
SAND: Towards High-Performance Serverless Computing

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein
Klaus Satzke, Andre Beck, Paarijaat Aditya, Volker Hilt

Nokia Bell Labs

Abstract

Serverless computing has emerged as a new cloud com-
puting paradigm, where an application consists of indi-
vidual functions that can be separately managed and ex-
ecuted. However, existing serverless platforms normally
isolate and execute functions in separate containers, and
do not exploit the interactions among functions for per-
formance. These practices lead to high startup delays for
function executions and inefficient resource usage.

This paper presents SAND, a new serverless computing
system that provides lower latency, better resource effi-
ciency and more elasticity than existing serverless plat-
forms. To achieve these properties, SAND introduces two
key techniques: 1) application-level sandboxing, and 2)
a hierarchical message bus. We have implemented and
deployed a complete SAND system. Our results show
that SAND outperforms the state-of-the-art serverless plat-
forms significantly. For example, in a commonly-used
image processing application, SAND achieves a 43%
speedup compared to Apache OpenWhisk.

1 Introduction

Serverless computing is emerging as a key paradigm in
cloud computing. In serverless computing, the unit of
computation is a function. When a service request is re-
ceived, the serverless platform allocates an ephemeral
execution environment for the associated function to
handle the request. This model, also known as Function-
as-a-Service (FaaS), shifts the responsibilities of dynam-
ically managing cloud resources to the provider, allowing
the developers to focus only on their application logic. It
also creates an opportunity for the cloud providers to im-
prove the efficiency of their infrastructure resources.

The serverless computing paradigm has already cre-
ated a significant interest in industry and academia.
There have been a number of commercial serverless of-
ferings (e.g., Amazon Lambda [1], IBM Cloud Func-

 0

 200

 400

 600

 800

 1000

 1200

 1400

AWS Step Functions IBM Cloud Functions
T

im
e
 (

m
s
)

Total runtime
Compute time

Figure 1: Total runtime and compute time of executing
an image processing pipeline with four functions on ex-
isting commercial serverless platforms. Results show the
mean values with 95% confidence interval over 10 runs,
after discarding the initial (cold) execution.

tions [5], Microsoft Azure Functions [11], and Google
Cloud Functions [15]), as well as several new proposals
(e.g., OpenLambda [24] and OpenFaaS [19]).

Although existing serverless platforms work well for
simple applications, they are not well-suited for more
complex services due to their overheads, especially when
the application logic follows an execution path span-
ning multiple functions. Consider an image processing
pipeline that executes four consecutive functions [51]:
extract image metadata, verify and transform it to a spe-
cific format, tag objects via image recognition, and pro-
duce a thumbnail. We ran this pipeline using AWS Step
Functions [10] and IBM Cloud Functions with Action
Sequences [29], both of which provide a method to con-
nect multiple functions into a single service.1 On these
platforms, we found that the total runtime is significantly
more than the actual time required for function execu-
tions (see Figure 1), indicating the overheads of execut-
ing such connected functions. As a result of these over-
heads, the use and adoption of serverless computing by a
broader range of applications is severely limited.

We observe two issues that contribute to these over-
1As of this writing, other major serverless providers, e.g., Microsoft

and Google, do not support Python, which was used for this pipeline.



heads and diminish the benefits of serverless computing.
Our first observation is that most existing serverless plat-
forms execute each application function within a separate
container instance. This decision leads to two common
practices, each with a drawback. First, one can start a
new, ‘cold’ container to execute an associated function
every time a new request is received, and terminate the
container when the execution ends. This approach in-
evitably incurs long startup latency for each request. The
second practice is to keep a launched container ‘warm’
(i.e., running idle) for some time to handle future re-
quests. While reducing the startup latency for process-
ing, this practice comes at a cost of occupying system
resources unnecessarily for the idle period (i.e., resource
inefficiency).

Our second observation is that existing serverless plat-
forms do not appear to consider interactions among func-
tions, such as those in a sequence or workflow, to reduce
latency. These platforms often execute functions wher-
ever required resources are available. As such, external
requests (e.g., user requests calling the first function in a
workflow) are treated the same as internal requests (e.g.,
functions initiating other functions during the workflow
execution), and load is balanced over all available re-
sources. This approach causes function interactions to
pass through the full end-to-end function call path, in-
curring extra latency. For example, in Apache Open-
Whisk [5] (i.e., the base system of IBM Cloud Func-
tions [29]), even for functions that belong to the same
workflow defined by the Action Sequences, all function
calls pass through the controller. We also observe that,
for functions belonging to the same state machine de-
fined by AWS Step Functions [10], the latencies between
functions executing on the same host are similar to the
latencies between functions running on different hosts.

In this paper, we design and prototype a novel, high-
performance serverless platform, SAND. Specifically, we
propose two mechanisms to accomplish both low latency
and high resource efficiency. First, we design a fine-
grained application sandboxing mechanism for server-
less computing. The key idea is to have two levels
of isolation: 1) isolation between different applications,
and 2) isolation between functions of the same appli-
cation. This distinction enables SAND to quickly allo-
cate (and deallocate) resources, leading to low startup
latency for functions and efficient usage of cloud re-
sources. We argue that stronger mechanisms (e.g., con-
tainers) are needed only for the isolation among applica-
tions, and weaker mechanisms (e.g., processes and light-
weight contexts [37]) are well-suited for the isolation
among functions within the same application.

Second, we design a hierarchical message queuing
and storage mechanism to leverage locality for the in-
teracting functions of the same application. Specifically,

SAND orchestrates function executions of the same appli-
cation as local as possible. We develop a local message
bus on each host to create shortcuts to enable fast mes-
sage passing between interacting functions, so that func-
tions executing in a sequence can start almost instantly.
In addition, for reliability, we deploy a global message
bus that serves as a backup of locally produced and con-
sumed messages in case of failures. The same hierarchy
is also applied for our storage subsystem in case func-
tions of the same application need to share data.

With these two mechanisms, SAND achieves low func-
tion startup and interaction latencies, as well as high re-
source efficiency. Low latencies are crucial for serverless
computing and play a key role in broadening its use. Oth-
erwise, application developers would merge functions to
avoid the latency penalty, making the applications less
modular and losing the benefits of serverless computing.
In addition, the cloud industry is increasingly interested
in moving infrastructure to the network edge to further
reduce network latency to users [18, 26, 36, 50, 52]. This
move requires high resource efficiency because the edge
data centers typically have fewer resources than the core.

We implemented and deployed a complete SAND sys-
tem. Our evaluation shows that SAND outperforms state-
of-the-art serverless platforms such as Apache Open-
Whisk [5] by 8.3× in reducing the interaction latency be-
tween (empty) functions and much more between typical
functions. For example, in a commonly-used image pro-
cessing application, these latencies are reduced by 22×,
leading to a 43% speedup in total runtime. In addition,
SAND can allocate and deallocate system resources for
function executions much more efficiently than existing
serverless platforms. Our evaluation shows that SAND im-
proves resource efficiency between 3.3× and two orders
of magnitude compared to the state-of-the-art.

2 Background

In this section, we give an overview of existing serverless
platforms, their practices, and the implications of these
practices. We summarize how these platforms deploy
and invoke functions in parallel as well as in sequence.
Our observations are based on open-source projects, but
we think they still reflect many characteristics of com-
mercial platforms. For example, the open-source Apache
OpenWhisk is used in IBM Cloud Functions [29]. In ad-
dition, we augment these observations with our experi-
ences using these platforms and with publicly available
information from the commercial providers.

2.1 Function Deployment
In serverless computing, the cloud operator takes the re-
sponsibility of managing servers and system resources to



run the functions supplied by developers. To our knowl-
edge, the majority of serverless platforms use containers
and map each function into its own container to achieve
this goal. This mapping enables the function code to be
portable, so that the operator can execute the function
wherever there are enough resources in the infrastructure
without worrying about compatibility. Containers also
provide virtually isolated environments with namespaces
separating operating system resources (e.g., processes,
filesystem, networking), and can isolate most of the
faulty or malicious code execution. Serverless platforms
that employ such a mapping include commercial plat-
forms (e.g., AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions, and IBM Cloud Functions) as
well as open-source platforms (e.g., Apache OpenWhisk,
OpenLambda [24], Greengrass [7], and OpenFaaS [19]).

Note that there are also other platforms that em-
ploy NodeJS [45] to run functions written in JavaScript
[25, 49, 54, 58]. These platforms offer alternatives for
serverless computing, but are not as widely used as the
container-based platforms. For this reason, hereafter we
describe in detail serverless platforms that employ con-
tainers and use them in our evaluation.

2.2 Function Call

The most straightforward approach to handle an incom-
ing request is to start a new container with the associ-
ated function code and then execute it. This approach,
known as ‘cold’ start, requires the initialization of the
container with the necessary libraries, which can incur
undesired startup latency to the function execution. For
example, AWS Lambda has been known to have delays
of up to a few seconds for ‘cold’ function calls [8]. Simi-
larly, Google has reported a median startup latency of 25
seconds on its internal container platform [55], 80% of
which are attributed to library installation. Lazy loading
of libraries can reduce this startup latency, but it can still
be on the order of a few seconds [23].

To improve startup latency, a common practice is to
reuse launched containers by keeping them ‘warm’ for a
period of time. The first call to a function is still ‘cold’,
but subsequent calls to this function can be served by the
‘warm’ container to avoid undesired startup latency. To
also reduce the latency of the first function call, Apache
OpenWhisk can launch containers even before a request
arrives via the ‘pre-warming’ technique [5].

The above ‘warm’ container practice, however, unnec-
essarily occupies resources with idling containers. Note
that this practice also relaxes the original isolation guar-
antee provided by the containers, because different re-
quests may be handled inside the same container albeit
sequentially (i.e., one execution at a time).

2.3 Function Concurrency
Another aspect in which various serverless platforms can
differ is how they handle concurrent requests. Apache
OpenWhisk and commercial platforms such as AWS
Lambda [1], Google Cloud Functions and Microsoft
Azure Functions allow only one execution at a time in
a container for performance isolation. As a result, con-
current requests will either be handled in their individ-
ual containers and experience undesired startup latencies
for each container, or the requests will be queued for
a ‘warm’ container to become available and experience
queuing delays. In contrast, OpenFaaS [19] and Open-
Lambda [24] allow concurrent executions of the same
function in a single container.

2.4 Function Chaining
Application logic often consists of sequences of multiple
functions. Some existing serverless platforms support
the execution of function sequences (e.g., IBM Action
Sequences [29], AWS Step Functions [10]). In a func-
tion sequence, the events that trigger function executions
can be categorized as external (e.g., a user request calling
a function sequence) and internal (e.g., a function initiat-
ing other functions during the workflow execution). Ex-
isting serverless platforms normally treat these events the
same, such that each event traverses the full end-to-end
function call path (e.g., event passing via a unified mes-
sage bus or controller), incurring undesired latencies.

3 SAND Key Ideas and Building Blocks

This section describes the key ideas and building blocks
of SAND. We first present the design of our application
sandboxing mechanism (§3.1) that enables SAND to be
resource-efficient and elastic as well as to achieve low-
latency function interactions. Then, we describe our hier-
archical message queuing mechanism (§3.2) that further
reduces the function interaction latencies.

3.1 Application Sandboxing
The key idea in our sandboxing design is that we need
two levels of fault isolation: 1) isolation between differ-
ent applications, and 2) isolation between functions of
the same application. Our reasoning is that different ap-
plications require strong isolation from each other. On
the other hand, functions of the same application may not
need such a strong isolation, allowing us to improve the
performance of the application. Note that some existing
serverless platforms reuse a ‘warm’ container to execute
calls to the same function, making a similar trade-off to
improve the performance of a single function.



To provide a two-level fault isolation, one can choose
from a variety of technologies, such as virtual machines
(VMs), LightVMs [40], containers [21, 53], uniker-
nels [38, 39], processes, light-weight contexts [37] and
threads. This choice will impact not only performance
but also the dynamic nature of applications and functions
as well as the maintenance effort by cloud operators. We
discuss these implications in §9.

In SAND, we specifically separate applications from
each other via containers, such that each application runs
in its own container. The functions that compose an ap-
plication run in the same container but as separate pro-
cesses. Upon receiving an incoming request, SAND forks
a new process in the container to execute the associated
function, such that each request is handled in a separate
process. For example, Figure 2 shows that the two func-
tions f1 and f2 of the same application are run in the same
application sandbox on a host, but different applications
are separated.

Our application sandboxing mechanism has three sig-
nificant advantages. First, triggering a function execu-
tion by forking a process within a container incurs short
startup latency, especially compared to launching a sep-
arate container per request or function execution — up
to three orders of magnitude speedup (§6.1). Second, the
libraries shared by multiple functions of an application
need to be loaded into the container only once. Third, the
memory footprint of an application container increases
in small increments with each incoming request and de-
creases when the request has been processed, with the
resources allocated for a single function execution be-
ing released immediately (i.e., when the process termi-
nates). As a result, the cloud operator can achieve sub-
stantially better resource efficiency and has more flexi-
bility to divert resources not only among a single appli-
cation’s functions but also among different applications
(i.e., no explicit pre-allocation). This effect becomes
even more critical in emerging edge computing scenarios
where cloud infrastructure moves towards the network
edge that has only limited resources.

3.2 Hierarchical Message Queuing

Serverless platforms normally deploy a unified message
bus system to provide scalable and reliable event dis-
patching and load balancing. Such a mechanism works
well in scenarios where individual functions are triggered
via (external) user requests. However, it can cause un-
necessary latencies when multiple functions interact with
each other, such that one function’s output is the input to
another function. For example, even if two functions of
an application are to be executed in a sequence and they
reside on the same host, the trigger message between the
two functions still has to be published to the unified mes-

Figure 2: SAND’s key building blocks: application sand-
boxing and hierarchical message queuing.

sage bus, only to be delivered back to the same host.
To address this problem, we design a hierarchical

message bus for SAND. Our basic idea is to create short-
cuts for functions that interact with each other (e.g., func-
tions of the same application). We describe the hierarchi-
cal message bus and its coordination with two levels.2

In a two-level hierarchy, there is a global message bus
that is distributed across hosts and a local message bus
on every host (Figure 2). The global message bus serves
two purposes. First, it delivers event messages to func-
tions across different hosts, for example, when a single
host does not have enough resources to execute all de-
sired functions or an application benefits from executing
its functions across multiple hosts (e.g., application sand-
box 1 in Figure 2). Second, the global message bus also
serves as a backup of local message buses for reliability.

The local message bus on each host is used to de-
liver event messages from one function to another if both
functions are running on the same host. As a result, the
interacting functions (e.g., an execution path of an appli-
cation spanning multiple functions, similar to the appli-
cation sandbox 1 in Figure 2) can benefit from reduced
latency because accessing the local message bus is much
faster than accessing the global message bus (§6.2).

The local message bus is first-in-first-out, preserving
the order of messages from one function to another. For
global message bus, the order depends on the load bal-
ancing scheme: if a shared identifier of messages (e.g.,
key) is used, the message order will also be preserved.
Coordination. To ensure that an event message does not
get processed at the same time on multiple hosts, the lo-
cal and global message buses coordinate: a backup of
the locally produced event message is published to the
global message bus with a condition flag. This flag in-
dicates that the locally produced event message is being
processed on the current host and should not be deliv-
ered to another host for processing. After publishing the
backup message, the current host tracks the progress of
the forked process that is handling the event message and

2This hierarchy can be extended to more than two levels in a large
network; we omit the description due to space limit.



updates its flag value in the global message bus accord-
ingly (i.e., ‘processing’ or ‘finished’). If the host fails
after the backup message is published to the global mes-
sage bus but before the message has been fully processed,
another host takes over the processing after a timeout.

This coordination procedure is similar to write-ahead-
logging in databases [57], whereby a locally produced
event message would be first published to the global mes-
sage bus before the local message bus. While guarantee-
ing that there are no lost event messages due to host fail-
ures, this ‘global-then-local’ publication order can add
additional latency to the start of the next (locally avail-
able) function in a sequence. In SAND, we relax this or-
der, and publish event messages to the global message
bus asynchronously with the publication to the local mes-
sage bus in parallel. In serverless computing, functions
are expected to, and usually, finish execution fast [9,12].
In case of a failure, SAND can reproduce the lost event
messages by re-executing the functions coming after the
last (backup) event message seen in the global message
bus. Note that, in SAND, the output of a function execu-
tion becomes available to other functions at the end of the
function execution (§4.1). As such, the coordination and
recovery procedures work for outputs that are contained
within SAND. SAND does not guarantee the recovery of
functions that make externally-visible side effects during
their executions, such as updates to external databases.

4 SAND System Design

This section presents the detailed design of SAND utiliz-
ing the aforementioned key ideas and building blocks.
We also illustrate how an example application runs on
SAND, and describe some additional system components.

4.1 System Components
The SAND system contains a number of hosts, which can
exchange event messages via a global message bus (Fig-
ure 3a). Figure 3b shows the system components on a
single host. Here, we describe these components.
Application, Grain, and Workflow. In SAND, a func-
tion of an application is called a grain. An application
consists of one or multiple grains, as well as the work-
flows that define the interactions among these grains.
The interaction between grains can be static where the
grains are chained (e.g., Grain2’s execution always fol-
lows Grain1’s execution), or dynamic where the execu-
tion path is determined during the execution (e.g., the
execution of Grain2 and/or Grain3 may follow Grain1’s
execution, according to Grain1’s output). The grain code
and workflows are supplied by the application developer.
A grain can be used by multiple applications by copying
it to the respective application sandboxes.

(a) SAND infrastructure.

(b) A SAND host.
(c) A SAND application
sandbox with two grains.

Figure 3: High-level architecture of SAND.

Sandbox, Grain Worker, and Grain Instance. An ap-
plication can run on multiple hosts. On a given host, the
application has its own container called sandbox. The set
of grains hosted in each sandbox can vary across hosts as
determined by the application developer3, but usually in-
cludes all grains of the application.

When a sandbox hosts a specific grain, it runs a dedi-
cated OS process called grain worker for this grain. The
grain worker loads the associated grain code and its li-
braries, subscribes to the grain’s queue in the host’s local
message bus, and waits for event messages.

Upon receiving an associated event message, the grain
worker forks itself to create a grain instance that han-
dles the event message (Figure 3c). This mechanism pro-
vides three significant advantages for SAND. First, fork-
ing grain instances from the grain worker is quite fast and
lightweight. Second, it utilizes OS mechanisms that al-
low the sharing of initialized code (e.g., loaded libraries),
thus reducing the application’s memory footprint. Third,
the OS automatically reclaims the resources assigned to
a grain instance upon its termination. Altogether, by ex-
ploiting the process forking, SAND becomes fast and ef-
ficient in allocating and deallocating resources for grain
executions. As a result, SAND can easily handle load vari-
ations and spikes to multiplex multiple applications (and
their grains) elastically even on a single host.

When a grain instance finishes handling an event mes-
sage, it produces the output that includes zero or more
event messages. Each such message is handled by the
next grain (or grains), as defined in the workflow of the
application. Specifically, if the next grain is on the same
host, the previous grain instance directly publishes the
output event message into the local message queue that is
subscribed to by the next grain worker, which then forks
a grain instance to handle this event message. In parallel,
a backup of this message is asynchronously published to
the global message bus.

3Or automatically by SAND via strategies or heuristics (e.g., a sand-
box on each host should not run more than a certain number of grains).



Local and Global Message Buses. A local message bus
runs on each host, and serves as a shortcut for local func-
tion interactions. Specifically, in the local message bus, a
separate message queue is created for each grain running
on this host (Figure 2). The local message bus accepts,
stores and delivers event messages to the corresponding
grain worker when it polls its associated queue.

On the other hand, the global message bus is a dis-
tributed message queuing system that runs across the
cloud infrastructure. The global message bus acts as a
backup for locally produced and consumed event mes-
sages by the hosts, as well as delivers event messages to
the appropriate remote hosts if needed. Specifically, in
the global message bus, there is an individual message
queue associated with each grain hosted in the entire in-
frastructure (see Figure 2). Each such message queue is
partitioned to increase parallelism, such that each parti-
tion can be assigned to a different host running the as-
sociated grain. For example, the widely-used distributed
message bus Apache Kafka [3] follows this approach.

Each host synchronizes its progress on the consump-
tion of the event messages from their respective parti-
tions with the global message bus. In case of a failure,
the failed host’s partitions are reassigned to other hosts,
which then continue consuming the event messages from
the last synchronization point.
Host Agent. Each host in the infrastructure runs a spe-
cial program called host agent. The host agent is re-
sponsible for the coordination between local and global
message buses, as well as launching sandboxes for appli-
cations and spawning grain workers associated with the
grains running on this host. The host agent subscribes to
the message queues in the global message bus for all the
grains the host is currently running. In addition, the host
agent tracks the progress of the grain instances that are
handling event messages, and synchronizes it with the
host’s partitions in the global message bus.

4.2 Workflow Example

The SAND system can be best illustrated with a simple
workflow example demonstrating how a user request to
a SAND application is handled. Suppose the application
consists of two grains, Grain1 and Grain2. Hostx is run-
ning this application with the respective grain workers,
GW1 and GW2. The global message bus has an indi-
vidual message queue associated with each grain, GQ1
and GQ2. In addition, there is an individual partition
(from the associated message queue in the global mes-
sage bus) assigned to each of the two grain workers on
Hostx, namely GQ1,1 and GQ2,1, respectively.

Assume there is a user request for Grain1 (Step 0 in
Figure 4), and the global message bus puts this event
message into the partition GQ1,1 within the global mes-

Figure 4: Handling of a user request to a simple applica-
tion that consists of two grains in a workflow.

sage queue GQ1, according to a load balancing strategy.
As a result, the host agent on Hostx can retrieve this event
message (Step 1) and publish it into the local queue LQ1
(associated with Grain1) in Hostx’s local message bus
(Step 2). The grain worker GW1, which is responsible
for Grain1 and subscribed to LQ1, retrieves the recently
added event message (Step 3) and forks a new grain in-
stance (i.e., a process) to handle the message (Step 4).

Assume Grain1’s grain instance produces a new event
message for the next grain in the workflow, Grain2. The
grain instance publishes this event message directly to
Grain2’s associated local queue LQ2 (Step 5a), because
it knows that Grain2 is locally running. A copy of the
event message is also published to the local queue LQHA
for the host agent on Hostx (Step 5b). The host agent re-
trieves the message (Step 6a) and publishes it as a backup
to the assigned partition GQ2,1 in Grain2’s associated
global queue with a condition flag ‘processing’ (Step 6b).

Meanwhile, the grain worker GW2 for Grain2 retrieves
the event message from the local queue LQ2 in the local
message bus on Hostx (Step 6c). GW2 forks a new grain
instance, which processes the event message and termi-
nates after execution (Step 7). In our example, GW2 pro-
duces a new event message to the local queue of the host
agent LQHA (Step 8), because Grain2 is the last grain in
the application’s workflow and there are no other locally
running grains to handle it. The host agent retrieves the
new event message (Step 9) and directly publishes it to
the global message bus (Step 10a). In addition, the finish
of the grain instance of Grain2 causes the host agent to
update the condition flag of the locally produced event
message that triggered Grain2 with a value ‘finished’
to indicate that it has been successfully processed (Step
10b). The response is then sent to the user (Step 11).



4.2.1 Handling Host Failures

In the previous description, all hosts are alive during the
course of the workflow. Suppose the processing of the
event message for Grain2 (Step 7 in Figure 4) failed due
to the failure of Hostx. When the global message bus de-
tects Hostx’s failure, it will reassign Hostx’s associated
partitions (i.e., GQ1,1 and GQ2,1). Suppose there is an-
other host Hosty taking over these two partitions. In our
example, only Grain2’s grain instances were triggered
via the locally produced event messages, meaning that
the condition flags were published to GQ2,1 (i.e., Hostx’s
partition in Grain2’s global message queue).

When Hosty starts the recovery process, it retrieves all
event messages in GQ2,1 (and also GQ1,1). For each mes-
sage, Hosty’s host agent checks its condition flag. If the
flag indicates that an event message has been processed
successfully (i.e., ‘finished’), this message is skipped be-
cause Hostx failed after processing this event message.
If the flag indicates that the processing of the event mes-
sage has just started (i.e., ‘processing’), Hosty processes
this event message following the steps in Figure 4.

It is possible that Hosty fails during the recovery pro-
cess. To avoid the loss of event messages, Hosty contin-
uously synchronizes its progress on the consumed mes-
sages from the reassigned partitions with the global mes-
sage bus. It does not retrieve any new messages from the
partitions until all messages of the failed host have been
processed successfully. As a result, each host replacing
a failed host deals with smaller reassigned partitions.

4.3 Additional System Components

Here, we briefly describe a few additional system com-
ponents that complete SAND.
Frontend Server. The frontend server is the interface
for developers to deploy their applications as well as to
manage grains and workflows. It acts as the entry point
to any application on SAND. For scalability, multiple fron-
tend servers can run behind a standard load balancer.
Local and Global Data Layers. Grains can share data
by passing a reference in an event message instead of
passing the data itself. The local data layer runs on
each host similar to the local message bus, and enables
fast access to the data that local grains want to share
among themselves via an in-memory key-value store.
The global data layer is a distributed data storage run-
ning across the cloud infrastructure similar to the global
message bus. The coordination between the local and
global data layers is similar to the coordination between
the local and global message buses (§3.2). Each applica-
tion can only access its own data in either layer.

To ensure the data produced by a grain instance per-
sists, it is backed up to the global data layer during the

(backup) publication of the locally produced event mes-
sage. This backup is facilitated with another flag value
(between ‘processing’ and ‘finished’ described in §3.2)
to indicate the start of the data transfer to the global data
layer. This value contains the data’s metadata (i.e., name,
size, hash), which is checked during the recovery pro-
cess to decide whether an event message needs to be pro-
cessed: if the metadata in the flag matches the metadata
of the actual data in the global data layer, the event mes-
sage was successfully processed but the ‘finished’ flag
could not be published by the failed host; otherwise, this
event message needs to be processed again.

5 Implementation

We implemented a complete SAND system with all com-
ponents described in §4. Our system uses Docker [17] for
application sandboxes, Apache Kafka [3] for the global
message bus, Apache Cassandra [2] for the global data
layer, and nginx [44] as the load balancer for the frontend
server instances. We use these components off-the-shelf.

In addition, we implemented the host agent (7,273
lines of Java), the Python grain worker (732 lines of
Python) and the frontend server (461 lines of Java).
The host agent coordinates the local and global message
buses and data layers, as well as manages application
sandboxes and grains, by interacting with Kafka, Cas-
sandra and Docker. The grain worker becomes dedicated
to a specific grain after loading its code and necessary
libraries, interacts with the local message bus, and forks
grain instances for each associated event message. We
use Apache Thrift [6] to automatically generate the inter-
faces for our Java implementations of the local message
bus and the local data layer. The frontend server accepts
connections handed over by the nginx load balancer, in-
teracts with Kafka to deliver user requests into SAND and
return application responses back to users. The frontend
server embeds Jetty [32] as the HTTP endpoint and em-
ploys its thread pool to handle user requests efficiently.

For easy development and testing, we also imple-
mented a SAND emulator (764 lines of Python) that sup-
ports SAND’s API and logging for debugging. Developers
can write their grains and workflows, and test them using
the emulator before the actual deployment.

6 Evaluation

We evaluate SAND and compare it to Apache OpenWhisk
[5] and AWS Greengrass [7]. We choose these two sys-
tems because we can run local installations for a fair
comparison. We first report on microbenchmarks of al-
ternative sandboxing mechanisms and SAND’s hierarchi-
cal message bus. We then evaluate function interaction



 0.1

 1

 10

 100

Xen M
irageO

S

D
ocker run C

D
ocker exec C

D
ocker exec Python

exec C

exec Python

exec G
o

exec N
odeJS

exec Java

fork C

fork Python

S
ta

rt
u
p

L
a
te

n
c
y
 (

m
s
)

(a) Function startup latencies.

 0

 0.5

 1

 1.5

 2

 2.5

Global Local

M
e
s
s
a
g
e
 D

e
liv

e
ry

L
a
te

n
c
y
 (

m
s
)

Java
Python

(b) Message delivery latencies.

 1

 10

 100

 1000

Apache
OpenWhisk

AWS
Greengrass

SAND

F
u
n
c
ti
o
n
 I
n
te

ra
c
ti
o
n

L
a
te

n
c
y
 (

m
s
) cold

warm

(c) Python function interaction latencies.

Figure 5: Measurements regarding function startup latencies, message delivery latencies and Python function interac-
tion latencies, with error bars showing the 95% confidence interval.

latencies and the memory footprints of function execu-
tions, as well as investigate the trade-off between allo-
cated memory and latency. Finally, we revisit the image
processing pipeline, which was discussed as a motiva-
tional example in §1. We conducted all experiments on
machines equipped with Intel Xeon E5520 with 16 cores
at 2.27GHz and 48GB RAM, unless otherwise noted.

6.1 Sandboxing and Startup Latency
There are several alternative sandboxing mechanisms to
isolate the applications and function executions (see §9).
Here, we explore the startup latency of these alternatives.
Methodology. We measured the startup time until a
function starts executing, with various sandboxing mech-
anisms including Docker (CE-17.11 with runc 1.0.0) and
unikernel (Xen 4.8.1 with MirageOS 2.9.1), as well as
spawning processes in C (gcc 4.8.5), Go (1.8.3), Python
(2.7.13), NodeJS (6.12) and Java (1.8.0.151). We used
an Intel Xeon E5-2609 host with 4 cores at 2.40GHz and
32GB RAM running CentOS 7.4 (kernel 4.9.63).
Results. Figure 5a shows the mean startup latencies with
95% confidence interval. Starting a process in a running,
warm container via the Docker client interface (Docker
exec C) is much faster than launching both the container
and the process (Docker run C). Nonetheless, Docker
adds significant overhead to function starts compared to
starts without it (exec C, exec Python). Function starts
with a unikernel (Xen MirageOS) are similar to using a
container. Not surprisingly, spawning processes with bi-
naries (exec C, exec Go) are faster than interpreted lan-
guages (exec Python, exec NodeJS) and Java, and fork-
ing processes (fork C, fork Python) is fastest among all.

6.2 Hierarchical Message Bus
Instead of a single unified message bus, SAND utilizes a
local message bus on every host for fast function interac-
tions. Here, we show the benefits of this approach.
Methodology. We created two processes on the same
host that communicate in a producer-consumer style un-

der load-free conditions. With Python and Java clients,
we measured the latency for a message delivered via the
global message bus (Kafka 0.10.1.0, 3 hosts, 3 replicas,
default settings) and via our local message bus.
Results. Figure 5b shows the mean message delivery la-
tencies with 95% confidence interval. The Python client
(used by our grain instances) can deliver an event mes-
sage to the next grain via the local message bus 2.90×
faster than via the global message bus. Similarly, the Java
client (used by our host agent) gets a 5.42× speedup.

6.3 Function Interaction Latency
Given two functions in a workflow, the function interac-
tion latency is the time between the first function’s finish
and the second function’s start.
Methodology. We created two Python functions, F1 and
F2, such that F1 produces an event message for F2 to con-
sume. We logged high-resolution timestamps at the end
of F1 and at the start of F2. We used an Action Sequence
in OpenWhisk [48], matching MQTT topic subscriptions
in Greengrass [59] and SAND’s workflow description. We
then triggered F1 with a request generator.

Recall that SAND uses a single, running container for
multiple functions of an application. For a fair compari-
son, we measure function interaction latencies in Open-
Whisk and Greengrass with warm containers. For com-
pleteness, we also report their cold call latencies, where
a function call causes a new container to be launched.
Results. Figure 5c shows that SAND incurs a significantly
shorter (Python) function interaction latency. SAND out-
performs OpenWhisk and Greengrass, both with warm
containers, by 8.32× and 3.64×, respectively. Further-
more, SAND’s speedups are 562× and 358× compared to
OpenWhisk and Greengrass with cold containers.

6.4 Memory Footprint
Concurrent calls to a function on today’s serverless com-
puting platforms are handled by concurrent execution in-
stances. These instances are served either by launching



Table 1: Workloads and burst parameters.

Load Rate (calls/min) Duration (s) Frequency (s)
A 1,000 8 240
B 250 8 240
C 1,000 30 120
D 1,000 8 120
E 250 30 120

new containers or by assigning them to warm contain-
ers if available. Because concurrently-running contain-
ers occupy system resources, we examine the memory
footprint of such concurrent function executions.
Methodology. We made up to 50 concurrent calls to a
single Python function. We ensured that all calls were
served in parallel, and measured each platform’s memory
usage via docker stats and ps commands.
Results. We find that both OpenWhisk and Greengrass
show a linear increase in memory footprint with the num-
ber of concurrent calls.4 Each call adds to the memory
footprint about 14.61MB and 13.96MB in OpenWhisk
and Greengrass, respectively. In SAND, each call only
adds 1.1MB on top of the 16.35MB consumed by the
grain worker. This difference is because SAND forks a
new process inside the same sandbox for each function
call, whereas OpenWhisk and Greengrass use separate
containers for concurrent calls.

6.5 Idle Memory Cost vs. Latency
Many serverless platforms use warm containers to pre-
vent cold startup penalties for subsequent calls to a func-
tion. On the other hand, these platforms launch new con-
tainers when there are concurrent calls to a function but
no warm containers available (§6.4). These new contain-
ers will also be kept warm until a timeout, occupying
resources. Here, we investigate the trade-off between oc-
cupied memory and function call latency.
Methodology. We created 5 synthetic workloads each
with 2,000 function calls. In all workloads, the call ar-
rival time and the function processing time (i.e., busy
wait) follow a Poisson distribution with a mean rate of
100 calls per minute and a mean duration of 600ms. To
see how the serverless platforms behave under burst, we
varied three parameters as shown in Table 1: 1) burst
rate, 2) burst duration, and 3) burst frequency.

We explored 4 different unused-container timeouts in
OpenWhisk. Unfortunately, this timeout cannot be mod-
ified in Greengrass, so we could not use it in this ex-
periment. We computed the idle memory cost by multi-
plying the allocated but unused memory of the container
instances with the duration of their allocations (i.e., to-

4In Greengrass, this relationship continues until 25 concurrent calls,
after which calls get queued as shown in system logs.

 0
 50

 100
 150
 200
 250

1 60 180 600

Id
le

 M
e

m
o

ry
C

o
s
t 

(G
B

 x
 s

)

Unused Container Timeout (s)

Workload A
Workload B
Workload C
Workload D
Workload E

(a) Idle memory cost with different container timeouts.

 0
 50

 100
 150
 200
 250
 300

1 60 180 600

C
a

ll 
L

a
te

n
c
y
 (

m
s
)

Unused Container Timeout (s)

Workload A
Workload B
Workload C
Workload D
Workload E

(b) Call latency with different container timeouts.

Figure 6: Idle memory cost vs. function call latency.

tal idle memory during the experiment). We reused the
memory footprint results from §6.4. In OpenWhisk, the
number of container instances depends on the concur-
rency, whereas SAND uses a single application sandbox.

Results. Figures 6a and 6b show the effects of container
timeouts in OpenWhisk on the idle memory cost and the
function call latency, respectively. We observe that a long
timeout is not suited for bursty traffic, with additional
containers created to handle concurrent calls in a burst
but are not needed afterwards. Even with a relatively
short timeout of 180 seconds, the high idle memory costs
suggest that containers occupy system resources with-
out using them during the majority of our experiment.
We also observe that a shorter timeout lowers the idle
memory cost but leads to much longer function call la-
tencies due to the cold start effect, affecting between
18.15%–33.35% of all calls in all workloads with a 1 sec-
ond timeout. Interestingly, the frequent cold starts cause
OpenWhisk to overestimate the number of required con-
tainers, partially offsetting the lowered idle memory cost
achieved by shorter timeouts.

In contrast, SAND reduces idle memory cost from
3.32× up to two orders of magnitude with all workloads
without sacrificing low latency (15.87–16.29 ms). SAND,
by its sandboxing mechanism, handles concurrent calls
to a function (or multiple functions) on a single host by
forking parallel processes inside a container; therefore,
SAND does not suffer from cold startup penalties. With
higher load, SAND would amortize the penalty of start-
ing a new sandbox on another host by using it both for
multiple executions of a single function and for different
functions. Our ongoing work includes intelligent moni-
toring and scheduling for additional sandboxes.



 0

 200

 400

 600

 800

 1000

 1200

 1400

AWS
Step Functions

IBM
Cloud Functions

Apache
OpenWhisk

SAND

T
im

e
 (

m
s
)

Total runtime
Compute time

Figure 7: Total runtime and compute time of the image
processing pipeline. Results show the mean values with
95% confidence interval over 10 runs, after discarding
the initial (cold) execution.

6.6 Image Processing Pipeline

Here, we revisit our motivational example used in §1,
i.e., the image processing pipeline. This pipeline consists
of four consecutive Python functions, and is similar to
the reference architecture used by AWS Lambda [51]. It
first extracts the metadata of an image using ImageMag-
ick [30]. A subset of this metadata is then verified
and retained by the next function in the pipeline. The
third function recognizes objects in the image using the
SqueezeNet deep learning model [28] executed on top
of the MXNet framework [4, 43]. Names of the recog-
nized objects are appended to the extracted metadata and
passed to the final function, which generates a thumbnail
of the image and stores the metadata in a separate file.
Methodology. Each function recorded timestamps at the
start and end of its execution, which we used to produce
the actual compute time. The difference between the to-
tal time and the compute time gave each platform’s over-
head. The image was always read from a temporary local
storage associated with each function call. We ran the
pipeline on AWS Step Functions, IBM Cloud Functions,
Apache OpenWhisk with Action Sequences, and SAND.
Results. Figure 7 shows the runtime breakdown of these
platforms. Compared to other platforms, we find that
SAND achieves the lowest overhead for running a series
of functions. For example, SAND reduces the overhead by
22.0× compared to OpenWhisk, even after removing the
time spent on extra functionality not supported in SAND

yet (e.g., authentication and authorization). We notice
that OpenWhisk re-launches the Python interpreter for
each function invocation, so that libraries are loaded be-
fore a request can be handled. In contrast, SAND’s grain
worker loads a function’s libraries only once, which are
then shared across forked grain instances handling the re-
quests. The difference in compute times can be explained
by the difference across infrastructures: SAND and Open-
Whisk ran in our local infrastructure and produced sim-
ilar values, whereas we had no control over AWS Step
Functions and IBM Cloud Functions.

7 Experience with SAND

During and after the implementation of SAND, we also
developed and deployed several applications on it. Here,
we briefly describe these applications to show that SAND
is general and can serve different types of applications.

The first application we developed is a simple web
server serving static content (e.g., html, javascript, im-
ages) via two grains in a workflow. The first grain parses
user requests and triggers another grain according to the
requested file type. The second grain retrieves the file
and returns it to our frontend server, which forwards it
to the user. Our SAND web server has been in use since
May 2017 to serve our lab’s website. The second SAND

application is the management service of our SAND sys-
tem. The service has 19 grains, connects with the GUI
we developed, and enables developers to create grains as
well as to deploy and test workflows.

In addition, we made SAND available to researchers in
our lab. They developed and deployed applications using
the GUI and the management service. One group proto-
typed a simple virus scanner, whereby multiple grains
executing in parallel check the presence of viruses in an
email. Another group developed a stream analytics appli-
cation for Twitter feeds, where grains in a workflow iden-
tify language, remove links and stop words, and compile
a word frequency list to track the latest news trend.

8 Related Work

Despite its recency, serverless computing has already
been used in various scenarios including Internet of
Things and edge computing [7,16], parallel data process-
ing [33, 34], data management [14], system security en-
hancement [13], and low-latency video processing [20].
Villamizar et al. [56] showed that running applications
in a serverless architecture is more cost efficient than mi-
croservices or monoliths. One can expect that serverless
computing is going to attract more attention.

Beside commercial serverless platforms [1, 11, 15,
25, 29, 31], there have also been academic proposals
for serverless computing. Hendrickson et al. [24] pro-
posed OpenLambda after identifying problems in AWS
Lambda [1], including long function startup latency and
little locality consideration. McGrath et al. [42] also
investigated latencies in existing serverless frameworks.
These problems are important for serverless application
development, where function interaction latencies are
crucial. In SAND, we address these problems via our ap-
plication sandboxing approach, as well as the hierarchi-
cal message queuing and storage mechanisms.

Other approaches also targeted the long startup latency
problem. Slacker [23] identifies packages that are critical
when launching a container. By prioritizing these pack-



ages and lazily loading others, it can reduce the container
startup latency. This improvement would benefit server-
less computing platforms that launch functions with cold
starts. In SAND, an application sandbox is launched once
per host for multiple functions of the same application,
which amortizes a container’s startup latency over time.

Pipsqueak [46] and its follow-up work SOCK [47] cre-
ate a cache of pre-warmed Python interpreters, so that
functions can be launched with an interpreter that has
already loaded the necessary libraries. However, many
functions may need the same (or a similar) interpreter,
requiring mechanisms to pick the most appropriate one
and to manage the cache. SAND does not use any sharing
nor cache management schemes; a SAND grain worker is
a dedicated process for a single function and its libraries.

McGrath et al. [41] proposed a queuing scheme with
workers announcing their availability in warm and cold
queues, where containers can be reused and new con-
tainers can be created, respectively. Unlike SAND, this
scheme maps a single container per function execution.

9 Discussion & Limitations

Performance Isolation & Load Balancing. In this
paper, we reduce function interaction latencies via our
sandboxing mechanism as well as the hierarchical mes-
sage queuing and storage. SAND executes multiple in-
stances of an application’s functions in parallel as sep-
arate processes in the same container. This sandboxing
mechanism enables a cloud operator to run many func-
tions (and applications) even on a single host, with low
idle memory cost and high resource efficiency. However,
it is possible that grains in a sandbox compete for the
same resources and interfere with each other’s perfor-
mance. A single host may also not have the necessary
resources for multiple sandboxes. In addition, SAND’s
locality-optimized policy with the hierarchical queuing
and storage might lead to sub-optimal load balancing.
SAND currently relies on the operating system to en-

sure that the grains (and sandboxes) running in parallel
will receive their fair share of resources. As such, CPU
time (or other resource consumption) rather than the wall
clock time could be used for billing purposes. Neverthe-
less, competing grains and sandboxes may increase the
latency an application experiences.
Non-fork Runtime Support. SAND makes a trade-off to
balance performance and isolation by using process fork-
ing for function executions. The downside is that SAND
currently does not support language runtimes without na-
tive forking (e.g., Java and NodeJS).
Alternative Sandboxing Mechanisms. SAND isolates
applications with containers. Virtual machines (VMs),
HyperContainers [27], gVisor [21] and CNTR [53] are
viable alternatives. VMs provide a stronger isolation

than containers, but may increase the maintenance ef-
fort for each application’s custom VM and have long
launch times. Unikernels [38,39] can also be used to iso-
late applications with custom system software compiled
with the desired functionality. However, dynamically
adding/removing a function requires a recompilation, af-
fecting the flexibility of function assignment to a host. In
contrast, containers provide fast launch times, flexibility
to dynamically assign functions, and low maintenance
effort because the OS is shared among all application
containers on a host. Recently open-sourced gVisor [22]
provides a stronger fault isolation than vanilla containers.

For function executions, SAND uses separate processes.
Unikernels [35, 38, 39] have also been proposed to iso-
late individual functions in serverless environments. A
bare-bones unikernel-based VM (e.g., LightVM [40])
can launch faster than a container to execute a func-
tion; however, its image size depends on the libraries
loaded by each function, and thus, may impact startup
latency. Other alternatives include light-weight contexts
(LWCs) [37] and threads. Particularly, LWCs may pro-
vide the best of both worlds by being lighter than pro-
cesses, but achieving stronger isolation than threads by
giving a separate view of resources to each LWC. We
plan to extend SAND with these alternative approaches.

10 Conclusion & Future Work

This paper introduced SAND, a novel serverless com-
puting platform. We presented the design and imple-
mentation of SAND, as well as our experience in build-
ing and deploying serverless applications on it. SAND

employs a new sandboxing approach, whereby stronger
mechanisms such as containers are used to isolate dif-
ferent applications and lighter OS concepts such as pro-
cesses are used to isolate functions of the same applica-
tion. This approach enables SAND to allocate and deallo-
cate resources for function executions much faster and
more resource-efficiently than existing serverless plat-
forms. Combined with our hierarchical message bus,
where each host runs a local message bus to enable fast
triggering of functions running on the same host, SAND
reduces function interaction latencies significantly.

For future work, we plan to address the limitations dis-
cussed in §9. In particular, we plan to intelligently dis-
tribute application functions and sandboxes across many
hosts to better balance the system load without sacrific-
ing application latency.

11 Acknowledgments

We are grateful to the anonymous reviewers and our
shepherd, Patrick Stuedi, for their insightful comments.



References
[1] AMAZON. AWS Lambda - Serverless Compute. https://aws.

amazon.com/lambda/.

[2] Apache Cassandra. https://cassandra.apache.org/.

[3] Apache Kafka. https://kafka.apache.org/.

[4] MXNet: A Scalable Deep Learning Framework. http://

mxnet.incubator.apache.org/.

[5] Apache OpenWhisk is a serverless, open source cloud platform.
http://openwhisk.apache.org/.

[6] Apache Thrift. https://thrift.apache.org/.

[7] AWS Greengrass. https://aws.amazon.com/greengrass/.

[8] AWS Lambda for Java Quodlibet Medium. https:

//medium.com/@quodlibet_be/aws-lambda-for-java-

5d5e954d3bdf.

[9] AWS Lambda Limits - AWS Lambda. https://docs.aws.

amazon.com/lambda/latest/dg/limits.html.

[10] What is AWS Step Functions? http://docs.aws.amazon.

com/step-functions/latest/dg/welcome.html.

[11] Azure FunctionsServerless Architecture — Microsoft Azure.
https://azure.microsoft.com/en-us/services/

functions/.

[12] Best Practices for Azure Functions — Microsoft Docs.
https://docs.microsoft.com/en-us/azure/azure-

functions/functions-best-practices.

[13] BILA, N., DETTORI, P., KANSO, A., WATANABE, Y., AND
YOUSSEF, A. Leveraging the serverless architecture for secur-
ing linux containers. In 1st International Workshop on Serverless
Computing (2017), pp. 401–404.

[14] CHARD, R., CHARD, K., ALT, J., PARKINSON, D. Y.,
TUECKE, S., AND FOSTER, I. T. Ripple: Home automation
for research data management. In 1st International Workshop on
Serverless Computing (2017), pp. 389–394.

[15] Cloud Functions - Serverless Environment to Build and Connect
Cloud Services — Google Cloud Platform. https://cloud.

google.com/functions/.

[16] DE LARA, E., GOMES, C. S., LANGRIDGE, S., MORTAZAVI,
S. H., AND ROODI, M. Hierarchical serverless computing for
the mobile edge. In IEEE/ACM Symposium on Edge Computing
(2016).

[17] Docker - Build, Ship and Run Any App, Anywhere. https:

//www.docker.com/.

[18] Why Edge Computing Market Will Grow 30 Percent by
2022. http://www.eweek.com/networking/why-edge-

computing-market-will-grow-30-percent-by-2022.

[19] ELLIS, A. Functions as a Service (FaaS). https://blog.

alexellis.io/functions-as-a-service/, 2017.

[20] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRA-
MANIAM, K., ZENG, W., BHALERAO, R., SIVARAMAN, A.,
PORTER, G., AND WINSTEIN, K. Encoding, fast and slow: Low-
latency video processing using thousands of tiny threads. In NSDI
(2017).

[21] Google/gVisor: Container Runtime Sandbox. https://

github.com/google/gvisor.

[22] Google open sources gVisor, a sandboxed container runtime.
https://techcrunch.com/2018/05/02/google-open-

sources-gvisor-a-sandboxed-container-runtime/.

[23] HARTER, T., SALMON, B., LIU, R., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Slacker: Fast distribution with
lazy docker containers. In 14th USENIX Conference on File and
Storage Technologies (FAST 16) (2016).

[24] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Serverless computation with open-
lambda. In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 16) (2016).

[25] hook.io. https://hook.io/.

[26] HU, Y. C., PATEL, M., SABELLA, D., SPRECHER, N., AND
YOUNG, V. Mobile edge computinga key technology towards
5g. ETSI white paper 11, 11 (2015), 1–16.

[27] Hyper: Make VM run like Container. https:

//hypercontainer.io/.

[28] IANDOLA, F. N., HAN, S., MOSKEWICZ, M. W., ASHRAF, K.,
DALLY, W. J., AND KEUTZER, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <0.5mb model size.
arXiv:1602.07360 (2016).

[29] Cloud Functions - Overview — IBM Cloud. https://www.

ibm.com/cloud/functions.

[30] Convert, Edit, Or Compose Bitmap Images @ ImageMagick.
https://www.imagemagick.org/.

[31] Iron.io - DevOps Solutions from Startups to Enterprise. https:
//www.iron.io/.

[32] Jetty - Servlet Engine and Http Server. http://www.eclipse.
org/jetty/.

[33] JONAS, E. Microservices and Teraflops. http://ericjonas.
com/pywren.html.

[34] JONAS, E., PU, Q., VENKATARAMAN, S., STOICA, I., AND
RECHT, B. Occupy the cloud: distributed computing for the
99%. In Proceedings of the 2017 Symposium on Cloud Com-
puting (2017), ACM.

[35] KOLLER, R., AND WILLIAMS, D. Will serverless end the domi-
nance of linux in the cloud? In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems (2017), HotOS ’17.

[36] Introducing Lambda@Edge in Preview Run Lambda
functions at AWSs edge locations closest to your users.
https://aws.amazon.com/about-aws/whats-new/2016/

12/introducing-lambda-at-edge-in-preview-run-

lambda-function-at-aws-edge-locations-closest-

to-your-users/.

[37] LITTON, J., VAHLDIEK-OBERWAGNER, A., ELNIKETY, E.,
GARG, D., BHATTACHARJEE, B., AND DRUSCHEL, P. Light-
weight contexts: an os abstraction for safety and performance.
In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16) (2016).

[38] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT, D.,
SINGH, B., GAZAGNAIRE, T., SMITH, S., HAND, S., AND
CROWCROFT, J. Unikernels: Library operating systems for the
cloud. In ASPLOS (2013).

[39] MADHAVAPEDDY, A., AND SCOTT, D. J. Unikernels: the rise
of the virtual library operating system. Communications of the
ACM (2014).

[40] MANCO, F., LUPU, C., SCHMIDT, F., MENDES, J., KUENZER,
S., SATI, S., YASUKATA, K., RAICIU, C., AND HUICI, F. My
vm is lighter (and safer) than your container. In Proceedings
of the 26th Symposium on Operating Systems Principles (2017),
SOSP ’17.

[41] MCGRATH, G., AND BRENNER, P. R. Serverless computing:
Design, implementation, and performance. In 2017 IEEE 37th In-
ternational Conference on Distributed Computing Systems Work-
shops (ICDCSW) (2017).

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://cassandra.apache.org/
https://kafka.apache.org/
http://mxnet.incubator.apache.org/
http://mxnet.incubator.apache.org/
http://openwhisk.apache.org/
https://thrift.apache.org/
https://aws.amazon.com/greengrass/
https://medium.com/@quodlibet_be/aws-lambda-for-java-5d5e954d3bdf
https://medium.com/@quodlibet_be/aws-lambda-for-java-5d5e954d3bdf
https://medium.com/@quodlibet_be/aws-lambda-for-java-5d5e954d3bdf
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
http://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
http://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://www.docker.com/
https://www.docker.com/
http://www.eweek.com/networking/why-edge-computing-market-will-grow-30-percent-by-2022
http://www.eweek.com/networking/why-edge-computing-market-will-grow-30-percent-by-2022
https://blog.alexellis.io/functions-as-a-service/
https://blog.alexellis.io/functions-as-a-service/
https://github.com/google/gvisor
https://github.com/google/gvisor
https://techcrunch.com/2018/05/02/google-open-sources-gvisor-a-sandboxed-container-runtime/
https://techcrunch.com/2018/05/02/google-open-sources-gvisor-a-sandboxed-container-runtime/
https://hook.io/
https://hypercontainer.io/
https://hypercontainer.io/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.imagemagick.org/
https://www.iron.io/
https://www.iron.io/
http://www.eclipse.org/jetty/
http://www.eclipse.org/jetty/
http://ericjonas.com/pywren.html
http://ericjonas.com/pywren.html
https://aws.amazon.com/about-aws/whats-new/2016/12/introducing-lambda-at-edge-in-preview-run-lambda-function-at-aws-edge-locations-closest-to-your-users/
https://aws.amazon.com/about-aws/whats-new/2016/12/introducing-lambda-at-edge-in-preview-run-lambda-function-at-aws-edge-locations-closest-to-your-users/
https://aws.amazon.com/about-aws/whats-new/2016/12/introducing-lambda-at-edge-in-preview-run-lambda-function-at-aws-edge-locations-closest-to-your-users/
https://aws.amazon.com/about-aws/whats-new/2016/12/introducing-lambda-at-edge-in-preview-run-lambda-function-at-aws-edge-locations-closest-to-your-users/


[42] MCGRATH, G., SHORT, J., ENNIS, S., JUDSON, B., AND
BRENNER, P. Cloud event programming paradigms: Applica-
tions and analysis. In 2016 IEEE 9th International Conference
on Cloud Computing (CLOUD) (2016).

[43] GitHub - awslabs/mxnet-lambda: Reference Lambda function
that predicts image labels for a image using an MXNet-built deep
learning model. The repo also has pre-built MXNet, OpenCV
libraries for use with AWS Lambda. https://github.com/

awslabs/mxnet-lambda.

[44] nginx news. https://nginx.org/.

[45] Node.js. https://nodejs.org/en/.

[46] OAKES, E., YANG, L., HOUCK, K., HARTER, T., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Pipsqueak:
Lean lambdas with large libraries. In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems Workshops
(ICDCSW) (2017).

[47] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER,
T., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
SOCK: Rapid task provisioning with serverless-optimized con-
tainers. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18) (2018).

[48] OpenWhisk Action Sequences - Create and invoke Ac-
tions. https://console.bluemix.net/docs/openwhisk/

openwhisk_actions.html#openwhisk_create_action_

sequence.

[49] PubNub: Making Realtime Innovation Simple. https://www.

pubnub.com/.

[50] SATYANARAYANAN, M. The emergence of edge computing.
Computer 50, 1 (2017), 30–39.

[51] GitHub - awslabs/lambda-refarch-imagerecognition: The Im-
age Recognition and Processing Backend reference architec-
ture demonstrates how to use AWS Step Functions to orches-
trate a serverless processing workflow using AWS Lambda,
Amazon S3, Amazon DynamoDB and Amazon Rekogni-
tion. https://github.com/awslabs/lambda-refarch-

imagerecognition/.

[52] SHI, W., AND DUSTDAR, S. The promise of edge computing.
Computer 49, 5 (2016), 78–81.

[53] THALHEIM, J., BHATOTIA, P., FONSECA, P., AND KASIKCI,
B. CNTR: Lightweight OS containers. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18) (2018).

[54] UnitCluster - Make and run scripts in the cloud. https://

unitcluster.com/.

[55] VERMA, A., PEDROSA, L., KORUPOLU, M. R., OPPEN-
HEIMER, D., TUNE, E., AND WILKES, J. Large-scale cluster
management at Google with Borg. In Proceedings of the Tenth
European Conference on Computer Systems (2015), EuroSys ’15.

[56] VILLAMIZAR, M., GARCES, O., OCHOA, L., CASTRO, H. E.,
SALAMANCA, L., VERANO, M., CASALLAS, R., GIL, S., VA-
LENCIA, C., ZAMBRANO, A., AND LANG, M. Infrastructure
cost comparison of running web applications in the cloud using
AWS lambda and monolithic and microservice architectures. In
CCGrid (2016), pp. 179–182.

[57] Write-ahead logging. https://en.wikipedia.org/wiki/

Write-ahead_logging.

[58] Webtask. https://webtask.io/.

[59] What is AWS Greengrass? https://docs.aws.amazon.com/

greengrass/latest/developerguide/what-is-gg.html.

https://github.com/awslabs/mxnet-lambda
https://github.com/awslabs/mxnet-lambda
https://nginx.org/
https://nodejs.org/en/
https://console.bluemix.net/docs/openwhisk/openwhisk_actions.html#openwhisk_create_action_sequence
https://console.bluemix.net/docs/openwhisk/openwhisk_actions.html#openwhisk_create_action_sequence
https://console.bluemix.net/docs/openwhisk/openwhisk_actions.html#openwhisk_create_action_sequence
https://www.pubnub.com/
https://www.pubnub.com/
https://github.com/awslabs/lambda-refarch-imagerecognition/
https://github.com/awslabs/lambda-refarch-imagerecognition/
https://unitcluster.com/
https://unitcluster.com/
https://en.wikipedia.org/wiki/Write-ahead_logging
https://en.wikipedia.org/wiki/Write-ahead_logging
https://webtask.io/
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html

	Introduction
	Background
	Function Deployment
	Function Call
	Function Concurrency
	Function Chaining

	SAND Key Ideas and Building Blocks
	Application Sandboxing
	Hierarchical Message Queuing

	SAND System Design
	System Components
	Workflow Example
	Handling Host Failures

	Additional System Components

	Implementation
	Evaluation
	Sandboxing and Startup Latency
	Hierarchical Message Bus
	Function Interaction Latency
	Memory Footprint
	Idle Memory Cost vs. Latency
	Image Processing Pipeline

	Experience with SAND 
	Related Work
	Discussion & Limitations
	Conclusion & Future Work
	Acknowledgments

