
Optimus: An Efficient Dynamic Resource Scheduler for Deep
Learning Clusters

Yanghua Peng

The University of Hong Kong

yhpeng@cs.hku.hk

Yixin Bao

The University of Hong Kong

yxbao@cs.hku.hk

Yangrui Chen

The University of Hong Kong

yrchen@cs.hku.hk

Chuan Wu

The University of Hong Kong

cwu@cs.hku.hk

Chuanxiong Guo

Bytedance Inc.

guochuanxiong@bytedance.com

ABSTRACT
Deep learning workloads are common in today’s production clus-

ters due to the proliferation of deep learning driven AI services

(e.g., speech recognition, machine translation). A deep learning

training job is resource-intensive and time-consuming. Efficient

resource scheduling is the key to the maximal performance of a

deep learning cluster. Existing cluster schedulers are largely not tai-

lored to deep learning jobs, and typically specifying a fixed amount

of resources for each job, prohibiting high resource efficiency and

job performance. This paper proposes Optimus, a customized job

scheduler for deep learning clusters, which minimizes job training

time based on online resource-performance models. Optimus uses
online fitting to predict model convergence during training, and

sets up performance models to accurately estimate training speed

as a function of allocated resources in each job. Based on the models,

a simple yet effective method is designed and used for dynamically

allocating resources and placing deep learning tasks to minimize

job completion time. We implement Optimus on top of Kubernetes,

a cluster manager for container orchestration, and experiment on a

deep learning cluster with 7 CPU servers and 6 GPU servers, run-

ning 9 training jobs using the MXNet framework. Results show that

Optimus outperforms representative cluster schedulers by about

139% and 63% in terms of job completion time and makespan, re-

spectively.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Com-
puter systems organization → Cloud computing;

KEYWORDS
Resource management; deep learning

ACM Reference Format:
Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo.

2018. Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EuroSys ’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00

https://doi.org/10.1145/3190508.3190517

Clusters. In EuroSys ’18: Thirteenth EuroSys Conference 2018, April 23–26,
2018, Porto, Portugal. ACM, New York, NY, USA, 14 pages. https://doi.org/

10.1145/3190508.3190517

1 INTRODUCTION
The recent five years have witnessed substantial progress and suc-

cessful applications of deep learning in various domains of AI,

such as computer vision [39], natural language processing [65] and

speech recognition [68]. The rising amount of data and increasing

scale of training models (e.g., deep neural networks) significantly

improve the learning accuracy, as well as remarkably extend the

training time. Distributedmachine (deep) learning frameworks have

been designed and deployed to expedite model convergence using

parallel training with multiple machines, e.g., TensorFlow [23],

MXNet [59]. Most leading IT companies have been operating dis-

tributed machine learning (ML)/deep learning (DL) clusters, with

hundreds or thousands of (GPU) servers, to train variousMLmodels

over large datasets for their AI-driven services.

Even with parallel training, a deep learning job is resource inten-

sive and time consuming. For example, to train the DeepSpeech2

model [25] on the LibriSpeech dataset (1000 hours of speech) [9], it

takes 3–5 days to achieve the state-of-the-art accuracy when train-

ing on 16 GPUs [25]. In a shared deep learning cluster with various

training jobs submitted over time, efficient resource scheduling is

the key to maximize utilization of expensive resources (e.g., GPUs
and RDMA networks) for expedited training completion. However,

achieving high training performance and resource efficiency in deep

learning clusters is challenging with existing cluster schedulers.

First, schedulers used in existing ML/DL clusters (e.g., Google
uses Borg [63], Microsoft, Tencent and Baidu use YARN-like sched-

ulers [61]) allocate a fixed amount of resources to each job upon its

submission, according to resource requirements specified by the job

owner. Jobs already running in the cluster cannot benefit from extra

resources when they become available (e.g., during night time when

there are lower workloads), unless the cluster operator manually re-

configures their resource composition or a job owner resubmits the

job as new. This may well lead to low resource utilization efficiency.

Second, existing schedulers are designed for different workloads

but deep learning. For example, Mesos, Yarn and Borg are for

general-purpose cluster resource management, Corral [42] is de-
signed for periodic data-parallel jobs, and TetriSched [60] handles

reservation-based workloads. There is room for improving resource

utilization in deep learning clusters with a tailor-made resource

scheduler that leverages structures of deep learning frameworks

https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3190508.3190517

EuroSys ’18, April 23–26, 2018, Porto, Portugal Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

(e.g., the parameter server architecture) and characteristics of deep

learning jobs (e.g., iterativeness, convergence properties) for maxi-

mal training efficiency.

This paper proposes Optimus, a customized cluster scheduler

for deep learning jobs in production clusters, which minimizes

job training time and improves resource efficiency as a result. We

focus on data-parallel DL training jobs using the parameter server

framework (§2). Optimus builds resource-performance models for

each job on the go, and dynamically schedules resources to jobs

based on job progress and the cluster load to minimize average job

completion time and makespan. Specifically, we make the following

contributions in developing Optimus.
◃We build accurate performance models for deep learning jobs

(§3). Through execution of a training job, we track the training

progress on the go and use online fitting to predict the number

of steps/epochs required to achieve model convergence (§3.1). We

further build a resource-performance model by exploiting commu-

nication patterns in the parameter server architecture and iterative-

ness of the training process (§3.2). Different from existing detailed

modeling of a distributed deep learning job (such as in [69]), our

resource-performance model requires no knowledge about inter-

nals of the ML model and hardware configuration of the cluster.

The basis is an online learning idea: we run a job for a few steps

with different resource configurations, learn the training speed as a

function of resource configurations using data collected from these

steps, and then keep tuning our model on the go.

◃ Based on the performance models, we design a simple yet ef-

fective method for dynamically allocating resources to minimize

average job completion time (§4.1). We also propose a task place-

ment scheme for deploying parallel tasks in a job onto the servers,

given the job’s resource allocation (§4.2). The scheme further opti-

mizes training speed bymitigating communication overhead during

training.

◃We discover a load imbalance issue on parameter servers with

the existing parameter server framework (as in MXNet [59]), which

significantly lowers the training efficiency. We resolve the issue

by reducing communication cost and assigning model slices to

parameter servers evenly (§5.3). We integrate our scheduler Op-
timus with Kubernetes [14], an open-source cluster manager for

production-grade container orchestration. We build a deep learn-

ing cluster consisting of 7 CPU servers and 6 GPU servers, and

run 9 representative DL jobs from different application domains

(see Table 1). Evaluation results show that Optimus achieves high
job performance and resource efficiency, and outperforms widely

adopted cluster schedulers by 139% and 63% in job completion time

and makespan, respectively (§6).

2 BACKGROUND AND MOTIVATION
2.1 DL Model Training
A deep learning job trains a DL model, such as a deep neural net-

work (DNN), using a large number of training examples, to mini-

mize a loss function (typically) [48].

Iterativeness. The model training is usually carried out in an itera-

tive fashion, due to the complexity of DNNs (i.e., no closed-form so-

lution) and the large size of training dataset (e.g., 14 million images

in the full Imagenet dataset [12]). The dataset is commonly divided

0 25 50 75 100
Epoch

0.6

1.2

1.8

Lo
ss

Train-loss
Val-loss
Train-acc
Val-acc

25

50

75

Ac
cu

ra
cy

 (%
)

Figure 1: Training curves
of ResNext-110 on
the CIFAR10 dataset

Re
sN

ex
t

Re
sN

et
Inc

ep
tio

n
KA

GG
LE

CN
N-

Ra
nd

DS
SM

RN
N-

LS
TM

Se
q2

Se
q

DS
2

100

102

Co
m

pl
et

io
n

tim
e

(h
)

Figure 2: Training time
of deep learning models
in Table 1

into equal-sized data chunks, and each data chunk is further divided

into equal-sized mini-batches. In each training step, we process one
mini-batch by computing what changes to be made to the param-

eters in the DL model to approach their optimal values (typically

expressed as gradients, i.e., directions of changes), using examples

in the mini-batch, and then update parameters using a formula like

new_parameter = old_parameter − learninд_rate × дradient . A
training performance metric is also computed for each mini-batch,

e.g., training loss (the sum of the errors made for each example in

the mini-batch) or accuracy (the percentage of correct predictions

compared to the labels), validation loss or accuracy (computed on

validation dataset for model evaluation). After all mini-batches in

training dataset have been processed once, one training epoch is

done.

Convergence. The dataset is usually trained for multiple epochs

(tens to hundreds) until the model converges, i.e., the decrease or
increase in the performance metric’s value between consecutive

epochs becomes very small. An illustration of the training curves,

the variation of training/validation loss and accuracy vs. the number

of training epochs, is given in Fig. 1, with the example of training

ResNext-110 [66] on the CIFAR10 dataset [2]. DNN models are

usually non-convex and we can not always expect convergence [29].

However, different from experimental models, production models

are mature and can typically converge to the global/local optimum

very well since all hyper-parameters (e.g., learning rate – how

quickly a DNN adjusts itself, mini-batch size) have been well-tuned

during the experimental phase. In this work, we focus on such

production models, and leverage their convergence property to

estimate a training job’s progress towards convergence.

Especially, we use the convergence of training loss to decide the

completion of a DL job. The DL model converges if the decrease

of training loss between two consecutive epochs has consistently

fallen below a threshold that the job owner specified, for several

epochs. Training loss based training convergence is common in

practice [48, 71] and the convergence of training loss often implies

the convergence of other metrics (e.g., accuracy) for production
models (i.e., no overfitting) [5]. Training/validation accuracy is dif-

ficult to be defined in some scenarios where there is no “right

answer”, e.g., language modeling [6]. Validation loss is usually used

to prevent model overfitting, and evaluation on validation dataset

is performed only when necessary (e.g., at the end of each epoch),

while we can obtain training loss after each step for more accurate

curve fitting (§3.1).

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

2.2 The Parameter Server Architecture
Most distributed ML/DL frameworks (e.g., MXNet [59], Tensor-

Flow [23], PaddlePaddle [17], Angel [43], Petuum [67]) employ the

parameter server (PS) architecture [48] (Fig. 3). In this architecture,

the model (i.e., a DNN) is partitioned among multiple parameter

servers and the training data are split among workers. Each worker

computes parameter updates (i.e., gradients) locally using its data

partition and pushes them to parameter servers maintaining the

respective model parameters. After receiving gradients, parame-

ter servers update the model parameters using some optimization

algorithm, e.g., Stochastic Gradient Descent (SGD) [20]. Updated
parameters are sent back to the workers, which then start the next

training step, using the updated parameters.

There are two training modes: asynchronous training, where the
training progress (i.e., number of steps) at different workers in a job

is not synchronized and a parameter server updates its model parti-

tion each time upon receiving gradients from a worker; synchronous
training, where training progress at all workers is synchronized in

each step and a parameter server updates parameters after it has

collected gradients from all workers.

2.3 Existing Cluster Schedulers
Static resource allocation. Parameter servers and workers typ-

ically run in containers or virtual machines in a DL cluster, and

a cluster scheduler manages the resource allocation to training

jobs, e.g., Mesos [40] in a TensorFlow cluster [23], Yarn [61] for

clusters running MXNet [59] or Angel [43]. With these schedulers,

the owner of a training job specifies resource requirements, e.g.,
the numbers of parameter servers and workers, which remain un-

changed throughout the training process.

The numbers of workers and parameter servers used to run a

training job influence the training speed (i.e., the average number

of training steps completed per second), and hence the training

completion time significantly. Fig. 4 shows the training speed varies

with different numbers of workers and parameter servers deployed,

when we synchronously train a ResNet-50 model [39], one of the

state-of-the-art DNNs for image classification (details in Table 1),

on the ImageNet dataset [12]. Each container is configured with 5

CPU cores and 10GB memory, and can run 1 worker or 1 parameter

server. In Fig. 4(a), we fix the total number of containers to be 20,

i.e., if the number of workers is x , then the number of parameter

servers used is 20 − x . We can see the maximal training speed is

achieved when there are 8 workers and 12 parameter servers. In

Figure 3: Parameter server architecture

0 5 10 15 20
of workers

0.2

0.4

0.6

0.8

Sp
ee

d
(s

te
ps

/s
)

1e−1

speed
of ps

0

5

10

15

20

of

 p
s

(a) 20 ps and workers

0 5 10 15 20
of workers

0.4

0.6

0.8

1.0

Sp
ee

d
(s

te
ps

/s
)

1e−1

speed
of ps

0

5

10

15

20

of

 p
s

(b) ps:workers = 1:1

Figure 4: Varying training speeds with different resource
configurations

Fig. 4(b), we fix the ratio of the number of parameter servers to the

number of workers to be 1:1. We see that increasing resources do

not lead to linear training speed improvement, and can even slow

down model training.

In a production cluster, job training speed is further influenced

by many runtime factors, such as available bandwidth at the time.

Configuring a fixed number of workers/parameter servers upon

job submission is hence unfavorable. In Optimus, we maximally

exploit varying runtime resource availability by adjusting numbers

and placement of workers and parameter servers, aiming to pursue

the best resource efficiency and training speed at each time. Note

that the resource composition of each worker or parameter server

is still specified by the job owner.

Job size unawareness. Existing schedulers largely adopt FIFO

(as in Spark [70]), Dominant Resource Fairness (DRF) [34] (as in

Mesos [40] and Yarn [61]) or their variants as default scheduling

strategies, which are ignorant of job sizes (represented by input data

size, model complexity, or time taken to complete the job). It has

been shown that job performance can be improved by considering

job sizes when making scheduling decisions [30, 31]. For example, a

long job may block a series of short jobs with an FIFO scheduler that

is oblivious to the job sizes, causing starvation or long completion

time for short jobs.

Training completion time varies significantly among DL jobs.

Fig. 2 shows the training time of several representative DL models

on respective datasets, as given in Table 1, on a TITAN X Pascal

GPU. The training time varies from minutes (for simple models on

small datasets, e.g., CNN-rand [46]) to weeks (for complex models

on large datasets, e.g., ResNet-50 [39]). Optimus takes into account

projected job completion time for different DL jobs when dynami-

cally adjusting their resource allocation, to minimize average job

completion time.

3 PERFORMANCE MODELING OF DL JOBS
Tomake good resource scheduling decisions, we would like to know

the relation between resource configuration and the time a training

job takes to achieve model convergence. We derive this relation

by estimating online how many more training epochs a job needs

to run for convergence (§3.1), and how much time a job needs to

complete one training epoch given a certain amount of resources

(§3.2).

EuroSys ’18, April 23–26, 2018, Porto, Portugal Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

Table 1: Deep learning jobs used for tests and experiments

Model # of parameters Network type Application domain Dataset Dataset size

(Million) (# of examples)

ResNext-110 [66] 1.7 CNN image classification CIFAR10 [2] 60,000

ResNet-50 [39] 25 CNN image classification ILSVRC2012-ImageNet [12] 1,313,788

Inception-BN [58] 11.3 CNN image classification Caltech [1] 30,607

KAGGLE [13] 1.4 CNN image classfication Kaggle-NDSB1 [4] 37,920

CNN-rand [46] 6 CNN sentence classification MR [26] 10,662

DSSM [54] 1.5 RNN word representation text8 [49] 214,288

RNN-LSTM-Dropout [22] 4.7 RNN language modeling PTB [18] 1,002,000

Sequence-to-Sequence [33] 9.1 RNN machine translation WMT17 [21] 1,000,000

DeepSpeech2 [25] 38 RNN speech recognition LibriSpeech [9] 45,000

3.1 Learning the Convergence Curve
We draw the training loss curve with the training progress of each

DL job, and do online model fitting, in order to predict how far the

model is from convergence.

Data preprocessing. For better model fitting, we carry out outlier

removal as follows: if a loss data point does not fall within a certain

range of its neighbours (e.g., between the minimum loss in subse-

quent 5 epochs and the maximum loss in previous 5 epochs), we

consider the data point as an outlier, and use the average value of

its neighbours to replace this point when doing model fitting. We

also normalize the loss values, by dividing each raw value by the

maximum loss value collected so far (typically the first loss value).

In this way, loss values in different DL jobs are all between 0 and

1. Fig. 5 shows example loss curves collected by running example

DL jobs in Table 1 (which are DL examples from official MXNet

tutorials [15, 16]), using the MXNet framework on a server with 1

E5-1650 v4 CPU and 2 NVIDIA TITAN X GPUs. The learning rate

of each job is set to be fixed. The training progress is the ratio of the

number of epochs a model has been trained over the total number

of epochs needed for convergence.

Online fitting. We observe that most DL jobs use SGD to update

parameters and approximate the optimal parameter values. Since

SGD converges at a rate of O(1/k) in terms of the number of steps

k , we use the following model to fit the training loss curve:

l =
1

β0 · k + β1
+ β2 (1)

where l denotes the training loss, and β0, β1 and β2 are nonnegative
coefficients. Our online model fitting is carried out as follows: after

each training step, we collect a training loss data point (k, l); we
then preprocess the data as described above and use a non-negative

least squares (NNLS) solver [7] to find the best coefficients that fit

the loss points collected so far. In some cases hundreds of thousands

of steps are needed to achieve model convergence; in such a case

we can sample loss data every few steps, or average the values of

several data points (e.g., all losses in an epoch) as a single data point,

to reduce the number of data points fed into the solver. Since we

can collect more and more loss data as the job runs, the fitted model

improves continuously. An example of model fitting when training

the Seq2Seq model [33] in Table 1 is given in Fig. 7.

At each step, using the fitted loss model and the predefined con-

vergence threshold δ , we can easily calculate the total number of

0 20 40 60 80 100
Progress (%)

0.00

0.25

0.50

0.75

1.00

No
rm

. T
ra

in
. L

os
s

ResNext-110
CNN-rand
DSSM

RNN-LSTM
Seq2Seq
KAGGLE

DS2
ResNet-50
Inception

Figure 5: Training loss curves for different DL jobs

steps/epochs a job needs to achieve convergence, as well as the

number of steps/epochs left from now until convergence. With

more and more data points collected for model fitting, the esti-

mation of the total number of steps/epochs a job needs improves

gradually, as illustrated in Fig. 6. Here the prediction error is the

difference between the estimated total number of epochs for the

model training to converge and the actual total number of epochs

needed, divided by the actual number.

3.2 Resource-Speed Modeling
We next build a resource-to-speed model based on computation

and communication patterns in the parameter server architecture.

System models. In a typical DL job, the time taken to complete

one training step on a worker includes the time for doing forward

propagation (i.e., loss computation) and backward propagation (i.e.,
gradients computation) at the worker, the worker pushing gradients

to parameter servers, parameter servers updating parameters, and

the worker pulling updated parameters from parameter servers,

plus extra communication overhead. Suppose there are p parameter

servers andw workers in the job. The bandwidth capacity of each

parameter server is B, and the model size (i.e., total bytes of param-

eters) is S . The forward propagation time when a worker trains a

minibatch ism ·Tf orward (the size of a mini-batch times the average

processing time of one example). The backward propagation time

Tback is not related tom and is typically fixed. The size of gradients

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

20 40 60 80 100
Progress (%)

−15

0

15

Pr
ed

ict
io

n
Er

ro
r (

%
)

ResNext-110
CNN-rand
DSSM

RNN-LSTM
Seq2Seq
KAGGLE

DS2
ResNet-50
Inception

Figure 6: Prediction errors in different DL jobs

is the same as the model size S . If the parameters are evenly dis-

tributed on parameter servers (load balanced to be achieved in §5.3),

the size of gradients sent between a worker and a parameter server

is
S
p . In practice, the bandwidth bottleneck between a worker and

a parameter server usually lies at the parameter server side. Letw ′

denote the number of workers that send gradients to a parameter

server at the same time. Then the bandwidth between the worker

and parameter server ρ is
B
w ′
ρ
. Pushing gradients and pulling up-

dated parameters are symmetric processes, so the data transfer time

of each worker is 2
S/p
B/w ′

ρ
. The parameter update time on a param-

eter server is

Tupdate ·w ′
ρ

p on average, where Tupdate is the time

to update parameters with size S . In addition, the communication

overhead (e.g., handling TCP connections and control messages

between parameter servers and workers) increases linearly with

the number of parameter servers and the number of workers. It is

represented by δ ·w + δ ′ · p where δ and δ ′ are coefficients.

Therefore, the duration of one training step on a worker can be

modeled as

T = max

ρ
[m · Tf orward +Tback + 2

S/p
B/w ′

ρ
+
Tupdate ·w ′

ρ

p

+δ ·w + δ ′ · p] (2)

According to Eqn. 2, the workers should have similar processing

speeds and parameter servers should be load-balanced, in order

to achieve minimal time per training step. We will discuss how to

handle slow workers in §5.2 and achieve load balancing among

parameter servers in §5.3.

We next derive the training speed in a job based on Eqn. 2, which

is the number of training steps completed per unit time. We divide

our models in two cases.

Asynchronous training, where the workers process mini-batches at

their own pace. The overall number of training steps completed

by all workers per unit time isw ·T−1
. Supposew ′

ρ is linear with

w , since more workers may concurrently communicate with one

parameter server if the total number of workers is larger. Then the

training speed achieved with p parameter servers andw workers

can be modeled as

0 25 50 75 100
Progress (%)

0.2
0.4
0.6
0.8
1.0

No
rm

. T
ra

in
. L

os
s

data points
fitted curve

Figure 7: Online model
fitting for training
Seq2Seq: β0 = 0.21,

β1 = 1.07, β2 = 0.07

8 16 24
of samples

4

5

6

7

Es
tim

at
io

n
Er

ro
r (

%
)

async
sync

Figure 8: Estimation errors of
training speeds

f (p, w) = w · (θ0 + θ1 ·
w
p
+ θ2 ·w + θ3 · p)−1 (3)

where θ are positive coefficients, corresponding to respective terms

in Eqn. 2. For example, θ0 corresponds to the termm ·Tf orward +

Tback in Eqn. 2. Instead of measuring each term (e.g., Tf orward),

we seek to learn the coefficients by fitting the model with runtime

data collected for each job.

Synchronous training, where all workers progress from one step

to the next at a synchronized pace. The training speed is T−1
.w ′

ρ
equalsw since all workers are synchronized. For synchronous train-

ing, the batch size, i.e., the overall size of all mini-batches trained

by all workers in each step, needs to remain the same, no matter

how we adjust the number of concurrent workers over time. This

guarantees that the same training result (model) can be achieved

while varying the number of workers [36]. LetM denote the batch

size which is typically specified in the training job when the owner

submits it. Then the mini-batch size on each worker ism = M
w . The

training speed function can be modeled as

f (p, w) = (θ0 ·
M
w
+ θ1 + θ2 ·

w
p
+ θ3 ·w + θ4 · p)−1 (4)

where θ are positive coefficients, to be learned for each job.

Model fitting. To learn the values of θ ’s and build the training

speed functions in Eqn. 3 and Eqn. 4, we need to collect data points

(p,w, f (p,w)). Before we run each training job, we train its model

on a small sample set of training data for several steps, with possible

combinations of p andw . Each run takes about tens of seconds. In

each run, we derive the average training speed under (p,w). Due

to the iterative nature of DL model training, training for several

steps is enough to give us a good idea of the training speed f (p,w).

Then we use NNLS to find θ ’s that best fit the collected data points

(p,w, f (p,w)). This initial training speed function constructed is

used for resource scheduling decisions when we start running the

actual job. Over the training process, we keep collecting data points

(p,w, f (p,w)) and use them to calibrate coefficients in our training

speed models.

Fig. 9 shows the collected data points and the fitted training

speed function curves, when we run the ResNet-50 job in a cluster

of 40 containers using synchronous training and asynchronous

training, respectively. We make three important observations: (a)

EuroSys ’18, April 23–26, 2018, Porto, Portugal Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

Table 2: Coefficients in speed functions

θ1 θ2 θ3 θ4 θ5
Residual sum of

squares for fitting

Async 2.83 3.92 0.00 0.11 - 0.10

Sync 1.02 2.78 4.92 0.00 0.02 0.00

4 8 12 16 20
of workers

0.6

1.2

1.8

Sp
ee

d
(s

te
ps

/s
) ps=6

ps=12
ps=18

(a)

4 8 12 16 20
of ps

0.5

1.0

1.5

2.0
Sp

ee
d

(s
te

ps
/s

)

worker=6
worker=12
worker=18

(b)

4 8 12 16
of workers

0.4

0.6

0.8

1.0

Sp
ee

d
(s

te
ps

/s
)

1e−1

ps=6
ps=12
ps=18

(c)

4 8 12 16
of ps

0.25

0.50

0.75

1.00

Sp
ee

d
(s

te
ps

/s
)

1e−1

worker=6
worker=12
worker=18

(d)

Figure 9: Data points and fitted curves of speed functions
for asynchronous training (a)(b) and synchronous training
(c)(d)

our speed function can closely describe the relationship between

the training speed and resource configurations; (b) due to commu-

nication overhead, there is a trend of diminishing return where

adding more parameter servers or workers does not improve the

training speed much; (c) for synchronous training, more workers

may lead to lower training speed. This is because more workers

lead to smaller mini-batch size
M
w (i.e., a lower workload on each

worker), which may cause CPU/GPU under-utilization. Meanwhile,

a larger number of workers lead to higher synchronization cost and

communication overhead.

Table 2 lists derived coefficients in the speed functions for asyn-

chronous and synchronous training, respectively. We find that for-

ward propagation, backward propagation and data transfer make

up most of the training time in one step, since coefficients of these

quantities are relatively large.

The reason why we produce the initial training speed function

under possible combinations of p andw before running the actual

job, is the following: (p,w) pairs used in actual resource configura-

tion when running each job are limited; training speed functions

learned using the limited data points may be biased, diverting re-

source allocation decisions away from the optimum. One question

is how many possible (p,w) pairs we should try out to initialize

the speed function, to achieve high model fitting accuracy. For the

above ResNet-50 example, there are 780 possible (p,w) pairs. Fig. 8

shows the estimation errors of training speeds when we randomly

select a number of samples, i.e., (p,w) pairs, to produce the training

speed function. The estimation error is the ratio of the gap (between

the measured speed and the estimated speed) over the measured

speed. We observe that: (a) we can get a less than 10% error even

when we only use 10 (p,w) pairs to learn the speed function; (b) us-

ing more (p,w) pairs leads to smaller error, but with a diminishing

return.

4 DYNAMIC SCHEDULING
In our DL cluster, jobs arrive in an online manner. Optimus peri-
odically allocates resources to the active jobs (new jobs submitted

in the previous scheduling interval and unfinished jobs submit-

ted earlier), by adjusting the numbers and placement of parameter

servers/workers in each job in the shared DL cluster. Its schedul-

ing algorithm consists of two parts: resource allocation and task

placement.

4.1 Resource Allocation
In each scheduling interval, letQ j denote the remaining number of

steps/epochs that a job j needs to run to achieve model convergence

(§3.1), and f (pj ,w j) be the current training speed function for job

j (§3.2). We can estimate the remaining running time tj of job

j as
Q j

f (pj ,w j)
. Let Or

j (N r
j) denote the amount of type-r resource

each worker (parameter server) in job j occupies. Cr is the overall
capacity of type-r resource in the DL cluster and R is the number

of resource types. J is the set of current active jobs. Our scheduler
aims to minimize the average completion time of these jobs. We can

solve the following optimization problem to decide the numbers

of workers/parameter servers for each job j ∈ J , where (7) is the
capacity constraint:

minimize

∑
j∈J

tj (5)

subject to: tj =
Q j

f (pj , w j)
∀j ∈ J (6)∑

j∈J

(w j ·Or
j + pj · N

r
j) ≤ Cr ∀r ∈ R (7)

pj ∈ Z +, w j ∈ Z + ∀j ∈ J (8)

The problem is a non-linear (and even non-convex) integer pro-

gramming problem since Eqn. 6 is not a linear/convex constraint.

It can not be solved using LP/convex solvers and is NP-hard in

general, so we design an efficient heuristic to solve it. We define

the marginal gain in job completion time reduction as follows:

max{(
Q j

f (pj , w j)
−

Q j

f (pj + 1, w j)
)/ND

j ,

(
Q j

f (pj , w j)
−

Q j

f (pj , w j + 1)
)/OD′

j } (9)

HereD (D ′
) is the dominant resource of workers (parameter servers)

in job j. A dominant resource is the type of resource that has the

maximal share in the overall capacity of the cluster, among all

resources used by a worker (parameter server) [34].

Q j
f (pj ,w j)

−

Q j
f (pj ,w j+1)

(

Q j
f (pj ,w j)

−
Q j

f (pj+1,w j)
) is the reduction in job completion

time when one worker (parameter server) is added to job i; dividing
it by the amount of dominate resource that a worker (parameter

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

Figure 10: An example of worker/parameter server place-
ment: (c) is the best

server) occupies, we obtain the marginal gain per unit dominant

resource consumption.

Our resource allocation algorithm in each scheduling interval

works as follows. We first allocate one worker and one parameter

server to each active job to avoid starvation, and then sort all jobs

in order of their marginal gains computed using (9). Then we iter-

atively select the job with the largest marginal gain and add one

worker or parameter server to the job, according to which of the

two terms in (9) is larger (i.e., whether adding a worker or adding a
parameter server brings larger marginal gain). Marginal gains of

the jobs are updated when their resource allocation changes. The

procedure repeats until some resource in the cluster is used up, or

marginal gains of all jobs become non-positive.

The algorithm makes use of predictions based on online fitted

models in §3. To mitigate its performance degration due to predic-

tion errors, we can downgrade the priority of a job a bit when it is

at the beginning state (i.e., larger prediction errors) by multiplying

its marginal gain (i.e., the computed value in (9)) by a factor (e.g.,
0.95). Smaller marginal gain of a job means less resources allocated

to it, thus mitigating the influence of large prediction errors at the

start of training.

4.2 Task Placement
In our model of the training step duration in Eqn. 2, processing time

on workers and parameter servers are fixed. We can reduce the

time, a.k.a. improve the training speed, by reducing the time spent

on parameters/gradients exchange among workers and parameter

servers, which is mainly decided by their placement on different

servers in the cluster.

To understand how placement affects the training speed, consider

a cluster with 3 servers and a synchronous training job using 2

parameter servers and 4 workers. Each server can host 3 parameter

servers or workers. The bandwidth at each parameter server or

worker is 1. The size of gradients/parameters transferred between

a parameter server and a worker in one training step is 1. Fig. 10

illustrates 3 possible ways of placing the workers/parameter servers.

With placement (a), the 2 parameter servers and 4 workers need to

transfer 3, 3, 1, 1, 2, 2 units of data across servers, respectively. Take

ps1 in Fig. 10 as an example for illustration: it needs to communicate

withworker2,worker3 andworker4 across servers, so it transfers 3
units of data. Note that the bandwidth between a parameter server

and a worker is determined by the bandwidth capacity at both ends

and the time is decided by the slowest transfer. Therefore, the data

transfers of ps1 and ps2 are the slowest, and we can obtain that

the data transfer time in one training step with placement (a) is 3.

Similarly, the data transfer time with placement (b) is 3 and with

placement (c) is 2. Therefore, in this example, placement (c) is the

best solution.

Theorem 1. Given the numbers of workers and parameter servers
in a synchronous training job, the optimal worker/parameter server
placement principle to achieve the maximal training speed for the
job, in a cluster of homogeneous servers, is to use the smallest number
of servers to host the job, such that the same number of parameter
servers and the same number of workers are deployed on each of these
servers.

The detailed proof is given in the Appendix. The principles be-

hind the proof are that (a) colocating workers and parameter servers

can reduce cross-server data transfers, and (b) packing the same

number of workers/parameter servers of a job on each server can

minimize the maximal data transfer time in each step of synchro-

nous training. We can also apply these principles to asynchronous

training jobs to balance the training speeds of multiple workers.

Based on these principles, we design a placement scheme to min-

imize the data transfer time during training as follows. We sort all

servers in the cluster in descending order of their current resource

availability (available CPU capacity is used in our experiments). We

place jobs in increasing order of their resource demand (i.e., smallest

job first) in order to avoid job starvation (i.e., small jobs do not get

any resources). For each job, we check whether the resources on

the first k servers are sufficient to host the job (starting with k = 1).

If so, we place parameter servers and workers in the job evenly on

the k servers; otherwise, we check the first k + 1,k + 2, · · · servers
until we find enough servers to place the job. We then update avail-

able resources on the k servers and sort the server list again. The

above procedure repeats until all jobs are placed or no sufficient

resources on the servers are left to host more jobs. Note that the

number of jobs the servers can accommodate might be smaller than

the number of jobs we allocate resource to through the resource

allocation algorithm (which considers overall resource capacity in

the entire cluster). Jobs which are not placed will be temporarily

paused and rescheduled in the next scheduling interval.

5 SYSTEM IMPLEMENTATION
We next present some implementation details of Optimus.

5.1 Data Serving
We store training data in HadoopDistributed File System (HDFS) [3]

with a default chunk size of 128MB and a replication factor of 2. At

the beginning of a job, we assign a roughly equal number of chunks

to each worker in a round-robin manner, so that each worker has a

similar workload. When the number of workers changes due to our

dynamic scaling, we reassign the data chunks so that the workload

on each worker is still balanced.

5.2 Straggler Handling
Stragglers, i.e., slow workers (we will discuss the case of slow pa-

rameter servers in §5.3), influences a synchronous training job

significantly, due to the need of synchronizing all workers in each

training step. For asynchronous training, it is also important to

EuroSys ’18, April 23–26, 2018, Porto, Portugal Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

ensure the workers have similar training speeds so that the param-

eters on any worker are not too stale; parameter staleness may

lead to unstable training progress and hence additional training

steps to achieve convergence [27]. In a distributed DL framework,

stragglers may happen due to a number of reasons, e.g., resource
contention, unbalanced workload.

To detect stragglers in an asynchronous training job, we simply

monitor each worker’s training speed: if a worker is too slow (e.g.,
half speed from the median), we consider it as a straggler. For syn-

chronous training, the training speeds at the workers are the same

since they are synchronized. To identify a straggler, we monitor

the arrival time of each worker’s gradients on parameter servers

and calculate the training speed of each worker as the gap between

the arrival time of two steps. We replace a straggler by launching a

new worker.

5.3 Load Balancing on Parameter Servers
Our DL jobs are running on the MXNet framework. We identify

possible significant load imbalance among parameter servers in

MXNet, due to its way of dividing model parameters among pa-

rameter servers: for each block of parameters (i.e., parameters of

one layer in an NN), if its size (i.e., the number of parameters) is

smaller than a threshold (10
6
by default), then it is assigned to one

parameter server randomly; otherwise it is sliced evenly among all

parameter servers. Setting the threshold is difficult since different

models may have different appropriate thresholds, and different

threshold values often lead to a big difference in computation work-

load among parameter servers. Such a load imbalance problem also

exists in other distributed ML frameworks such as TensorFlow.

To balance the workload among parameter servers (mainly due

to parameter update computation and communication overhead),

we seek to minimize (a) the maximal difference of parameter sizes

between two parameter servers, (b) the total number of parameter

update requests between parameter servers and workers during

one training step (each request from a worker asks for one updated

parameter block), and (c) the maximal difference of the number

of parameter update requests between two parameter servers. We

design a parameter assignment algorithm (PAA) as follows.

We sort parameter blocks in decreasing order of size and calculate

the average parameter size avд_size , i.e., the overall parameter size

divided by the number of parameter servers. For each block, if its

size is very small (e.g., less than 1% of avд_size), then we assign it

to the parameter server with the least number of update requests.

If the block size is between 1% of avд_size and avд_size , we assign
the block to the parameter server with the smallest remaining

capacity (avд_size minus the size of parameters assigned), that can

accommodate it (a best-fit approach). If the block size is larger than

avд_size , we further slice it into partitions with size avд_size or
less (for the last partition), and assign the sliced partitions to the

parameter server with the smallest size of parameters assigned.

Once a parameter block (or partition) is assigned to a parameter

server, we add the number of parameter update requests on the

server by 1.

5.4 Elastic Training on MXNet
To adjust resource allocation to jobs (i.e., numbers of workers and

parameter servers) during training, we adopt a checkpoint-based

method. When the number of workers or parameter servers as-

signed to a job changes, we checkpoint the model parameters and

save them to HDFS [3]. Then we restart the job from the checkpoint

and redeploy parameter servers and workers based on the schedul-

ing decisions. In practical DL clusters, multiple distributed training

frameworks may be used. Our approach is simple and general, and

can be easily extended for resource scaling in other frameworks

with little code modification.

5.5 Scheduler on Kubernetes
We deploy our scheduler Optimus as a normal pod (i.e., a unit of
deployment that couples one or more containers tightly) on Kuber-

netes 1.7 [14], which polls the Kubernetes master to obtain cluster

information and job states. For fault-tolerance, we use etcd [10] (i.e.,
a distributed reliable key-value storage) as fault-tolerant storage of

job states. Kubernetes will automatically restart the scheduler if it

fails.

6 EVALUATION
6.1 Methodology
Testbed. We built a testbed that consists of 7 CPU servers and 6

GPU servers. Each CPU server has two 8-core Intel E5-2650 CPUs,

80GB memory, two 300GB HDDs. Each GPU server has one 8-core

Intel E5-1660 CPU, two GeForce 1080Ti GPUs, 48GB memory, one

500GB SSD and one 4TB HDD. They are connected by a 48-port Dell

N1548 1GbE switch. We deployed Kubernetes 1.7 [14] and HDFS

2.8 [3] in the cluster.

Simulator. To evaluate Optimus at a larger scale of cluster and

understand its performance with more parameter choices, we also

implemented a discrete-time simulator. The simulator uses the

following from the traces collected from our testbed experiments:

training losses of each kind of jobs, training speeds under different

resource configurations, resource capacities of each server, job

configurations (e.g., resource requirements of workers/parameter

servers), DL model details (e.g., parameter size).

Workload. Job arrival happens randomly between [0,12000] sec-

onds. Upon an arrival event, we randomly choose the job among

the examples in Table 1 and decide to run it using asynchronous

training or synchronous training randomly. We vary the conver-

gence threshold of jobs between 1% and 5%. For jobs training large

models, e.g., the ResNet-50 model or the DeepSpeech2 model, we

downscale their dataset sizes so that the experiment can be finished

in a reasonable amount of time, as otherwise each experiment run

would last for weeks. We verified that the models still converge

with the small datasets. After downscaling, one experiment run

takes about 6 hours and we repeat each experiment for 3 times to

obtain the average results.

Baselines. We compare Optimus with two representative sched-

ulers, implemented on Kubernetes as well: (i) A fairness-based

scheduler adopted in many resource managers such as Hadoop [11],

Yarn [61] and Mesos [40], which uses Dominant Resource Fairness

(DRF) [34] to allocate resources to jobs and dynamically reschedules

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

JCT Makespan
1.0

1.5

2.0

2.5

1.00

2.39

1.74

1.00

1.63

1.22

Optimus
DRF
Tetris

Figure 11: Performance
comparison

103 104

of Nodes

4

8

12

Sc
he

du
lin

g
Ti

m
e

(s
)

1000 Jobs
2000 Jobs
4000 Jobs
8000 Jobs

Figure 12: Scalability test

jobs in each scheduling interval. The workers/parameter servers are

placed in a load balancing way, according to the default behavior of

Kubernetes. (ii) Tetris [37], which preferentially allocates resources

to jobs with low duration or small resource consumption and packs

jobs to servers to minimize resource fragmentation. Since Tetris

does not have its own mechanism to estimate the remaining time

of a deep learning job, we use our speed function and convergence

estimation to provide Tetris with such information. We set the ratio

of the number of parameter servers to the number of workers to

1:1 [19] in both schedulers.

Metrics. We use the average job completion time (JCT) as an indi-

cator of system performance. In addition, we evaluate the makespan

as an indicator of resource efficiency, which is the total time elapsed

from the arrival of the first job to the completion of all jobs. Minimiz-

ing makespan is equivalent to maximizing resource efficiency [37].

To initialize the training speed function for each job, we pre-run

a job on a small dataset with 5 different combinations of (p,w). Each

scheduling interval is 10 minutes long. We set the priority factor in

§4.1 to 1 and set the very small parameter block size in §5.3 to 1%

of avд_size by default.

6.2 Performance
Comparison with baselines. Fig. 11 shows that Optimus can re-

duce the average completion time and makespan by 2.39x and 1.63x

respectively in comparison to the DRF-based fairness scheduler.

The average value and standard deviation of JCT and makespan are

further presented in Fig. 13. We see that Optimus, DRF and Tetris

use 4.1, 6.7 and 5.0 hours to finish all jobs, respectively. To see more

details, Fig. 14 shows the number of running tasks and normalized

CPU utilization of tasks in each time slot (i.e., CPU utilization di-

vided by overall allocated CPU capacity on a parameter server or a

worker) during the whole experiment run. Optimus does not run
a large number of tasks as compared to DRF. The reason is that

DRF is work-conserving and allocates as many resources to a job

as possible, but more resources do not mean higher training speed,

as demonstrated in §3.2. Further, the normalized CPU utilization of

workers and parameter servers inOptimus is larger than that of DRF
and Tetris. It shows that Optimus can utilize allocated resources

more efficiently.

Resource adjustment overhead. The overhead of changing from
one (p,w) configuration to another in a job is measured by the

percentage of time spent on adjusting resources for the job. In our

Optimus DRF Tetris0

1

2

3

4

JC
T

(s
)

1e3

1161

2780

2016

(a) JCT

Optimus DRF Tetris0

1

2

3

M
ak

es
pa

n
(s

)

1e4

14835

24255

18127

(b) Makespan

Figure 13: Average value and standard deviation

0.0 0.6 1.2 1.8 2.4
Time (s) 1e4

0

20

40

60

of

 R
un

ni
ng

 ta
sk

s

DRF
Optimus
Tetris

(a) Number of running tasks

0.0 0.6 1.2 1.8 2.4
Time (s) 1e4

25

50

75

100

No
rm

. C
PU

 U
sa

ge
 (%

)

Optimus
DRF
Tetris

(b) CPU usage on parameter servers

0.0 0.6 1.2 1.8 2.4
Time (s) 1e4

25

50

75

No
rm

. C
PU

 U
sa

ge
 (%

)

Optimus
DRF
Tetris

(c) CPU usage on workers

Figure 14: Number of running tasks and CPU usage during
an experiment

experiments, the overall scaling overhead is 2.54% of the makespan,

which is acceptable compared to the performance gain.

Scalability. To evaluate whether Optimus is sufficiently fast and

scalable to large-scale clusters, we emulate submitting and sched-

uling a large number of jobs in a cluster with thousands of nodes.

EuroSys ’18, April 23–26, 2018, Porto, Portugal Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

0 15 30 45
Error (%)

1.05

1.20

1.35

No
rm

. A
vg

. J
CT convergence

speed

(a) Average completion time

0 15 30 45
Error (%)

1.00
1.04
1.08
1.12
1.16

No
rm

. M
ak

es
pa

n convergence
speed

(b) Makespan

Figure 15: Sensitivity to prediction errors

Figure 12 shows the scheduling time when Optimus runs on one

core of Intel E5-1620 v4 CPU.Optimus can schedule 4,000 jobs (about
100,000 tasks) within 5 seconds on a cluster of 16,000 nodes. This is

comparable to the performance of Kubernetes’ default scheduler,

i.e., 150,000 tasks in 5,000 nodes within 5 seconds [64]. Besides, since
Optimus makes scheduling decisions at each scheduling interval

(e.g., 10 minutes), the scheduling overhead is very small.

6.3 Sensitivity analysis
Prediction error. We examine to what extent Optimus is affected
by the prediction errors of convergence time and training speed.

We carry out simulation under different error levels: suppose the

true number of epochs for convergence (training speed) is v and

the error is e ; we usev · (1+e) orv · (1−e) as the initial input to our
scheduler, decreasing with job progress. We run each simulation

for 100 times to obtain average results.

In Fig. 15, the convergence (speed) curve plots the resulting

average JCT/makespan when we add errors of different levels in

convergence epoch (training speed) prediction. When the error is

larger, JCT and makespan both increase, but with a diminishing

speed. If the error of convergence estimation is 20% and the error

of training speed estimation is 10%, there is about 15% performance

gap compared to the case where the estimation errors are 0. Com-

pared to the error of convergence estimation, the error of speed

estimation affects the performance more. Fortunately, we can esti-

mate training speed much more accurate (10% error) than training

convergence (20% error).

To see the effect of our technique at the end of §4.1, we have

also done evaluation with the priority factor set to 0.95. In this

case, the average JCT and makespan are 2.66% and 1.88% smaller,

respectively, which validates the effectiveness of our technique in

improving the overall scheduling performance.

Varying workloads.We examine how training modes affect the

performance. Instead of randomly selecting between asynchro-

nous and synchronous training (§6.1), we either train all jobs in

asynchronous mode or synchronous mode. Fig. 16 shows that Opti-
mus outperforms the other two schedulers in both cases, and the

performance gain is larger when all jobs use synchronous training.

This is because all workers have the most updated parameters with

synchronous training, such that model convergence is more stable

and convergence estimation error is smaller. The training speed of

all workers are the same in synchronous training and the speed

estimation error is smaller, as verified in §3.2.

JCT Makespan
0.8

1.2

1.6

2.0

2.4

1.00

1.97
1.64

1.00

1.36
1.11

Optimus
DRF
Tetris

(a) Async

JCT Makespan
1.0

1.5

2.0

2.5

1.00

2.29
1.91

1.00

1.45
1.21

Optimus
DRF
Tetris

(b) Sync

Figure 16: Sensitivity to workloads: training modes

JCT Makespan
0.8

1.2

1.6

2.0

2.4

1.00

2.15
1.82

1.00

1.40
1.15

Optimus
DRF
Tetris

(a) Poisson

JCT Makespan
0.8

1.2

1.6

2.0

2.4

1.00

2.21

1.78

1.00

1.46
1.24

Optimus
DRF
Tetris

(b) Google cluster trace

Figure 17: Sensitivity to workloads: job arrival processes

We further investigate Optimus’s performance under two other

job arrival processes. The first is a Poisson process with 3 arrivals

per scheduling interval. The second is extracted from Google clus-

ter workload traces over a 7 hour period [8]. Fig. 17 shows that

Optimus still outperforms the other two schedulers and the perfor-

mance gain is larger when using Google cluster traces. There are

many job arrival spikes in the traces and Optimus can handle them

better than DRF and Tetris by efficiently allocating resources.

6.4 Inspecting Detailed Designs in Optimus
Resource allocation. To see how effective our marginal gain-

based resource allocation algorithm is, we replace it with the re-

source allocation schemes in the fairness scheduler or Tetris, while

still adopting the same task placement algorithm in Optimus. Fig. 18
shows that the average completion time and makespan are reduced

by 62% and 31% respectively when using Optimus, as compared to

the fairness scheduler. That is, the resource allocation algorithm in

Optimus is critical for high job performance and resource efficiency.

Task placement. We further examine the task placement algo-

rithm in Optimus to see to what extent it contributes to job per-

formance and resource efficiency. For comparison, we place tasks

using the placement algorithm in the fairness scheduler (i.e., in a

load-balancing way) and Tetris (i.e., minimizing resource fragmen-

tation), but still use the resource allocation algorithm in Optimus.
Fig. 19 shows that our algorithm reduces average completion time

and makespan by about 10% compared to Tetris and 15% compared

to DRF.

Parameter server load balancing. The difference of parameter

sizes among parameter servers, the difference of the number of

parameter update requests among parameter servers and the total

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

JCT Makespan
0.9

1.2

1.5

1.8

2.1

1.00

1.62

1.33

1.00

1.31
1.14

Optimus
DRF
Tetris

Figure 18: Effectiveness of
resource allocation
algorithm

JCT Makespan
0.8

1.0

1.2

1.4

1.6

1.00
1.171.12

1.00
1.131.09

Optimus
DRF
Tetris

Figure 19: Effectiveness of
task placement algorithm

Table 3: Comparison of parameter distribution

Algorithm

Difference of

parameter sizes

Difference of #

of requests

Total # of

requests

MXNet 3.6M 43 247

PAA 0.1M 1 157

4 8 12 16 20
of ps

0.50

0.75

1.00

Sp
ee

d
(s

te
ps

/s
)

1e−1

PAA
MXNet

Figure 20: Training speed
comparison of ResNet-50
by varying # of ps

ResNet-50

ResNext-101

Inception-BNVGG
0

8

16

24

Sp
ee

du
p

(%
)

Figure 21: Training speed im-
provements on differentmod-
els

number of update requests between parameter servers and workers

are three main factors that represent load imbalance or overhead

on parameter servers. Table 3 shows values of the three factors

achieved with our PAA algorithm (in §5.3) and with the default

parameter distribution algorithm in MXNet, using the ResNet-50

model [39] with 25 million parameters formed into 157 parameter

blocks. Our algorithm does not split any parameter block further

(since the total number of parameter update requests is 157, the

minimal for 157 parameter blocks) while keeping minimal the differ-

ence of parameter sizes (i.e., 0.1M) and the difference of the number

of requests (i.e., 1).
To see the effectiveness of balanced parameter distribution on the

training speed, we train ResNet-50 on the ILSVRC2012 ImageNet

dataset [12] by fixing the number of workers to 10 and varying the

number of parameter servers, using synchronous training. Fig. 20

shows the training speed with and without our load balancing

algorithm. We can see PAA improves the training speed especially

when the number of parameter servers is large. Fig. 21 further shows

the improvement when more models are trained using synchronous

training, 10 workers and 10 parameter servers: PAA achieves up

to 29% speedup compared to the MXNet algorithm. We observed

similar results with asynchronous training.

In summary, the highlights of our evaluation results are as follows.

(1) Testbed experiments show that Optimus improves average job

completion time and makespan by 139% and 63% compared to

the fairness scheduler. Further, Optimus can scale to schedule

100,000 tasks on 16,000 nodes in 5 seconds, and its resource

adjustment overhead is small, i.e., 2.54%.
(2) Further improvement of estimation accuracy will not increase

Optimus’s performance much (15%) and Optimus performs bet-

ter than DRF and Tetris under various workloads.

(3) The resource allocation algorithm, the task placement scheme

and the parameter server load balancing algorithm contribute

to Optimus’s performance improvement by about 62%, 17%, 20%

respectively.

7 DISCUSSIONS
We now discuss extensions and future work on Optimus.

Various workloads. While Optimus targets scheduling of deep

learning jobs, it can be used in DL clusters with mixed workloads

(e.g., data analytics, online services). For example, in a Kubernetes

cluster, we can plug in multiple schedulers and each scheduler is re-

sponsible for one kind of workloads. In such case, Optimus may ask

for resources from a central cluster resource manager and schedule

deep learning jobs on a varying portion of cluster resources.

Convergence estimation. For some DL models (e.g., ResNet [39]),
the learning rate may be reduced significantly (e.g., by a factor

of 0.1) when training reaches a predefined condition, in order to

minimize loss further (e.g., as with SGD). In such a case, we can

treat the model training after learning rate adjustment as a new

training job and restart online fitting. In addition, the training loss

curves of some models (e.g., A3C [51]) cannot be described or can

only be partly described using our fitting function in Eqn. (1), but

they may be fitted using other functions based on the convergence

speed of optimization algorithm [71]. One possible solution is to let

the job owner provide the functions, based on the previous running

experience of such jobs [71].

Scaling overhead. We use a checkpoint-based method to adjust

the resource configuration of a job due to its simplicity and general

implementability. This approach may bring quite large overhead

if the job has hundreds of workers/parameter servers. To reduce

checkpointing overhead, we may set a threshold of checkpointing

times for each job to limit the restarting frequency. For long or

large jobs, the threshold can be smaller to avoid frequent resource

reallocation.

8 RELATEDWORK
Performance modeling. Jockey [32] and Morpheus [44] use his-

torical traces of periodic jobs and dynamically adjust resource

allocations to meet deadlines, while Optimus does not depend

on the previous run of the same job since production training

data often change (e.g., daily). PerfOrator [53] builds a resource-to-
performance model of big data queries by estimating query size

and profiling hardware, while we use high-level system modeling

approach without the knowledge about hardware or the internal

details of a job. To map resources to training speed, we build and

fit a parametric performance model based on sample runs. This

approach has been applied in other work, such as job execution

EuroSys ’18, April 23–26, 2018, Porto, Portugal Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

time estimation [56] and data size estimation of SQL queries [53].

Ernest [62] also adopts a similar approach to estimate the com-

pletion time of data analytics. It designs an experimental theory

to minimize sampling overhead. In comparison, Optimus has a

relatively small configuration space (i.e., the number of tasks) and

5-10 sample runs are enough for fitting the performance model

quite accurately. PREDIcT [52] uses sample runs for capturing the

convergence trend of a graph algorithm, which is infeasible for

deep learning training since the size of dataset affects convergence.

Yan et al. [69] model the training of deep learning neural networks

at a very fine granularity (e.g., the computation time of each op-

erator on a specific CPU, neural network structures, etc.) while

our models capture high-level computation and communication

patterns. Bayesian Optimization is a parameter-free approach used

in many other works (e.g., FABOLAS [47], BOAT [28], CherryP-

ick [24]) to search best hyperparameters/resource configuration

for a model/job. This approach is not applicable to our problem

since we need a parametric performance model to describe the

relation between the number of tasks and training speed, so that

the scheduler can exploit this relation to optimize global scheduling

of all concurrent jobs.

Job scheduling. There have been many efforts on cluster/cloud

resource allocation to achieve different objectives. Corral [42] and

Morpheus [44] focus on periodic or predictableworkloads. Borg [63],

Fuxi [72], Firmament [35] are designed for heterogenous workloads

in a large-scale cluster and support policy-based scheduling (e.g.,
fairness, data locality, job priority). Instead, our work focuses on

deep learning workload. Mesos [40] and Yarn [61] use DRF [34] to

allocate resources while we focus on resource efficiency and job

performance. TetriSched [60] and Morpheus [44] also dynamically

allocate resources in a global way, but they focus on reservation-

based or periodic jobs with specified deadlines. Eagle [30] is a hybrid

scheduler designed to solve the head-of-line problem: it dynam-

ically divides the cluster resources into two partitions for short

jobs and long jobs. Optimus instead focuses on dynamic resource

configurations of jobs. There are several studies [41, 57, 71] on re-

source allocation of classical machine learning jobs (e.g., clustering,
logistic regression) on Spark MLlib [70]. Huang et al. [41] propose
a memory optimizer for Spark master and workers given a ma-

chine learning program. SLAQ [71] targets the training quality of

experimental ML models instead of models in production. It adopts

similar online fitting technique to estimate the training loss of con-

vex algorithms. Dorm [57] uses a utilization-fairness optimizer to

schedule jobs. The main difference is that our work focuses on

deep learning jobs running on parameter server architecture. We

leverage the characteristics of the jobs to design resource allocation

algorithm and task placement scheme, and demonstrate significant

performance improvement. STRAD [45] proposes a programming

approach to improve model convergence by scheduling parameter

updates for model-parallel machine learning, while we did not delve

into modifying the underlying ML frameworks. Azalia et al. [50]
use a model-free deep reinforcement learning method to achieve

model parallelism that maximizes training speed of a given model

in a single machine. Such an approach is yet to be general and effi-

cient for resource allocation in a deep learning cluster. Proteus [38]

exploits transient virtual machines in EC2 to complete ML jobs in

an efficient and cheap way. They use a simpler performance model

and focus more on the expected cost due to dynamic bidding prices.

Distributedmachine learning frameworks.The parameter server

architecture was first introduced in [55] and improved with up-

date primitives, fault tolerance and communication optimization

in [29, 48, 67]. Most distributed machine learning frameworks (e.g.,
MXNet [59], Petuum [67], TensorFlow [23], Angel [43]) are im-

plicitly or explicitly built upon this architecture. Our work targets

scheduling jobs running on these frameworks. We find that the

load imbalance problem is common in these distributed frameworks

and we propose and implement the PAA algorithm in one of the

frameworks, MXNet.

9 CONCLUSION
Optimus is a customized cluster scheduler targeting high training

performance and resource efficiency in deep learning clusters. At its

core is an accurate performance model for deep learning workloads,

built by exploiting the characteristics of DLmodel training (e.g., con-
vergence property, iterativeness) and communication patterns of

the parameter server architecture. Based on the performance model,

we design a marginal gain-based resource allocation algorithm and

a training speed-maximizing task placement scheme. Our exper-

iments on a Kubernetes cluster show that Optimus outperforms

representative cluster schedulers significantly.

ACKNOWLEDGEMENTS
We thank our shepherd Paolo Romano and the anonymous review-

ers for their feedback. This work was supported in part by grants

fromHong Kong RGC under the contracts HKU 17204715, 17225516,

and C7036-15G (CRF). The Titan X Pascal used for this research

was donated by the NVIDIA Corporation.

APPENDIX
Proof of Theorem 1
Proof: Assume there are K nodes (physical servers) in the cluster

and the number of parameter servers on node k is pjk for job j , the
number of workers on node k isw jk for job j . Assume the capacities

of the K nodes are sufficient for placing the job. Let Bj denote the
bandwidth requirement of each parameter server in job j and bj
be the bandwidth requirement of each worker in job j. Let Sj be
the model size of job j. Then the data (gradients/parameters) trans-

mission time in job j for each training step in case of synchronous

training is

max

k
{

Sj
pj

(w j −w jk)

Bj
,

Sj
pj

(pj − pjk)

bj
}

Then we can formulate the worker/parameter server placement

problem for tranmission time minimization as follows.

Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters EuroSys ’18, April 23–26, 2018, Porto, Portugal

minimize max

k
{

Sj
pj

(w j −w jk)

Bj
,

Sj
pj

(pj − pjk)

bj
}

subject to:

∑
k

pjk = pj∑
k

w jk = w j

pjk ∈ Z +, w jk ∈ Z +

We decompose the above problem to the following two subprob-

lems whose solutions are guaranteed to be the optimal solution of

the above problem. Each subproblem is a lexicographical min-max

problemwhose optimal solution is to place tasks evenly. Combining

the optimal solution of the two subproblems, one optimal solution

of the original problem is to place parameter servers evenly and

place workers evenly on the K nodes.

Subproblem 1:

minimize max

k

Sj
pj

(w j −w jk)

Bj

subject to:

∑
k

w jk = w j

w jk ∈ Z +

Subproblem 2:

minimize max

k

Sj
pj

(pj − pjk)

bj

subject to:

∑
k

pjk = pj

pjk ∈ Z +

The next step is to prove that a smaller K leads to smaller data

transmission time. The proof can be done via mathematical induc-

tion. The idea is that a smaller K means more parameter servers

and workers on each node, so the amount of transferred data via

the inter-server network is smaller and hence the communication

time decreases.

REFERENCES
[1] 2006. Caltech 256 Dataset. http://www.vision.caltech.edu/Image_Datasets/

Caltech256/. (2006).

[2] 2009. The CIFAR-10 Dataset. https://www.cs.toronto.edu/~kriz/cifar.html. (2009).

[3] 2014. HDFS. https://wiki.apache.org/hadoop/HDFS. (2014).

[4] 2014. Kaggle NDSB1 Dataset. https://www.kaggle.com/c/datasciencebowl/data.

(2014).

[5] 2014. Overfitting and Regularization. https://alliance.seas.upenn.edu/~cis520/

dynamic/2017/wiki/index.php?n=Lectures.Overfitting. (2014).

[6] 2014. Perplexity Versus Error Rate. https://nlpers.blogspot.hk/2014/05/

perplexity-versus-error-rate-for.html. (2014).

[7] 2014. SciPy NNLS. https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/

scipy.optimize.nnls.html. (2014).

[8] 2015. Google Cluster Workload Traces. https://github.com/google/cluster-data.

(2015).

[9] 2015. LibriSpeech ASR Corpus. http://www.openslr.org/12/. (2015).

[10] 2017. etcd. https://github.com/coreos/etcd. (2017).

[11] 2017. Hadoop CapacityScheduler. https://hadoop.apache.org/docs/r2.7.4/

hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html. (2017).

[12] 2017. ImageNet Dataset. http://www.image-net.org. (2017).

[13] 2017. KAGGLE-DSB Model. https://github.com/apache/incubator-mxnet/tree/

master/example/kaggle-ndsb1. (2017).

[14] 2017. Kubernetes. https://kubernetes.io. (2017).

[15] 2017. MXNet Neural Machine Translation. https://github.com/awslabs/sockeye.

(2017).

[16] 2017. MXNet Official Examples. https://github.com/apache/incubator-mxnet/

tree/master/example. (2017).

[17] 2017. PaddlePaddle. http://www.paddlepaddle.org. (2017).

[18] 2017. Penn Tree Bank Dataset. https://catalog.ldc.upenn.edu/ldc99t42. (2017).

[19] 2017. Run Deep Learning with PaddlePaddle on Kubernetes. http://blog.

kubernetes.io/2017/02/run-deep-learning-with-paddlepaddle-on-kubernetes.

html. (2017).

[20] 2017. Stochastic Gradient Descent. https://en.wikipedia.org/wiki/Stochastic_

gradient_descent. (2017).

[21] 2017. WMT 2017. http://www.statmt.org/wmt17/. (2017).

[22] 2017. Word Language Model. https://github.com/apache/incubator-mxnet/tree/

master/example/gluon/word_language_model. (2017).

[23] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. TensorFlow: A System for Large-Scale Machine Learning. In Proc. of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[24] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,

Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the

Best Cloud Configurations for Big Data Analytics. In Proc. of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

[25] Dario Amodei, SundaramAnanthanarayanan, Rishita Anubhai, Jingliang Bai, Eric

Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang

Chen, et al. 2016. Deep Speech 2: End-to-end Speech Recognition in English

and Mandarin. In Proc. of the 33th International Conference on Machine Learning
(ICML).

[26] Pang Bo and Lee Lillian. 2005. Movie Review Data. https://www.cs.cornell.edu/

people/pabo/movie-review-data/. (2005).

[27] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. 2016. Revisiting

Distributed Synchronous SGD. arXiv preprint arXiv:1604.00981 (April 2016).
[28] Valentin Dalibard, Michael Schaarschmidt, and Eiko Yoneki. 2017. BOAT: Build-

ing Auto-tuners with Structured Bayesian Optimization. In Proc. of the 26th
International Conference on World Wide Web (WWW).

[29] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large Scale

Distributed Deep Networks. In Proc. of the 25th Advances in Neural Information
Processing Systems (NIPS).

[30] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. 2016. Job-

aware Scheduling in Eagle: Divide and Stick to Your Probes. In Proc. of the 7th
ACM Symposium on Cloud Computing (SoCC).

[31] Matteo Dell’Amico, Damiano Carra, Mario Pastorelli, and Pietro Michiardi. 2014.

Revisiting Size-Based Scheduling with Estimated Job Sizes. In Proc. of the 22th
IEEE International Symposium on Modelling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS).

[32] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo

Fonseca. 2012. Jockey: Guaranteed Job Latency in Data Parallel Clusters. In

Proc. of the 7th ACM European Conference on Computer Systems (Eurosys).
[33] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.

2017. Convolutional Sequence to Sequence Learning. In Proc. of the 34th Interna-
tional Conference on Machine Learning (ICML).

[34] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,

and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple

Resource Types. In Proc. of the 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[35] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and Steven

Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling at Scale. In Proc. of
the 12th USENIX Conference on Operating Systems Design and Implementation
(OSDI).

[36] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accu-

rate, Large Minibatch SGD: Training ImageNet in 1 Hour. In arXiv preprint
arXiv:1706.02677.

[37] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and

Aditya Akella. 2014. Multi-Resource Packing for Cluster Schedulers. In Proc. of
ACM SIGCOMM.

[38] Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R Ganger, and Phillip B

Gibbons. 2017. Proteus: Agile ML Elasticity Through Tiered Reliability in Dy-

namic Resource Markets. In Proc. of the 12th ACM European Conference on Com-
puter Systems (EuroSys).

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In Proc. of the 29th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[40] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform

for Fine-Grained Resource Sharing in the Data Center. In Proc. of the 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
https://www.cs.toronto.edu/~kriz/cifar.html
https://wiki.apache.org/hadoop/HDFS
https://www.kaggle.com/c/datasciencebowl/data
https://alliance.seas.upenn.edu/~cis520/dynamic/2017/wiki/index.php?n=Lectures.Overfitting
https://alliance.seas.upenn.edu/~cis520/dynamic/2017/wiki/index.php?n=Lectures.Overfitting
https://nlpers.blogspot.hk/2014/05/perplexity-versus-error-rate-for.html
https://nlpers.blogspot.hk/2014/05/perplexity-versus-error-rate-for.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.nnls.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.nnls.html
https://github.com/google/cluster-data
http://www.openslr.org/12/
https://github.com/coreos/etcd
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://www.image-net.org
https://github.com/apache/incubator-mxnet/tree/master/example/kaggle-ndsb1
https://github.com/apache/incubator-mxnet/tree/master/example/kaggle-ndsb1
https://kubernetes.io
https://github.com/awslabs/sockeye
https://github.com/apache/incubator-mxnet/tree/master/example
https://github.com/apache/incubator-mxnet/tree/master/example
http://www.paddlepaddle.org
https://catalog.ldc.upenn.edu/ldc99t42
http://blog.kubernetes.io/2017/02/run-deep-learning-with-paddlepaddle-on-kubernetes.html
http://blog.kubernetes.io/2017/02/run-deep-learning-with-paddlepaddle-on-kubernetes.html
http://blog.kubernetes.io/2017/02/run-deep-learning-with-paddlepaddle-on-kubernetes.html
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://www.statmt.org/wmt17/
https://github.com/apache/incubator-mxnet/tree/master/example/gluon/word_language_model
https://github.com/apache/incubator-mxnet/tree/master/example/gluon/word_language_model
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/

EuroSys ’18, April 23–26, 2018, Porto, Portugal Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

[41] Botong Huang, Matthias Boehm, Yuanyuan Tian, Berthold Reinwald, Shirish

Tatikonda, and Frederick R Reiss. 2015. Resource Elasticity for Large-Scale

Machine Learning. In Proc. of ACM SIGMOD.
[42] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin

Makarychev, and Matthew Caesar. 2015. Network-Aware Scheduling for Data-

Parallel Jobs: Plan When You Can. In Proc. of ACM SIGCOMM.

[43] Jie Jiang, Lele Yu, Jiawei Jiang, Yuhong Liu, and Bin Cui. 2017. Angel: a New

Large-Scale Machine Learning System. National Science Review (2017), nwx018.

[44] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur Narayana-

murthy, Alexey Tumanov, Jonathan Yaniv, Íñigo Goiri, Subru Krishnan, Janardhan

Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Automated SLOs for En-

terprise Clusters. In Proc. of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[45] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A Gibson,

and Eric P Xing. 2016. STRADS: A Distributed Framework for Scheduled Model

Parallel Machine Learning. In Proc. of the 11th European Conference on Computer
Systems (Eurosys).

[46] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.

In Proc. of 19th SIGDAT Conference on Empirical Methods in Natural Language
Processing (EMNLP).

[47] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.

2017. Fast BayesianOptimization ofMachine LearningHyperparameters on Large

Datasets. In Proc. of the 20th International Conference on Artificial Intelligence and
Statistics (AISTATS).

[48] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling

Distributed Machine Learning with the Parameter Server. In Proc. of the 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[49] Mahoney Matt. 2017. text8. http://mattmahoney.net/dc/. (2017).

[50] Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio,

Benoit Steiner, Yuefeng Zhou, Naveen Kumar, Rasmus Larsen, and Jeff Dean.

2017. Device Placement Optimization with Reinforcement Learning. In Proc. of
the 34th International Conference on Machine Learning (ICML).

[51] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-

nous Methods for Deep Reinforcement Learning. In Proc. of the 33th International
Conference on Machine Learning (ICML).

[52] Adrian Daniel Popescu, Andrey Balmin, Vuk Ercegovac, and Anastasia Aila-

maki. 2013. PREDIcT: Towards Predicting the Runtime of Large-Scale Iterative

Analytics. Proceedings of the VLDB Endowment (PVLDB) 6, 14 (2013), 1678–1689.
[53] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru Krishnan. 2016.

PerfOrator: Eloquent Performance Models for Resource Optimization. In Proc. of
the 7th ACM Symposium on Cloud Computing (SoCC).

[54] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014. A

Latent Semantic Model with Convolutional-Pooling Structure for Information

Retrieval. In Proc. of the 23th ACM International Conference on Conference on
Information and Knowledge Management (CIKM).

[55] Alexander Smola and Shravan Narayanamurthy. 2010. An Architecture for

Parallel Topic Models. Proceedings of the VLDB Endowment (PVLDB) 3, 1-2 (2010),
703–710.

[56] Evan R Sparks, Ameet Talwalkar, Daniel Haas, Michael J Franklin, Michael I

Jordan, and Tim Kraska. 2015. Automating Model Search for Large Scale Machine

Learning. In Proc. of the 6th ACM Symposium on Cloud Computing (SoCC).
[57] Peng Sun, Yonggang Wen, Nguyen Binh Duong Ta, and Shengen Yan. 2017.

Towards Distributed Machine Learning in Shared Clusters: A Dynamically-

Partitioned Approach. In Proc. of the 3rd IEEE International Conference on Smart
Computing (SMARTCOMP).

[58] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In

Proc. of the 29th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[59] Chen Tianqi, Li Mu, Li Yutian, Lin Min, Wang Naiyan, WangMinjie, Xiao Tianjun,

Xu Bing, Zhang Chiyuan, and Zhang Zheng. 2016. MXNet: A Flexible and Efficient

Machine Learning Library for Heterogeneous Distributed Systems. In Proc. of
NIPS Workshop on Machine Learning Systems (LearningSys).

[60] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor Harchol-

Balter, and Gregory R Ganger. 2016. TetriSched: Global Rescheduling with

Adaptive Plan-Ahead in Dynamic Heterogeneous Clusters. In Proc. of the 11th
ACM European Conference on Computer Systems (Eurosys).

[61] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

Seth, et al. 2013. Apache Hadoop Yarn: Yet Another Resource Negotiator. In

Proc. of the 4th annual Symposium on Cloud Computing (SoCC).
[62] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,

and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-Scale

Advanced Analytics. In Proc. of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[63] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric

Tune, and John Wilkes. 2015. Large-Scale Cluster Management at Google with

Borg. In Proc. of the 10th ACM European Conference on Computer Systems (Eu-
rosys).

[64] Tyczynski Wojciech. 2017. Kubernetes Scalability. http://blog.kubernetes.io/

2017/03/scalability-updates-in-kubernetes-1.6.html. (2017).

[65] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

2016. Google’s Neural Machine Translation System: Bridging the Gap Between

Human and Machine Translation. arXiv preprint arXiv:1609.08144 (2016).
[66] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.

Aggregated Residual Transformations for Deep Neural Networks. In Proc. of the
30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67] Eric P Xing, Qirong Ho, Wei Dai, Jin-Kyu Kim, Jinliang Wei, Seunghak Lee, Xun

Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A New

Platform for Distributed Machine Learning on Big Data. In Proc. of the 21th ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD).

[68] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas

Stolcke, Dong Yu, and Geoffrey Zweig. 2017. The Microsoft 2016 Conversational

Speech Recognition System. In Proc. of the 42th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

[69] Feng Yan, Olatunji Ruwase, Yuxiong He, and Trishul Chilimbi. 2015. Performance

Modeling and Scalability Optimization of Distributed Deep Learning Systems. In

Proc. of the 21th ACM International Conference on Knowledge Discovery and Data
Mining (KDD).

[70] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing. In Proc. of the 9th USENIX conference on Networked Systems Design
and Implementation (NSDI).

[71] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J Freedman. 2017. SLAQ:

Quality-Driven Scheduling for Distributed Machine Learning. In Proc. of the 8th
ACM Symposium on Cloud Computing (SoCC).

[72] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. 2014. Fuxi:

a Fault-Tolerant Resource Management and Job Scheduling System at Internet

Scale. Proceedings of the VLDB Endowment (PVLDB) 7, 13 (2014), 1393–1404.

http://mattmahoney.net/dc/
http://blog.kubernetes.io/2017/03/scalability-updates-in-kubernetes-1.6.html
http://blog.kubernetes.io/2017/03/scalability-updates-in-kubernetes-1.6.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DL Model Training
	2.2 The Parameter Server Architecture
	2.3 Existing Cluster Schedulers

	3 Performance Modeling of DL Jobs
	3.1 Learning the Convergence Curve
	3.2 Resource-Speed Modeling

	4 Dynamic Scheduling
	4.1 Resource Allocation
	4.2 Task Placement

	5 System Implementation
	5.1 Data Serving
	5.2 Straggler Handling
	5.3 Load Balancing on Parameter Servers
	5.4 Elastic Training on MXNet
	5.5 Scheduler on Kubernetes

	6 Evaluation
	6.1 Methodology
	6.2 Performance
	6.3 Sensitivity analysis
	6.4 Inspecting Detailed Designs in Optimus

	7 Discussions
	8 Related Work
	9 Conclusion
	References

