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ABSTRACT

Deep learning workloads are common in today’s production clus-
ters due to the proliferation of deep learning driven Al services
(e.g., speech recognition, machine translation). A deep learning
training job is resource-intensive and time-consuming. Efficient
resource scheduling is the key to the maximal performance of a
deep learning cluster. Existing cluster schedulers are largely not tai-
lored to deep learning jobs, and typically specifying a fixed amount
of resources for each job, prohibiting high resource efficiency and
job performance. This paper proposes Optimus, a customized job
scheduler for deep learning clusters, which minimizes job training
time based on online resource-performance models. Optimus uses
online fitting to predict model convergence during training, and
sets up performance models to accurately estimate training speed
as a function of allocated resources in each job. Based on the models,
a simple yet effective method is designed and used for dynamically
allocating resources and placing deep learning tasks to minimize
job completion time. We implement Optimus on top of Kubernetes,
a cluster manager for container orchestration, and experiment on a
deep learning cluster with 7 CPU servers and 6 GPU servers, run-
ning 9 training jobs using the MXNet framework. Results show that
Optimus outperforms representative cluster schedulers by about
139% and 63% in terms of job completion time and makespan, re-
spectively.
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1 INTRODUCTION

The recent five years have witnessed substantial progress and suc-
cessful applications of deep learning in various domains of Al,
such as computer vision [39], natural language processing [65] and
speech recognition [68]. The rising amount of data and increasing
scale of training models (e.g., deep neural networks) significantly
improve the learning accuracy, as well as remarkably extend the
training time. Distributed machine (deep) learning frameworks have
been designed and deployed to expedite model convergence using
parallel training with multiple machines, e.g., TensorFlow [23],
MXNet [59]. Most leading IT companies have been operating dis-
tributed machine learning (ML)/deep learning (DL) clusters, with
hundreds or thousands of (GPU) servers, to train various ML models
over large datasets for their Al-driven services.

Even with parallel training, a deep learning job is resource inten-
sive and time consuming. For example, to train the DeepSpeech?2
model [25] on the LibriSpeech dataset (1000 hours of speech) [9], it
takes 3-5 days to achieve the state-of-the-art accuracy when train-
ing on 16 GPUs [25]. In a shared deep learning cluster with various
training jobs submitted over time, efficient resource scheduling is
the key to maximize utilization of expensive resources (e.g., GPUs
and RDMA networks) for expedited training completion. However,
achieving high training performance and resource efficiency in deep
learning clusters is challenging with existing cluster schedulers.

First, schedulers used in existing ML/DL clusters (e.g., Google
uses Borg [63], Microsoft, Tencent and Baidu use YARN-like sched-
ulers [61]) allocate a fixed amount of resources to each job upon its
submission, according to resource requirements specified by the job
owner. Jobs already running in the cluster cannot benefit from extra
resources when they become available (e.g., during night time when
there are lower workloads), unless the cluster operator manually re-
configures their resource composition or a job owner resubmits the
job as new. This may well lead to low resource utilization efficiency.

Second, existing schedulers are designed for different workloads
but deep learning. For example, Mesos, Yarn and Borg are for
general-purpose cluster resource management, Corral [42] is de-
signed for periodic data-parallel jobs, and TetriSched [60] handles
reservation-based workloads. There is room for improving resource
utilization in deep learning clusters with a tailor-made resource
scheduler that leverages structures of deep learning frameworks
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(e.g., the parameter server architecture) and characteristics of deep
learning jobs (e.g., iterativeness, convergence properties) for maxi-
mal training efficiency.

This paper proposes Optimus, a customized cluster scheduler
for deep learning jobs in production clusters, which minimizes
job training time and improves resource efficiency as a result. We
focus on data-parallel DL training jobs using the parameter server
framework (§2). Optimus builds resource-performance models for
each job on the go, and dynamically schedules resources to jobs
based on job progress and the cluster load to minimize average job
completion time and makespan. Specifically, we make the following
contributions in developing Optimus.

> We build accurate performance models for deep learning jobs
(§3). Through execution of a training job, we track the training
progress on the go and use online fitting to predict the number
of steps/epochs required to achieve model convergence (§3.1). We
further build a resource-performance model by exploiting commu-
nication patterns in the parameter server architecture and iterative-
ness of the training process (§3.2). Different from existing detailed
modeling of a distributed deep learning job (such as in [69]), our
resource-performance model requires no knowledge about inter-
nals of the ML model and hardware configuration of the cluster.
The basis is an online learning idea: we run a job for a few steps
with different resource configurations, learn the training speed as a
function of resource configurations using data collected from these
steps, and then keep tuning our model on the go.

> Based on the performance models, we design a simple yet ef-
fective method for dynamically allocating resources to minimize
average job completion time (§4.1). We also propose a task place-
ment scheme for deploying parallel tasks in a job onto the servers,
given the job’s resource allocation (§4.2). The scheme further opti-
mizes training speed by mitigating communication overhead during
training.

> We discover a load imbalance issue on parameter servers with
the existing parameter server framework (as in MXNet [59]), which
significantly lowers the training efficiency. We resolve the issue
by reducing communication cost and assigning model slices to
parameter servers evenly (§5.3). We integrate our scheduler Op-
timus with Kubernetes [14], an open-source cluster manager for
production-grade container orchestration. We build a deep learn-
ing cluster consisting of 7 CPU servers and 6 GPU servers, and
run 9 representative DL jobs from different application domains
(see Table 1). Evaluation results show that Optimus achieves high
job performance and resource efficiency, and outperforms widely
adopted cluster schedulers by 139% and 63% in job completion time
and makespan, respectively (§6).

2 BACKGROUND AND MOTIVATION
2.1 DL Model Training

A deep learning job trains a DL model, such as a deep neural net-
work (DNN), using a large number of training examples, to mini-
mize a loss function (typically) [48].

Iterativeness. The model training is usually carried out in an itera-
tive fashion, due to the complexity of DNNs (i.e., no closed-form so-
lution) and the large size of training dataset (e.g., 14 million images
in the full Imagenet dataset [12]). The dataset is commonly divided
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Figure 1: Training curves
of ResNext-110 on
the CIFAR10 dataset

Figure 2: Training time
of deep learning models
in Table 1

into equal-sized data chunks, and each data chunk is further divided
into equal-sized mini-batches. In each training step, we process one
mini-batch by computing what changes to be made to the param-
eters in the DL model to approach their optimal values (typically
expressed as gradients, i.e., directions of changes), using examples
in the mini-batch, and then update parameters using a formula like
new_parameter = old_parameter — learning_rate X gradient. A
training performance metric is also computed for each mini-batch,
e.g., training loss (the sum of the errors made for each example in
the mini-batch) or accuracy (the percentage of correct predictions
compared to the labels), validation loss or accuracy (computed on
validation dataset for model evaluation). After all mini-batches in
training dataset have been processed once, one training epoch is
done.

Convergence. The dataset is usually trained for multiple epochs
(tens to hundreds) until the model converges, i.e., the decrease or
increase in the performance metric’s value between consecutive
epochs becomes very small. An illustration of the training curves,
the variation of training/validation loss and accuracy vs. the number
of training epochs, is given in Fig. 1, with the example of training
ResNext-110 [66] on the CIFAR10 dataset [2]. DNN models are
usually non-convex and we can not always expect convergence [29].
However, different from experimental models, production models
are mature and can typically converge to the global/local optimum
very well since all hyper-parameters (e.g., learning rate — how
quickly a DNN adjusts itself, mini-batch size) have been well-tuned
during the experimental phase. In this work, we focus on such
production models, and leverage their convergence property to
estimate a training job’s progress towards convergence.

Especially, we use the convergence of training loss to decide the
completion of a DL job. The DL model converges if the decrease
of training loss between two consecutive epochs has consistently
fallen below a threshold that the job owner specified, for several
epochs. Training loss based training convergence is common in
practice [48, 71] and the convergence of training loss often implies
the convergence of other metrics (e.g., accuracy) for production
models (i.e., no overfitting) [5]. Training/validation accuracy is dif-
ficult to be defined in some scenarios where there is no “right
answer’, e.g., language modeling [6]. Validation loss is usually used
to prevent model overfitting, and evaluation on validation dataset
is performed only when necessary (e.g., at the end of each epoch),
while we can obtain training loss after each step for more accurate
curve fitting (§3.1).
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2.2 The Parameter Server Architecture

Most distributed ML/DL frameworks (e.g., MXNet [59], Tensor-
Flow [23], PaddlePaddle [17], Angel [43], Petuum [67]) employ the
parameter server (PS) architecture [48] (Fig. 3). In this architecture,
the model (i.e., a DNN) is partitioned among multiple parameter
servers and the training data are split among workers. Each worker
computes parameter updates (i.e., gradients) locally using its data
partition and pushes them to parameter servers maintaining the
respective model parameters. After receiving gradients, parame-
ter servers update the model parameters using some optimization
algorithm, e.g., Stochastic Gradient Descent (SGD) [20]. Updated
parameters are sent back to the workers, which then start the next
training step, using the updated parameters.

There are two training modes: asynchronous training, where the
training progress (i.e., number of steps) at different workers in a job
is not synchronized and a parameter server updates its model parti-
tion each time upon receiving gradients from a worker; synchronous
training, where training progress at all workers is synchronized in
each step and a parameter server updates parameters after it has
collected gradients from all workers.

2.3 Existing Cluster Schedulers

Static resource allocation. Parameter servers and workers typ-
ically run in containers or virtual machines in a DL cluster, and
a cluster scheduler manages the resource allocation to training
jobs, e.g., Mesos [40] in a TensorFlow cluster [23], Yarn [61] for
clusters running MXNet [59] or Angel [43]. With these schedulers,
the owner of a training job specifies resource requirements, e.g.,
the numbers of parameter servers and workers, which remain un-
changed throughout the training process.

The numbers of workers and parameter servers used to run a
training job influence the training speed (i.e., the average number
of training steps completed per second), and hence the training
completion time significantly. Fig. 4 shows the training speed varies
with different numbers of workers and parameter servers deployed,
when we synchronously train a ResNet-50 model [39], one of the
state-of-the-art DNNs for image classification (details in Table 1),
on the ImageNet dataset [12]. Each container is configured with 5
CPU cores and 10GB memory, and can run 1 worker or 1 parameter
server. In Fig. 4(a), we fix the total number of containers to be 20,
i.e., if the number of workers is x, then the number of parameter
servers used is 20 — x. We can see the maximal training speed is
achieved when there are 8 workers and 12 parameter servers. In

Gradients Parameters

worker worker worker
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Figure 3: Parameter server architecture
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Fig. 4(b), we fix the ratio of the number of parameter servers to the
number of workers to be 1:1. We see that increasing resources do
not lead to linear training speed improvement, and can even slow
down model training.

In a production cluster, job training speed is further influenced
by many runtime factors, such as available bandwidth at the time.
Configuring a fixed number of workers/parameter servers upon
job submission is hence unfavorable. In Optimus, we maximally
exploit varying runtime resource availability by adjusting numbers
and placement of workers and parameter servers, aiming to pursue
the best resource efficiency and training speed at each time. Note
that the resource composition of each worker or parameter server
is still specified by the job owner.

Job size unawareness. Existing schedulers largely adopt FIFO
(as in Spark [70]), Dominant Resource Fairness (DRF) [34] (as in
Mesos [40] and Yarn [61]) or their variants as default scheduling
strategies, which are ignorant of job sizes (represented by input data
size, model complexity, or time taken to complete the job). It has
been shown that job performance can be improved by considering
job sizes when making scheduling decisions [30, 31]. For example, a
long job may block a series of short jobs with an FIFO scheduler that
is oblivious to the job sizes, causing starvation or long completion
time for short jobs.

Training completion time varies significantly among DL jobs.
Fig. 2 shows the training time of several representative DL models
on respective datasets, as given in Table 1, on a TITAN X Pascal
GPU. The training time varies from minutes (for simple models on
small datasets, e.g., CNN-rand [46]) to weeks (for complex models
on large datasets, e.g., ResNet-50 [39]). Optimus takes into account
projected job completion time for different DL jobs when dynami-
cally adjusting their resource allocation, to minimize average job
completion time.

3 PERFORMANCE MODELING OF DL JOBS

To make good resource scheduling decisions, we would like to know
the relation between resource configuration and the time a training
job takes to achieve model convergence. We derive this relation
by estimating online how many more training epochs a job needs
to run for convergence (§3.1), and how much time a job needs to
complete one training epoch given a certain amount of resources

(§3.2).
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Table 1: Deep learning jobs used for tests and experiments

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

Model # of parameters | Network type | Application domain Dataset Dataset size
(Million) (# of examples)
ResNext-110 [66] 1.7 CNN image classification CIFAR10 [2] 60,000
ResNet-50 [39] 25 CNN image classification | ILSVRC2012-ImageNet [12] 1,313,788
Inception-BN [58] 11.3 CNN image classification Caltech [1] 30,607
KAGGLE [13] 1.4 CNN image classfication Kaggle-NDSB1 [4] 37,920
CNN-rand [46] 6 CNN sentence classification MR [26] 10,662
DSSM [54] 1.5 RNN word representation text8 [49] 214,288
RNN-LSTM-Dropout [22] 4.7 RNN language modeling PTB [18] 1,002,000
Sequence-to-Sequence [33] 9.1 RNN machine translation WMT17 [21] 1,000,000
DeepSpeech2 [25] 38 RNN speech recognition LibriSpeech [9] 45,000
3.1 Learning the Convergence Curve —— ResNext-110 —— RNN-LSTM —— DS2
We draw the training loss curve with the training progress of each — CNN-rand — Seq2seq ResNet-50
DL job, and do online model fitting, in order to predict how far the —— DSSM KAGGLE — Inception
model is from convergence. 0 1.00-
Data preprocessing. For better model fitting, we carry out outlier S 0.75-
removal as follows: if a loss data point does not fall within a certain c
range of its neighbours (e.g., between the minimum loss in subse- O 050- \
quent 5 epochs and the maximum loss in previous 5 epochs), we - \
consider the data point as an outlier, and use the average value of E 0.25-
its neighbours to replace this point when doing model fitting. We §
0.00-

also normalize the loss values, by dividing each raw value by the
maximum loss value collected so far (typically the first loss value).
In this way, loss values in different DL jobs are all between 0 and
1. Fig. 5 shows example loss curves collected by running example
DL jobs in Table 1 (which are DL examples from official MXNet
tutorials [15, 16]), using the MXNet framework on a server with 1
E5-1650 v4 CPU and 2 NVIDIA TITAN X GPUs. The learning rate
of each job is set to be fixed. The training progress is the ratio of the
number of epochs a model has been trained over the total number
of epochs needed for convergence.

Online fitting. We observe that most DL jobs use SGD to update
parameters and approximate the optimal parameter values. Since
SGD converges at a rate of O(1/k) in terms of the number of steps
k, we use the following model to fit the training loss curve:

1

l=—— +
Po -k +p

B2 (1)

where [ denotes the training loss, and fy, 1 and f are nonnegative
coefficients. Our online model fitting is carried out as follows: after
each training step, we collect a training loss data point (k, [); we
then preprocess the data as described above and use a non-negative
least squares (NNLS) solver [7] to find the best coefficients that fit
the loss points collected so far. In some cases hundreds of thousands
of steps are needed to achieve model convergence; in such a case
we can sample loss data every few steps, or average the values of
several data points (e.g., all losses in an epoch) as a single data point,
to reduce the number of data points fed into the solver. Since we
can collect more and more loss data as the job runs, the fitted model
improves continuously. An example of model fitting when training
the Seq2Seq model [33] in Table 1 is given in Fig. 7.

At each step, using the fitted loss model and the predefined con-
vergence threshold §, we can easily calculate the total number of

0 200 40 60 80 100

Progress (%)

Figure 5: Training loss curves for different DL jobs

steps/epochs a job needs to achieve convergence, as well as the
number of steps/epochs left from now until convergence. With
more and more data points collected for model fitting, the esti-
mation of the total number of steps/epochs a job needs improves
gradually, as illustrated in Fig. 6. Here the prediction error is the
difference between the estimated total number of epochs for the
model training to converge and the actual total number of epochs
needed, divided by the actual number.

3.2 Resource-Speed Modeling

We next build a resource-to-speed model based on computation
and communication patterns in the parameter server architecture.

System models. In a typical DL job, the time taken to complete
one training step on a worker includes the time for doing forward
propagation (i.e., loss computation) and backward propagation (i.e.,
gradients computation) at the worker, the worker pushing gradients
to parameter servers, parameter servers updating parameters, and
the worker pulling updated parameters from parameter servers,
plus extra communication overhead. Suppose there are p parameter
servers and w workers in the job. The bandwidth capacity of each
parameter server is B, and the model size (i.e., total bytes of param-
eters) is S. The forward propagation time when a worker trains a
minibatch is m-Tfop1yqrq (the size of a mini-batch times the average
processing time of one example). The backward propagation time
Tpack is not related to m and is typically fixed. The size of gradients
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Figure 6: Prediction errors in different DL jobs

is the same as the model size S. If the parameters are evenly dis-
tributed on parameter servers (load balanced to be achieved in §5.3),
the size of gradients sent between a worker and a parameter server
is % In practice, the bandwidth bottleneck between a worker and
a parameter server usually lies at the parameter server side. Let w’
denote the number of workers that send gradients to a parameter
server at the same time. Then the bandwidth between the worker
and parameter server p is WA}). Pushing gradients and pulling up-

dated parameters are symmetric processes, so the data transfer time

S/p
B/wj,

Tupdute Wlp

of each worker is 2 . The parameter update time on a param-

eter server is on average, where Ty;pq4¢¢ is the time
to update parameters with size S. In addition, the communication
overhead (e.g., handling TCP connections and control messages
between parameter servers and workers) increases linearly with
the number of parameter servers and the number of workers. It is
represented by § - w + &’ - p where § and ¢’ are coefficients.

Therefore, the duration of one training step on a worker can be
modeled as

S/p + Tupdate 'W;)
B/w}, P

T = m;lx[m “Trorward + Toack +2

+5-w+8 -p] 2)

According to Eqn. 2, the workers should have similar processing
speeds and parameter servers should be load-balanced, in order
to achieve minimal time per training step. We will discuss how to
handle slow workers in §5.2 and achieve load balancing among
parameter servers in §5.3.

We next derive the training speed in a job based on Eqn. 2, which
is the number of training steps completed per unit time. We divide
our models in two cases.

Asynchronous training, where the workers process mini-batches at
their own pace. The overall number of training steps completed
by all workers per unit time is w - T~!. Suppose w;, is linear with
w, since more workers may concurrently communicate with one
parameter server if the total number of workers is larger. Then the
training speed achieved with p parameter servers and w workers

can be modeled as
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f(p,w>:w~<eo+el%+ez-w+ea-p>-1 3)

where 0 are positive coefficients, corresponding to respective terms
in Eqn. 2. For example, 6 corresponds to the term m - Topiyqra +
Tpack in Eqn. 2. Instead of measuring each term (e.g., Trorward):
we seek to learn the coefficients by fitting the model with runtime
data collected for each job.

Synchronous training, where all workers progress from one step
to the next at a synchronized pace. The training speed is T~'. w;
equals w since all workers are synchronized. For synchronous train-
ing, the batch size, i.e., the overall size of all mini-batches trained
by all workers in each step, needs to remain the same, no matter
how we adjust the number of concurrent workers over time. This
guarantees that the same training result (model) can be achieved
while varying the number of workers [36]. Let M denote the batch
size which is typically specified in the training job when the owner
submits it. Then the mini-batch size on each worker is m = % The
training speed function can be modeled as

f(p,w):(eo-%+91+92-%+03-w+04-p)_1 4)

where 0 are positive coefficients, to be learned for each job.

Model fitting. To learn the values of 8’s and build the training
speed functions in Eqn. 3 and Eqn. 4, we need to collect data points
(p, w, f(p, w)). Before we run each training job, we train its model
on a small sample set of training data for several steps, with possible
combinations of p and w. Each run takes about tens of seconds. In
each run, we derive the average training speed under (p, w). Due
to the iterative nature of DL model training, training for several
steps is enough to give us a good idea of the training speed f(p, w).
Then we use NNLS to find €’s that best fit the collected data points
(p, w, f(p, w)). This initial training speed function constructed is
used for resource scheduling decisions when we start running the
actual job. Over the training process, we keep collecting data points
(p, w, f(p,w)) and use them to calibrate coefficients in our training
speed models.

Fig. 9 shows the collected data points and the fitted training
speed function curves, when we run the ResNet-50 job in a cluster
of 40 containers using synchronous training and asynchronous
training, respectively. We make three important observations: (a)
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Table 2: Coefficients in speed functions

Residual sum of
o1 02 o O o squares for fitting
Async | 2.83 | 3.92 | 0.00 | 0.11 - 0.10
Sync 1.02 | 2.78 | 492 | 0.00 | 0.02 0.00
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Figure 9: Data points and fitted curves of speed functions
for asynchronous training (a)(b) and synchronous training

(9)(d)

our speed function can closely describe the relationship between
the training speed and resource configurations; (b) due to commu-
nication overhead, there is a trend of diminishing return where
adding more parameter servers or workers does not improve the
training speed much; (c) for synchronous training, more workers
may lead to lower training speed. This is because more workers
lead to smaller mini-batch size % (i.e., a lower workload on each
worker), which may cause CPU/GPU under-utilization. Meanwhile,
a larger number of workers lead to higher synchronization cost and
communication overhead.

Table 2 lists derived coefficients in the speed functions for asyn-
chronous and synchronous training, respectively. We find that for-
ward propagation, backward propagation and data transfer make
up most of the training time in one step, since coefficients of these
quantities are relatively large.

The reason why we produce the initial training speed function
under possible combinations of p and w before running the actual
job, is the following: (p, w) pairs used in actual resource configura-
tion when running each job are limited; training speed functions
learned using the limited data points may be biased, diverting re-
source allocation decisions away from the optimum. One question
is how many possible (p, w) pairs we should try out to initialize
the speed function, to achieve high model fitting accuracy. For the
above ResNet-50 example, there are 780 possible (p, w) pairs. Fig. 8
shows the estimation errors of training speeds when we randomly
select a number of samples, i.e., (p, w) pairs, to produce the training
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speed function. The estimation error is the ratio of the gap (between
the measured speed and the estimated speed) over the measured
speed. We observe that: (a) we can get a less than 10% error even
when we only use 10 (p, w) pairs to learn the speed function; (b) us-
ing more (p, w) pairs leads to smaller error, but with a diminishing
return.

4 DYNAMIC SCHEDULING

In our DL cluster, jobs arrive in an online manner. Optimus peri-
odically allocates resources to the active jobs (new jobs submitted
in the previous scheduling interval and unfinished jobs submit-
ted earlier), by adjusting the numbers and placement of parameter
servers/workers in each job in the shared DL cluster. Its schedul-
ing algorithm consists of two parts: resource allocation and task
placement.

4.1 Resource Allocation

In each scheduling interval, let Q; denote the remaining number of
steps/epochs that a job j needs to run to achieve model convergence
(§3.1), and f(p;, wj) be the current training speed function for job
J (§3.2). We can estimate the remaining running time t; of job
j as % Let O; (N jr ) denote the amount of type-r resource
each worker (parameter server) in job j occupies. Cy is the overall
capacity of type-r resource in the DL cluster and R is the number
of resource types. J is the set of current active jobs. Our scheduler
aims to minimize the average completion time of these jobs. We can
solve the following optimization problem to decide the numbers
of workers/parameter servers for each job j € J, where (7) is the
capacity constraint:

minimize Z tj ®)

JjeJ
%

subject to: tj = ——— Vjie] ©)
77 fpy w))
Z(wj O +p;-NJ)<Cr  VreR @)
JjeJ
pjeZt,wiezZt VjeJ ®)

The problem is a non-linear (and even non-convex) integer pro-
gramming problem since Eqn. 6 is not a linear/convex constraint.
It can not be solved using LP/convex solvers and is NP-hard in
general, so we design an efficient heuristic to solve it. We define
the marginal gain in job completion time reduction as follows:

Q9 Qj
fpw)  flpj+1,w))
( Qi Qj

fpw)  flpj,wi+1)
Here D (D’) is the dominant resource of workers (parameter servers)

in job j. A dominant resource is the type of resource that has the
maximal share in the overall capacity of the cluster, among all

)INP,

max {(

)/oP'} ©)

resources used by a worker (parameter server) [34]. % -
J> ]

f(p»Q»{;-H) (f(pQ‘ij) _f@‘%' w‘)) is the reduction in job completion
j» Wi ji» Wi jt1wj

time when one worker (parameter server) is added to job i; dividing
it by the amount of dominate resource that a worker (parameter
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Figure 10: An example of worker/parameter server place-
ment: (c) is the best

server) occupies, we obtain the marginal gain per unit dominant
resource consumption.

Our resource allocation algorithm in each scheduling interval
works as follows. We first allocate one worker and one parameter
server to each active job to avoid starvation, and then sort all jobs
in order of their marginal gains computed using (9). Then we iter-
atively select the job with the largest marginal gain and add one
worker or parameter server to the job, according to which of the
two terms in (9) is larger (i.e., whether adding a worker or adding a
parameter server brings larger marginal gain). Marginal gains of
the jobs are updated when their resource allocation changes. The
procedure repeats until some resource in the cluster is used up, or
marginal gains of all jobs become non-positive.

The algorithm makes use of predictions based on online fitted
models in §3. To mitigate its performance degration due to predic-
tion errors, we can downgrade the priority of a job a bit when it is
at the beginning state (i.e., larger prediction errors) by multiplying
its marginal gain (i.e., the computed value in (9)) by a factor (e.g.,
0.95). Smaller marginal gain of a job means less resources allocated
to it, thus mitigating the influence of large prediction errors at the
start of training.

4.2 Task Placement

In our model of the training step duration in Eqn. 2, processing time
on workers and parameter servers are fixed. We can reduce the
time, a.k.a. improve the training speed, by reducing the time spent
on parameters/gradients exchange among workers and parameter
servers, which is mainly decided by their placement on different
servers in the cluster.

To understand how placement affects the training speed, consider
a cluster with 3 servers and a synchronous training job using 2
parameter servers and 4 workers. Each server can host 3 parameter
servers or workers. The bandwidth at each parameter server or
worker is 1. The size of gradients/parameters transferred between
a parameter server and a worker in one training step is 1. Fig. 10
illustrates 3 possible ways of placing the workers/parameter servers.
With placement (a), the 2 parameter servers and 4 workers need to
transfer 3,3, 1, 1, 2, 2 units of data across servers, respectively. Take
ps1inFig. 10 as an example for illustration: it needs to communicate
with worker2, worker3 and worker4 across servers, so it transfers 3
units of data. Note that the bandwidth between a parameter server
and a worker is determined by the bandwidth capacity at both ends
and the time is decided by the slowest transfer. Therefore, the data
transfers of ps1 and ps2 are the slowest, and we can obtain that
the data transfer time in one training step with placement (a) is 3.
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Similarly, the data transfer time with placement (b) is 3 and with
placement (c) is 2. Therefore, in this example, placement (c) is the
best solution.

THEOREM 1. Given the numbers of workers and parameter servers
in a synchronous training job, the optimal worker/parameter server
placement principle to achieve the maximal training speed for the
job, in a cluster of homogeneous servers, is to use the smallest number
of servers to host the job, such that the same number of parameter
servers and the same number of workers are deployed on each of these
servers.

The detailed proof is given in the Appendix. The principles be-
hind the proof are that (a) colocating workers and parameter servers
can reduce cross-server data transfers, and (b) packing the same
number of workers/parameter servers of a job on each server can
minimize the maximal data transfer time in each step of synchro-
nous training. We can also apply these principles to asynchronous
training jobs to balance the training speeds of multiple workers.

Based on these principles, we design a placement scheme to min-
imize the data transfer time during training as follows. We sort all
servers in the cluster in descending order of their current resource
availability (available CPU capacity is used in our experiments). We
place jobs in increasing order of their resource demand (i.e., smallest
job first) in order to avoid job starvation (i.e., small jobs do not get
any resources). For each job, we check whether the resources on
the first k servers are sufficient to host the job (starting with k = 1).
If so, we place parameter servers and workers in the job evenly on
the k servers; otherwise, we check the first k + 1,k + 2, - - - servers
until we find enough servers to place the job. We then update avail-
able resources on the k servers and sort the server list again. The
above procedure repeats until all jobs are placed or no sufficient
resources on the servers are left to host more jobs. Note that the
number of jobs the servers can accommodate might be smaller than
the number of jobs we allocate resource to through the resource
allocation algorithm (which considers overall resource capacity in
the entire cluster). Jobs which are not placed will be temporarily
paused and rescheduled in the next scheduling interval.

5 SYSTEM IMPLEMENTATION

We next present some implementation details of Optimus.

5.1 Data Serving

We store training data in Hadoop Distributed File System (HDFS) [3]
with a default chunk size of 128MB and a replication factor of 2. At
the beginning of a job, we assign a roughly equal number of chunks
to each worker in a round-robin manner, so that each worker has a
similar workload. When the number of workers changes due to our
dynamic scaling, we reassign the data chunks so that the workload
on each worker is still balanced.

5.2 Straggler Handling

Stragglers, i.e., slow workers (we will discuss the case of slow pa-
rameter servers in §5.3), influences a synchronous training job
significantly, due to the need of synchronizing all workers in each
training step. For asynchronous training, it is also important to
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ensure the workers have similar training speeds so that the param-
eters on any worker are not too stale; parameter staleness may
lead to unstable training progress and hence additional training
steps to achieve convergence [27]. In a distributed DL framework,
stragglers may happen due to a number of reasons, e.g., resource
contention, unbalanced workload.

To detect stragglers in an asynchronous training job, we simply
monitor each worker’s training speed: if a worker is too slow (e.g.,
half speed from the median), we consider it as a straggler. For syn-
chronous training, the training speeds at the workers are the same
since they are synchronized. To identify a straggler, we monitor
the arrival time of each worker’s gradients on parameter servers
and calculate the training speed of each worker as the gap between
the arrival time of two steps. We replace a straggler by launching a
new worker.

5.3 Load Balancing on Parameter Servers

Our DL jobs are running on the MXNet framework. We identify
possible significant load imbalance among parameter servers in
MXNet, due to its way of dividing model parameters among pa-
rameter servers: for each block of parameters (i.e., parameters of
one layer in an NN), if its size (i.e., the number of parameters) is
smaller than a threshold (10° by default), then it is assigned to one
parameter server randomly; otherwise it is sliced evenly among all
parameter servers. Setting the threshold is difficult since different
models may have different appropriate thresholds, and different
threshold values often lead to a big difference in computation work-
load among parameter servers. Such a load imbalance problem also
exists in other distributed ML frameworks such as TensorFlow.

To balance the workload among parameter servers (mainly due
to parameter update computation and communication overhead),
we seek to minimize (a) the maximal difference of parameter sizes
between two parameter servers, (b) the total number of parameter
update requests between parameter servers and workers during
one training step (each request from a worker asks for one updated
parameter block), and (c) the maximal difference of the number
of parameter update requests between two parameter servers. We
design a parameter assignment algorithm (PAA) as follows.

We sort parameter blocks in decreasing order of size and calculate
the average parameter size avg_size, i.e., the overall parameter size
divided by the number of parameter servers. For each block, if its
size is very small (e.g., less than 1% of avg_size), then we assign it
to the parameter server with the least number of update requests.
If the block size is between 1% of avg_size and avg_size, we assign
the block to the parameter server with the smallest remaining
capacity (avg_size minus the size of parameters assigned), that can
accommodate it (a best-fit approach). If the block size is larger than
avg_size, we further slice it into partitions with size avg_size or
less (for the last partition), and assign the sliced partitions to the
parameter server with the smallest size of parameters assigned.
Once a parameter block (or partition) is assigned to a parameter
server, we add the number of parameter update requests on the
server by 1.
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5.4 Elastic Training on MXNet

To adjust resource allocation to jobs (i.e., numbers of workers and
parameter servers) during training, we adopt a checkpoint-based
method. When the number of workers or parameter servers as-
signed to a job changes, we checkpoint the model parameters and
save them to HDFS [3]. Then we restart the job from the checkpoint
and redeploy parameter servers and workers based on the schedul-
ing decisions. In practical DL clusters, multiple distributed training
frameworks may be used. Our approach is simple and general, and
can be easily extended for resource scaling in other frameworks
with little code modification.

5.5 Scheduler on Kubernetes

We deploy our scheduler Optimus as a normal pod (i.e., a unit of
deployment that couples one or more containers tightly) on Kuber-
netes 1.7 [14], which polls the Kubernetes master to obtain cluster
information and job states. For fault-tolerance, we use etcd [10] (i.e.,
a distributed reliable key-value storage) as fault-tolerant storage of
job states. Kubernetes will automatically restart the scheduler if it
fails.

6 EVALUATION

6.1 Methodology

Testbed. We built a testbed that consists of 7 CPU servers and 6
GPU servers. Each CPU server has two 8-core Intel E5-2650 CPUs,
80GB memory, two 300GB HDDs. Each GPU server has one 8-core
Intel E5-1660 CPU, two GeForce 1080Ti GPUs, 48GB memory, one
500GB SSD and one 4TB HDD. They are connected by a 48-port Dell
N1548 1GbE switch. We deployed Kubernetes 1.7 [14] and HDFS
2.8 [3] in the cluster.

Simulator. To evaluate Optimus at a larger scale of cluster and
understand its performance with more parameter choices, we also
implemented a discrete-time simulator. The simulator uses the
following from the traces collected from our testbed experiments:
training losses of each kind of jobs, training speeds under different
resource configurations, resource capacities of each server, job
configurations (e.g., resource requirements of workers/parameter
servers), DL model details (e.g., parameter size).

Workload. Job arrival happens randomly between [0,12000] sec-
onds. Upon an arrival event, we randomly choose the job among
the examples in Table 1 and decide to run it using asynchronous
training or synchronous training randomly. We vary the conver-
gence threshold of jobs between 1% and 5%. For jobs training large
models, e.g., the ResNet-50 model or the DeepSpeech2 model, we
downscale their dataset sizes so that the experiment can be finished
in a reasonable amount of time, as otherwise each experiment run
would last for weeks. We verified that the models still converge
with the small datasets. After downscaling, one experiment run
takes about 6 hours and we repeat each experiment for 3 times to
obtain the average results.

Baselines. We compare Optimus with two representative sched-
ulers, implemented on Kubernetes as well: (i) A fairness-based
scheduler adopted in many resource managers such as Hadoop [11],
Yarn [61] and Mesos [40], which uses Dominant Resource Fairness
(DRF) [34] to allocate resources to jobs and dynamically reschedules
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Figure 11: Performance
comparison

Figure 12: Scalability test

jobs in each scheduling interval. The workers/parameter servers are
placed in a load balancing way, according to the default behavior of
Kubernetes. (ii) Tetris [37], which preferentially allocates resources
to jobs with low duration or small resource consumption and packs
jobs to servers to minimize resource fragmentation. Since Tetris
does not have its own mechanism to estimate the remaining time
of a deep learning job, we use our speed function and convergence
estimation to provide Tetris with such information. We set the ratio
of the number of parameter servers to the number of workers to
1:1 [19] in both schedulers.

Metrics. We use the average job completion time (JCT) as an indi-
cator of system performance. In addition, we evaluate the makespan
as an indicator of resource efficiency, which is the total time elapsed
from the arrival of the first job to the completion of all jobs. Minimiz-
ing makespan is equivalent to maximizing resource efficiency [37].

To initialize the training speed function for each job, we pre-run
a job on a small dataset with 5 different combinations of (p, w). Each
scheduling interval is 10 minutes long. We set the priority factor in
§4.1 to 1 and set the very small parameter block size in §5.3 to 1%
of avg_size by default.

6.2 Performance

Comparison with baselines. Fig. 11 shows that Optimus can re-
duce the average completion time and makespan by 2.39x and 1.63x
respectively in comparison to the DRF-based fairness scheduler.
The average value and standard deviation of JCT and makespan are
further presented in Fig. 13. We see that Optimus, DRF and Tetris
use 4.1, 6.7 and 5.0 hours to finish all jobs, respectively. To see more
details, Fig. 14 shows the number of running tasks and normalized
CPU utilization of tasks in each time slot (i.e., CPU utilization di-
vided by overall allocated CPU capacity on a parameter server or a
worker) during the whole experiment run. Optimus does not run
a large number of tasks as compared to DRF. The reason is that
DRF is work-conserving and allocates as many resources to a job
as possible, but more resources do not mean higher training speed,
as demonstrated in §3.2. Further, the normalized CPU utilization of
workers and parameter servers in Optimus is larger than that of DRF
and Tetris. It shows that Optimus can utilize allocated resources
more efficiently.

Resource adjustment overhead. The overhead of changing from
one (p, w) configuration to another in a job is measured by the
percentage of time spent on adjusting resources for the job. In our
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experiments, the overall scaling overhead is 2.54% of the makespan,
which is acceptable compared to the performance gain.

Scalability. To evaluate whether Optimus is sufficiently fast and
scalable to large-scale clusters, we emulate submitting and sched-
uling a large number of jobs in a cluster with thousands of nodes.
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Figure 15: Sensitivity to prediction errors

Figure 12 shows the scheduling time when Optimus runs on one
core of Intel E5-1620 v4 CPU. Optimus can schedule 4,000 jobs (about
100,000 tasks) within 5 seconds on a cluster of 16,000 nodes. This is
comparable to the performance of Kubernetes’ default scheduler,
i.e., 150,000 tasks in 5,000 nodes within 5 seconds [64]. Besides, since
Optimus makes scheduling decisions at each scheduling interval
(e.g., 10 minutes), the scheduling overhead is very small.

6.3 Sensitivity analysis

Prediction error. We examine to what extent Optimus is affected
by the prediction errors of convergence time and training speed.
We carry out simulation under different error levels: suppose the
true number of epochs for convergence (training speed) is v and
the error is e; we use v (1+e¢) or v- (1 —e) as the initial input to our
scheduler, decreasing with job progress. We run each simulation
for 100 times to obtain average results.

In Fig. 15, the convergence (speed) curve plots the resulting
average JCT/makespan when we add errors of different levels in
convergence epoch (training speed) prediction. When the error is
larger, JCT and makespan both increase, but with a diminishing
speed. If the error of convergence estimation is 20% and the error
of training speed estimation is 10%, there is about 15% performance
gap compared to the case where the estimation errors are 0. Com-
pared to the error of convergence estimation, the error of speed
estimation affects the performance more. Fortunately, we can esti-
mate training speed much more accurate (10% error) than training
convergence (20% error).

To see the effect of our technique at the end of §4.1, we have
also done evaluation with the priority factor set to 0.95. In this
case, the average JCT and makespan are 2.66% and 1.88% smaller,
respectively, which validates the effectiveness of our technique in
improving the overall scheduling performance.

Varying workloads. We examine how training modes affect the
performance. Instead of randomly selecting between asynchro-
nous and synchronous training (§6.1), we either train all jobs in
asynchronous mode or synchronous mode. Fig. 16 shows that Opti-
mus outperforms the other two schedulers in both cases, and the
performance gain is larger when all jobs use synchronous training.
This is because all workers have the most updated parameters with
synchronous training, such that model convergence is more stable
and convergence estimation error is smaller. The training speed of
all workers are the same in synchronous training and the speed
estimation error is smaller, as verified in §3.2.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo

2.4
S Optimus 2.5 P13 EmE Optimus
2.0 1.97 AN DRF' \\1 NN\ DRF4
—— Tetris 2.0 N\ 91 —— Tetris

2
7

2164
He \\\: 1.36 15
1200 \§§ 1.00§1:'71
0.8 | W=l \\=

JCT  Makespan

7
L
D
w

'Z
frr

Makespan
(b) Sync

i)
—

(a) Async

Figure 16: Sensitivity to workloads: training modes

2.4 BEE Optimus 2.4 BEE Optimus
215 N\ DRF 2-2\1 .\ DRF
2.0 N\)\1.82 — Tetris 2.0 \\ 78 Tetris

ff

|

|

-Z

| \m

%
|1

1.6 §€ A0 1.6
1.2 1.0%% 1.00Q1:'1:5 1.2
0.8 ‘%E [ N\ 0.8

JCT  Makespan

I
-

MakesEgn

(a) Poisson (b) Google cluster trace

Figure 17: Sensitivity to workloads: job arrival processes

We further investigate Optimus’s performance under two other
job arrival processes. The first is a Poisson process with 3 arrivals
per scheduling interval. The second is extracted from Google clus-
ter workload traces over a 7 hour period [8]. Fig. 17 shows that
Optimus still outperforms the other two schedulers and the perfor-
mance gain is larger when using Google cluster traces. There are
many job arrival spikes in the traces and Optimus can handle them
better than DRF and Tetris by efficiently allocating resources.

6.4 Inspecting Detailed Designs in Optimus

Resource allocation. To see how effective our marginal gain-
based resource allocation algorithm is, we replace it with the re-
source allocation schemes in the fairness scheduler or Tetris, while
still adopting the same task placement algorithm in Optimus. Fig. 18
shows that the average completion time and makespan are reduced
by 62% and 31% respectively when using Optimus, as compared to
the fairness scheduler. That is, the resource allocation algorithm in
Optimus is critical for high job performance and resource efficiency.

Task placement. We further examine the task placement algo-
rithm in Optimus to see to what extent it contributes to job per-
formance and resource efficiency. For comparison, we place tasks
using the placement algorithm in the fairness scheduler (i.e., in a
load-balancing way) and Tetris (i.e., minimizing resource fragmen-
tation), but still use the resource allocation algorithm in Optimus.
Fig. 19 shows that our algorithm reduces average completion time
and makespan by about 10% compared to Tetris and 15% compared
to DRF.

Parameter server load balancing. The difference of parameter
sizes among parameter servers, the difference of the number of
parameter update requests among parameter servers and the total
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Table 3: Comparison of parameter distribution

. Difference of Difference of # | Total # of
Algorithm .
parameter sizes of requests requests
MXNet 3.6M 43 247
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number of update requests between parameter servers and workers
are three main factors that represent load imbalance or overhead
on parameter servers. Table 3 shows values of the three factors
achieved with our PAA algorithm (in §5.3) and with the default
parameter distribution algorithm in MXNet, using the ResNet-50
model [39] with 25 million parameters formed into 157 parameter
blocks. Our algorithm does not split any parameter block further
(since the total number of parameter update requests is 157, the
minimal for 157 parameter blocks) while keeping minimal the differ-
ence of parameter sizes (i.e,, 0.1M) and the difference of the number
of requests (i.e, 1).

To see the effectiveness of balanced parameter distribution on the
training speed, we train ResNet-50 on the ILSVRC2012 ImageNet
dataset [12] by fixing the number of workers to 10 and varying the
number of parameter servers, using synchronous training. Fig. 20
shows the training speed with and without our load balancing
algorithm. We can see PAA improves the training speed especially
when the number of parameter servers is large. Fig. 21 further shows
the improvement when more models are trained using synchronous
training, 10 workers and 10 parameter servers: PAA achieves up
to 29% speedup compared to the MXNet algorithm. We observed
similar results with asynchronous training.

In summary, the highlights of our evaluation results are as follows.
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(1) Testbed experiments show that Optimus improves average job
completion time and makespan by 139% and 63% compared to
the fairness scheduler. Further, Optimus can scale to schedule
100,000 tasks on 16,000 nodes in 5 seconds, and its resource
adjustment overhead is small, i.e., 2.54%.

(2) Further improvement of estimation accuracy will not increase
Optimus’s performance much (15%) and Optimus performs bet-
ter than DRF and Tetris under various workloads.

(3) The resource allocation algorithm, the task placement scheme
and the parameter server load balancing algorithm contribute
to Optimus’s performance improvement by about 62%, 17%, 20%
respectively.

7 DISCUSSIONS
We now discuss extensions and future work on Optimus.

Various workloads. While Optimus targets scheduling of deep
learning jobs, it can be used in DL clusters with mixed workloads
(e.g., data analytics, online services). For example, in a Kubernetes
cluster, we can plug in multiple schedulers and each scheduler is re-
sponsible for one kind of workloads. In such case, Optimus may ask
for resources from a central cluster resource manager and schedule
deep learning jobs on a varying portion of cluster resources.

Convergence estimation. For some DL models (e.g., ResNet [39]),
the learning rate may be reduced significantly (e.g., by a factor
of 0.1) when training reaches a predefined condition, in order to
minimize loss further (e.g., as with SGD). In such a case, we can
treat the model training after learning rate adjustment as a new
training job and restart online fitting. In addition, the training loss
curves of some models (e.g., A3C [51]) cannot be described or can
only be partly described using our fitting function in Eqn. (1), but
they may be fitted using other functions based on the convergence
speed of optimization algorithm [71]. One possible solution is to let
the job owner provide the functions, based on the previous running
experience of such jobs [71].

Scaling overhead. We use a checkpoint-based method to adjust
the resource configuration of a job due to its simplicity and general
implementability. This approach may bring quite large overhead
if the job has hundreds of workers/parameter servers. To reduce
checkpointing overhead, we may set a threshold of checkpointing
times for each job to limit the restarting frequency. For long or
large jobs, the threshold can be smaller to avoid frequent resource
reallocation.

8 RELATED WORK

Performance modeling. Jockey [32] and Morpheus [44] use his-
torical traces of periodic jobs and dynamically adjust resource
allocations to meet deadlines, while Optimus does not depend
on the previous run of the same job since production training
data often change (e.g., daily). PerfOrator [53] builds a resource-to-
performance model of big data queries by estimating query size
and profiling hardware, while we use high-level system modeling
approach without the knowledge about hardware or the internal
details of a job. To map resources to training speed, we build and
fit a parametric performance model based on sample runs. This
approach has been applied in other work, such as job execution
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time estimation [56] and data size estimation of SQL queries [53].
Ernest [62] also adopts a similar approach to estimate the com-
pletion time of data analytics. It designs an experimental theory
to minimize sampling overhead. In comparison, Optimus has a
relatively small configuration space (i.e., the number of tasks) and
5-10 sample runs are enough for fitting the performance model
quite accurately. PREDIcT [52] uses sample runs for capturing the
convergence trend of a graph algorithm, which is infeasible for
deep learning training since the size of dataset affects convergence.
Yan et al. [69] model the training of deep learning neural networks
at a very fine granularity (e.g., the computation time of each op-
erator on a specific CPU, neural network structures, etc.) while
our models capture high-level computation and communication
patterns. Bayesian Optimization is a parameter-free approach used
in many other works (e.g., FABOLAS [47], BOAT [28], CherryP-
ick [24]) to search best hyperparameters/resource configuration
for a model/job. This approach is not applicable to our problem
since we need a parametric performance model to describe the
relation between the number of tasks and training speed, so that
the scheduler can exploit this relation to optimize global scheduling
of all concurrent jobs.

Job scheduling. There have been many efforts on cluster/cloud
resource allocation to achieve different objectives. Corral [42] and
Morpheus [44] focus on periodic or predictable workloads. Borg [63],
Fuxi [72], Firmament [35] are designed for heterogenous workloads
in a large-scale cluster and support policy-based scheduling (e.g.,
fairness, data locality, job priority). Instead, our work focuses on
deep learning workload. Mesos [40] and Yarn [61] use DRF [34] to
allocate resources while we focus on resource efficiency and job
performance. TetriSched [60] and Morpheus [44] also dynamically
allocate resources in a global way, but they focus on reservation-
based or periodic jobs with specified deadlines. Eagle [30] is a hybrid
scheduler designed to solve the head-of-line problem: it dynam-
ically divides the cluster resources into two partitions for short
jobs and long jobs. Optimus instead focuses on dynamic resource
configurations of jobs. There are several studies [41, 57, 71] on re-
source allocation of classical machine learning jobs (e.g., clustering,
logistic regression) on Spark MLIib [70]. Huang et al. [41] propose
a memory optimizer for Spark master and workers given a ma-
chine learning program. SLAQ [71] targets the training quality of
experimental ML models instead of models in production. It adopts
similar online fitting technique to estimate the training loss of con-
vex algorithms. Dorm [57] uses a utilization-fairness optimizer to
schedule jobs. The main difference is that our work focuses on
deep learning jobs running on parameter server architecture. We
leverage the characteristics of the jobs to design resource allocation
algorithm and task placement scheme, and demonstrate significant
performance improvement. STRAD [45] proposes a programming
approach to improve model convergence by scheduling parameter
updates for model-parallel machine learning, while we did not delve
into modifying the underlying ML frameworks. Azalia et al. [50]
use a model-free deep reinforcement learning method to achieve
model parallelism that maximizes training speed of a given model
in a single machine. Such an approach is yet to be general and effi-
cient for resource allocation in a deep learning cluster. Proteus [38]
exploits transient virtual machines in EC2 to complete ML jobs in
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an efficient and cheap way. They use a simpler performance model
and focus more on the expected cost due to dynamic bidding prices.

Distributed machine learning frameworks. The parameter server
architecture was first introduced in [55] and improved with up-
date primitives, fault tolerance and communication optimization
in [29, 48, 67]. Most distributed machine learning frameworks (e.g.,
MXNet [59], Petuum [67], TensorFlow [23], Angel [43]) are im-
plicitly or explicitly built upon this architecture. Our work targets
scheduling jobs running on these frameworks. We find that the
load imbalance problem is common in these distributed frameworks
and we propose and implement the PAA algorithm in one of the
frameworks, MXNet.

9 CONCLUSION

Optimus is a customized cluster scheduler targeting high training
performance and resource efficiency in deep learning clusters. At its
core is an accurate performance model for deep learning workloads,
built by exploiting the characteristics of DL model training (e.g., con-
vergence property, iterativeness) and communication patterns of
the parameter server architecture. Based on the performance model,
we design a marginal gain-based resource allocation algorithm and
a training speed-maximizing task placement scheme. Our exper-
iments on a Kubernetes cluster show that Optimus outperforms
representative cluster schedulers significantly.
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APPENDIX
Proof of Theorem 1

Proof: Assume there are K nodes (physical servers) in the cluster
and the number of parameter servers on node k is pjy. for job j, the
number of workers on node k is wjy for job j. Assume the capacities
of the K nodes are sufficient for placing the job. Let B; denote the
bandwidth requirement of each parameter server in job j and b;
be the bandwidth requirement of each worker in job j. Let S; be
the model size of job j. Then the data (gradients/parameters) trans-
mission time in job j for each training step in case of synchronous
training is

S; Si
7 Wi = wik) 5-(pj = pjk)
B; ’ b;

max
ax {

Then we can formulate the worker/parameter server placement
problem for tranmission time minimization as follows.
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S; S;
;;(Wj - Wik) ;j.(Pj - pjk)
B; ’ b;

subject to: Zij =pj
3

k

ij €Z+, Wik ezZ”

minimize max{
k

We decompose the above problem to the following two subprob-
lems whose solutions are guaranteed to be the optimal solution of
the above problem. Each subproblem is a lexicographical min-max
problem whose optimal solution is to place tasks evenly. Combining
the optimal solution of the two subproblems, one optimal solution
of the original problem is to place parameter servers evenly and
place workers evenly on the K nodes.

Subproblem 1:

;j. (wj — wijr)

B;

minimize max
k

subject to: Z Wik = W)
k

+
Wik eZ

Subproblem 2:
S .
7, (i~ pjk)
bj
subject to: ijk =pj
K

minimize max

ij €Z+

The next step is to prove that a smaller K leads to smaller data
transmission time. The proof can be done via mathematical induc-
tion. The idea is that a smaller K means more parameter servers
and workers on each node, so the amount of transferred data via
the inter-server network is smaller and hence the communication
time decreases.
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