers of kernel size 5 and a dense linear layer at last. The
two convolutional layers contains 8 and 16 filters respec-
tively, and both are followed by a max pooling layer of pool
size 2. We try to explain each sample image with k = 4 im-
age patches on the neural network model, where each patch
contains 4 × 4 pixels, obtained by dividing each 28 × 28
image into 7 × 7 patches. We use patches instead of raw
pixels as features for better visualization.

We parametrize the explainer and the variational family
with three-layer and two-layer convolutional networks re-
spectively, with max pooling added after each hidden layer.
The 7× 7 vector sampled from the explainer is upsampled
(with repetition) to size 28 × 28 and multiplied with the
input raw pixels.

We use only the post-hoc accuracy for experiment, with
results shown in Table 4. The predictions based on 4 patches
selected by L2X out of 49 align with those from original
images for 95.8% of data. Randomly selected examples
with explanations are shown in Figure 4. We observe that
L2X captures most of the informative patches, in particular
those containing patterns that can distinguish 3 and 8.

5. Conclusion
We have proposed a framework for instancewise feature
selection via mutual information, and a method L2X which
seeks a variational approximation of the mutual information,
and makes use of a Gumbel-softmax relaxation of discrete
subset sampling during training. To our best knowledge,
L2X is the first method to realize real-time interpretation of
a black-box model. We have shown the efficiency and the
capacity of L2X for instancewise feature selection on both
synthetic and real data sets.
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A. Proof of Theorem 1
Forward direction: Any explanation is represented as a
conditional distribution of the feature subset over the input
vector. Given the definition of S∗, we have for any X , and
any explanation E : S|X ,

ES|XEm[ logPm(Y |XS)|X] ≤
Em[logPm(Y |XS∗(X))|X].

In the case when S∗(X) is a set instead of a singleton, we
identify S∗(X) with any distribution that assigns arbitrary
probability to each elements in S∗(X) with zero probability
outside S∗(X). With abuse of notation, S∗ indicates both
the set function that maps every X to a set S∗(X) and any
real-valued function that maps X to an element in S∗(X).

Taking expectation over the distribution of X , and adding
E logPm(Y ) at both sides, we have

I(XS ;Y ) ≤ I(XS∗ ;Y )

for any explanation E : S|X .

Reverse direction: The reverse direction is proved by
contradiction. Assume the optimal explanation P (S|X)
is such that there exists a set M of nonzero probability,
over which P (S|X) does not degenerates to an element in
S∗(X). Concretely, we define M as

M = {x : P (S /∈ S∗(x)|X = x) > 0}.

For any x ∈M , we have
ES|XEm[ logPm(Y |XS)|X = x] <

Em[logPm(Y |XS∗(x))|X = x], (7)
where S∗(x) is a deterministic function in the set of distri-
butions that assign arbitrary probability to each elements in
S∗(x) with zero probability outside S∗(x). Outside M , we
always have

ES|XEm[ logPm(Y |XS)|X = x] ≤
Em[logPm(Y |XS∗(x))|X = x] (8)

from the definition of S∗. As M is of nonzero size over
P (X), combining Equation 7 and Equation 8 and taking
expectation with respect to P (X), we have

I(XS ;Y ) < I(XS∗ ;Y ), (9)
which is a contradiction.
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