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Abstract

What fundamental opportunities for scalability are latent
in interfaces, such as system call APIs? Can scalability
opportunities be identified even before any implemen-
tation exists, simply by considering interface specifica-
tions? To answer these questions this paper introduces
the following rule: Whenever interface operations com-
mute, they can be implemented in a way that scales. This
rule aids developers in building more scalable software
starting from interface design and carrying on through
implementation, testing, and evaluation.

To help developers apply the rule, a new tool named
COMMUTER accepts high-level interface models and gen-
erates tests of operations that commute and hence could
scale. Using these tests, COMMUTER can evaluate the
scalability of an implementation. We apply COMMUTER
to 18 POSIX calls and use the results to guide the im-
plementation of a new research operating system kernel
called sv6. Linux scales for 68% of the 13,664 tests gen-
erated by COMMUTER for these calls, and COMMUTER
finds many problems that have been observed to limit
application scalability. sv6 scales for 99% of the tests.

1 Introduction

The state of the art for evaluating the scalability of multi-
core software is to choose a workload, plot performance
at varying numbers of cores, and use tools such as differ-
ential profiling [29] to identify scalability bottlenecks.
This focuses developer effort on real issues, but has
several drawbacks. Different workloads or higher core
counts often exhibit new bottlenecks. It’s unclear which
bottlenecks are fundamental, so developers may give up
without realizing that a scalable solution is possible. Fi-
nally, this process happens so late in the development
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process that design-level solutions such as improved in-
terfaces may be impractical.

This paper presents a new approach to scalability that
starts at a higher level: the software interface. This makes
reasoning about scalability possible before an implemen-
tation exists and before the necessary hardware is avail-
able to measure the implementation’s scalability. It can
highlight inherent scalability problems, leading to alter-
nate interface designs. And it sets a clear scaling target
for the implementation of a scalable interface.

Scalability is often considered an implementation prop-
erty, not an interface property, not least because what
scales depends on hardware. However, if we assume a
shared-memory multicore processor with caches kept co-
herent by a MESI-like protocol [33], general scalability
arguments are possible. On such processors, a core can
scalably read and write data it has cached exclusively, and
scalably read data it has cached in shared mode. Writing
a cache line that was last read or written by another core
is not scalable, however, since the coherence protocol
serializes ownership changes for each cache line, and
because the shared interconnect may serialize unrelated
transfers [7: §4.3].

We therefore say that a set of operations scales if their
implementations have conflict-free memory accesses,
where no core writes a cache line that was read or written
by another core. When memory accesses are conflict-free,
adding more cores will produce a linear increase in capac-
ity. This is not a perfect model of the complex realities of
modern hardware, but it is a good approximation.

At the core of our approach is this scalable commuta-
tivity rule: In any situation where several operations com-
mute—meaning there’s no way to distinguish their execu-
tion order using the interface—they have an implemen-
tation whose memory accesses are conflict-free during
those operations. Or, more concisely, whenever inter-
face operations commute, they can be implemented
in a way that scales.

Connections between commutativity and concurrency
are well established in the literature. Previous work, how-
ever, has focused on using commutativity to reason about
the safety of executing operations concurrently (see §2).
Our work is complementary: we use commutativity to
reason about scalability.


http://dx.doi.org/10.1145/2517349.2522712

The commutativity rule makes intuitive sense: when
operations commute, their results (return value and effect
on system state) are independent of order. Hence, commu-
nication between commutative operations is unnecessary,
and eliminating it yields conflict-free implementations.
This intuitive version of the rule is useful in practice, but
not precise enough to reason about formally. §3 formally
defines the commutativity rule and proves the correctness
of the formalized rule.

An important consequence of this presentation is a
novel form of commutativity we call SIM commutativity.
The usual definition of commutativity (e.g., for algebraic
operations) is so stringent that it rarely applies to the
complex, stateful interfaces common in systems software.
SIM commutativity, in contrast, is state-dependent and
interface-based, as well as monotonic. When operations
commute in the context of a specific system state, specific
operation arguments, and specific concurrent operations,
we show that an implementation exists that is conflict-
free for that state and those arguments and concurrent
operations. This exposes many more opportunities to
apply the rule to real interfaces—and thus discover scal-
able implementations—than a more conventional notion
of commutativity would. Despite its logical state depen-
dence, SIM commutativity is interface-based: rather than
requiring all operation orders to produce identical inter-
nal states, it requires the resulting states to be indistin-
guishable via the interface. SIM commutativity is thus
independent of any specific implementation, enabling
developers to apply the rule directly to interface design.

The commutativity rule leads to a new way to design
scalable software: first, analyze the interface’s commuta-
tivity, and then design an implementation that scales in
commutative situations. For example, consider file cre-
ation in a POSIX-like file system. Imagine that multiple
processes create files in the same directory at the same
time. Can the creation system calls be made to scale? Our
first answer was “obviously not”: the system calls modify
the same directory, so surely the implementation must
serialize access to the directory. But it turns out these
operations commute if the two files have different names
(and no hard or symbolic links are involved) and, there-
fore, have an implementation that scales for such names.
One such implementation represents each directory as
a hash table indexed by file name, with an independent
lock per bucket, so that creation of differently named files
is conflict-free, barring hash collisions. Before the rule,
we tried to determine if these operations could scale by
analyzing all of the implementations we could think of.
This process was difficult, unguided, and itself did not
scale to complex interfaces, which motivated our goal of
reasoning about scalability in terms of interfaces.

Complex interfaces can make it difficult to spot and
reason about all commutative cases even given the rule.

To address this challenge, §5 introduces a tool named
COMMUTER that automates this reasoning. COMMUTER
takes an interface model in the form of a simplified, sym-
bolic implementation, computes precise conditions under
which sets of operations commute, and tests an implemen-
tation for conflict-freedom under these conditions. This
tool can be integrated into the development process to
drive initial design and implementation, to incrementally
improve existing implementations, or to help developers
understand the commutativity of an interface.

This paper demonstrates the value of the commutativ-
ity rule and COMMUTER in two ways. In §4, we explore
the commutativity of POSIX and use this understanding
both to suggest guidelines for designing interfaces whose
operations commute and to propose specific modifica-
tions to POSIX that would allow for greater scalability.

In §6, we apply COMMUTER to a simplified model of
18 POSIX file system and virtual memory system calls.
From this model, COMMUTER generates 13,664 tests of
commutative system call pairs, all of which can be made
conflict-free according to the rule. We use these tests to
guide the implementation of a new research operating
system kernel named sv6. sv6 has a novel virtual mem-
ory system (RadixVM [15]) and in-memory file system
(named ScaleFS). COMMUTER determines that sv6 is
conflict-free for 13,528 of the 13,664 tests, while Linux
is conflict-free for 9,389 tests. Some of the commutative
cases where Linux doesn’t scale are important to applica-
tions, such as commutative mmaps and creating different
files in a shared directory. §7 confirms that commutative
conflict-free system calls translate to better application
scalability on an 80-core machine.

2 Related work

The scalable commutativity rule is to the best of our
knowledge the first observation to directly connect scala-
bility to interface commutativity. This section relates the
rule and its use in sv6 and COMMUTER to prior work.

2.1 Thinking about scalability

Israeli and Rappoport introduce the notion of disjoint-
access-parallel memory systems [26]. Roughly, if a
shared memory system is disjoint-access-parallel and
a set of processes access disjoint memory locations, then
those processes scale linearly. Like the commutativity
rule, this is a conditional scalability guarantee: if the ap-
plication uses shared memory in a particular way, then
the shared memory implementation will scale. However,
where disjoint-access parallelism is specialized to the
memory system interface, our work encompasses any
software interface. Attiya et al. extend Israeli and Rap-
poport’s definition to additionally require conflict-free
operations to scale [1]. Our work builds on the assump-
tion that memory systems behave this way, and we indi-



rectly confirm that real hardware closely approximates
this behavior (§7).

Both the original disjoint-access parallelism paper
and subsequent work, including the paper by Roy et
al. [36], explore the scalability of processes that have
some amount of non-disjoint sharing, such as compare-
and-swap instructions on a shared cache line or a shared
lock. Our work takes a black-and-white view because
we have found that, on real hardware, a single modified
shared cache line can wreck scalability (§7).

The Laws of Order [2] explore the relationship
between an interface’s strong non-commutativity and
whether its implementation requires atomic instructions
or fences (e.g., mfence on the x86) for correct concurrent
execution. These instructions slow down execution by in-
terfering with out-of-order execution, even if there are no
memory access conflicts. The Laws of Order resemble the
commutativity rule, but draw conclusions about sequen-
tial performance, rather than scalability. Paul McKenney
explores the Laws of Order in the context of the Linux
kernel, and points out that the Laws of Order may not
apply if linearizability is not required [30].

It is well understood that cache-line contention can
result in bad scalability. A clear example is the design
of the MCS lock [32], which eliminates scalability col-
lapse by avoiding contention for a particular cache line.
Other good examples include scalable reference coun-
ters [16, 21]. The commutativity rule builds on this un-
derstanding and identifies when arbitrary interfaces can
avoid conflicting memory accesses.

2.2 Designing scalable operating systems

Practitioners often follow an iterative process to improve
scalability: design, implement, measure, repeat [12].
Through a great deal of effort, this approach has led
kernels such as Linux to scale well for many important
workloads. However, Linux still has many scalability
bottlenecks, and absent a method for reasoning about
interface-level scalability, it is unclear which of the bot-
tlenecks are inherent to its system call interface. This
paper identifies situations where POSIX permits or limits
scalability and points out specific interface modifications
that would permit greater implementation scalability.

Multikernels for multicore processors aim for scalabil-
ity by avoiding shared data structures in the kernel [3, 43].
These systems implement shared abstractions using dis-
tributed systems techniques (such as name caches and
state replication) on top of message passing. It should
be possible to generalize the commutativity rule to dis-
tributed systems, and relate the interface exposed by a
shared abstraction to its scalability, even if implemented
using message passing.

The designers of the Corey operating system [8] argue
for putting the application in control of managing the

cost of sharing without providing a guideline for how
applications should do so; the commutativity rule could
be a helpful guideline for application developers.

2.3 Commutativity

The use of commutativity to increase concurrency has
been widely explored. Steele describes a parallel pro-
gramming discipline in which all operations must be
either causally related or commutative [40]. His work
approximates commutativity as conflict-freedom. Our
work shows that commutative operations always have
a conflict-free implementation, making Steele’s model
more broadly applicable. Rinard and Diniz describe how
to exploit commutativity to automatically parallelize
code [35]. They allow memory conflicts, but generate
synchronization code to ensure atomicity of commuta-
tive operations. Similarly, Prabhu et al. describe how
to automatically parallelize code using manual annota-
tions rather than automatic commutativity analysis [34].
Rinard and Prabhu’s work focuses on the safety of exe-
cuting commutative operations concurrently. This gives
operations the opportunity to scale, but does not ensure
that they will. Our work focuses on scalability: given
concurrent, commutative operations, we show they have
a scalable implementation.

The database community has long used logical read-
sets and writesets, conflicts, and execution histories to
reason about how transactions can be interleaved while
maintaining serializability [6]. Weihl extends this work
to abstract data types by deriving lock conflict relations
from operation commutativity [42]. Transactional boost-
ing applies similar techniques in the context of software
transactional memory [23]. Shapiro et al. extend this to a
distributed setting, leveraging commutative operations in
the design of replicated data types that support updates
during faults and network partitions [38, 39]. Like Rinard
and Prabhu’s work, the work in databases and its exten-
sions focuses on the safety of executing commutative
operations concurrently, not directly on scalability.

2.4 Test case generation

Prior work on concolic testing [22, 37] and symbolic
execution [10, 11] generates test cases by symbolically
executing a specific implementation. Our COMMUTER
tool uses a combination of symbolic and concolic execu-
tion, but generates test cases for an arbitrary implementa-
tion based on a model of that implementation’s interface.
This resembles QuickCheck’s [13] or Gast’s [27] model-
based testing, but uses symbolic techniques. Furthermore,
while symbolic execution systems often avoid reasoning
precisely about symbolic memory accesses (e.g., access-
ing a symbolic offset in an array), COMMUTER’s test
case generation aims to achieve conflict coverage (§5.2),
which tests different access patterns when using symbolic
addresses or indexes.



3 The scalable commutativity rule

This section addresses two questions: What is the pre-
cise definition of the scalable commutativity rule, and
why is the rule true? We answer these questions using a
formalism based on abstract actions, histories, and imple-
mentations. The formalism relies on SIM commutativity,
whose generality broadens the rule’s applicability to com-
plex software interfaces. Our constructive proof of the
commutativity rule also sheds some light on how real
commutative implementations might be built, though the
actual construction is not very practical.

3.1 Actions

Following earlier work [24], we model a system execu-
tion as a sequence of actions, where an action is either an
invocation or a response. In the context of an operating
system, an invocation represents a system call with ar-
guments (such as getpid() or open("file", O_RDWR)) and
a response represents the corresponding result (a PID or
a file descriptor). Invocations and responses are paired.
Each invocation is made by a specific thread, and the cor-
responding response is returned to the same thread. An
action thus comprises (1) an operation class (e.g., which
system call is being invoked); (2) operation arguments
(for invocations) or a return value (for responses); (3)
the relevant thread; and (4) a tag for uniqueness. We’ll
write invocations as left half-circles @Y (“invoke A”) and
responses as right half-circles fJ (“respond A”), where
the letters match invocations and their responses. Color
and vertical offset differentiate threads: @ and @ are
invocations on different threads.
A system execution is called a history. For example:

H=Q@qEDpPpapap@adbbp

We’ll consider only well-formed histories, in which each
thread’s actions form a sequence of invocation-response
pairs. H above is well-formed; checking this for the
red thread 7, we see that the thread-restricted subhistory
Hi=@DE@ED @D formed by selecting ¢’s actions
from H alternates invocations and responses as one would
want. In a well-formed history, each thread has at most
one outstanding invocation at every point.

The specification distinguishes whether or not a his-
tory is “correct.” A specification . is a prefix-closed
set of well-formed histories. Its contents depend on the
system being modeled; for example, if . specified a
Unix-like OS, then [@ = getpid(), [ = 0] £ .7, since no
Unix thread can have PID 0. Our definitions and proof
require that some specification exists, but we aren’t con-
cerned with how it is constructed.

3.2 Commutativity

Commutativity should capture the idea that the order
of a set of actions “doesn’t matter.” This happens when

later actions can’t tell which order actually occurred. The
specification helps make this precise: a set of operations
commutes in some context when the specification is indif-
ferent to the execution order of that set. This means that
any response valid for one order of the commutative set is
valid for any order of the commutative set, and likewise
any response invalid for one order is invalid for any order.
But the right definition for commutativity is a little tricky,
so we build it up in two steps.

An action sequence, or region, H' is a reordering
of an action sequence H when H|t = H'|t for every
thread ¢. Thus, regions H and H' contain the same ac-
tions, but may interleave threads differently. If H =
AAPAEDBP. then AP AP @EAP is a reordering
of H, but @D is not, since it doesn’t respect
the order of actions in H’s red thread.

Consider a history H = X || Y (where || concatenates
action sequences). Y SI-commutes in H when given any
reordering Y’ of Y, and any action sequence Z,

X||Y||Ze .~ ifandonlyif X||Y'||Z€.7.

This definition captures the interface basis and state de-
pendence we need. The action sequence X puts the sys-
tem into the state we wish to consider; switching regions
Y and Y’ requires that the return values from Y be valid
according to the specification regardless of the actions’
order; and the presence of region Z in both histories
requires that reorderings of actions in region Y are indis-
tinguishable by future operations.

Unfortunately, SI commutativity doesn’t suffice for
the proof because it is non-monotonic. Given an ac-
tion sequence X || ¥; || Y2, it is possible for Y || ¥, to
SI-commute after region X even though Y; on its own
does not. For example, consider a get/set interface and
Y = [@ = set(1), D, @ = set(2),D,@ = set(2),®)]. Y
SI-commutes in any history (every order sets the underly-
ing value to 2), but its prefix ¥; = [ = set(1),[),@ =
set(2),B] does not (some orders set the value to 1 and
some to 2). Whether or not Y| will ultimately form part of
a commutative region thus depends on future operations!
This is usually incompatible with scalability: operations
in Y1 must “plan for the worst” by remembering their
order in case execution diverges from 5.

A monotonic version of commutativity eliminates this
problem. An action sequence Y SIM-commutes in a his-
tory H = X || Y when for any prefix P of some reordering
of Y (including P =Y), P SI-commutes in X || P. Like
SI commutativity, SIM commutativity captures interface
basis and state dependence; unlike SI commutativity, it is
monotonic and, as we show below, suffices to prove the
commutativity rule.

State dependence means that SIM commutativity cap-
tures operations that commute, and therefore can scale,
in some states, but not others. This allows us to greatly



expand the situations that commute, and that therefore
can scale. For example, few OS system calls uncon-
ditionally commute in every state and history. (One
that does is getpid(), since its result is constant over a
process’s lifetime.) But many system calls condition-
ally commute. Consider Unix’s open system call. Two
calls to open("a", O_CREAT|O_EXCL) often don’t com-
mute: one call will create the file and the other will fail
because the file already exists. However, two calls to
open("a", O_CREAT|O_EXCL) do commute if called from
processes with different working directories. And even if
the processes have the same working directory, two calls
to open("a", O_CREAT|O_EXCL) will commute if the file
already exists (both calls will return the same error). SIM
commutativity allows us to distinguish these cases, even
though the operations are the same in each. This, in turn,
means the commutativity rule can tell us that scalable
implementations exist in the commutative cases.

SIM commutativity is also interface-based. It evaluates
the consequences of execution order using only the speci-
fication. Furthermore, it doesn’t say that every reordering
has indistinguishable results on a given implementation;
it requires instead that every reordering is allowed by
the specification to have indistinguishable results. This is
important because any given implementation might have
unnecessary scalability bottlenecks that show through
the interface. The SIM commutativity of an interface can
be considered even when no implementation exists. This
in turn makes it possible to use the commutativity rule
early in software development, during interface design
and initial implementation.

3.3 Implementations

To reason about implementation scalability, we need to
model implementations in enough detail to tell whether
different threads’ “memory accesses” are conflict-free.
(As discussed in §1, conflict freedom is our proxy for
scalability.) We define an implementation as a step func-
tion: given a state and an invocation, it produces a new
state and a response. Special CONTINUE actions enable
concurrent overlapping operations and blocking.
We begin by defining three sets:

* §is the set of implementation states.
* [ is the set of valid invocations, including CONTINUE.
* R is the set of valid responses, including CONTINUE.

An implementation m is a function in S X I — S X R.
Given an old state and an invocation, the implementation
produces a new state and a response (where the response
must have the same thread as the invocation). A CON-
TINUE response indicates that a real response for that
thread is not yet ready, and allows the implementation to
effectively switch to another thread. CONTINUE invoca-
tions give the implementation an opportunity to complete

an outstanding request (or further delay its response);
however, the response must be for the thread matching
the CONTINUE invocation. !

An implementation generates a history when calls to
the implementation (perhaps including CONTINUE in-
vocations) could potentially produce the corresponding
history. For example, this sequence shows an implemen-
tation m generating a history (1 QB I:

o m(so,@) = (s1, CONTINUE)

* m(s1,@) = (s2, CONTINUE)

* m(sp, CONTINUE) = (s3, CONTINUE)

* m(s3,CONTINUE) = (54, D)

* m(s4,CONTINUE) = {s5,[9)
The state is threaded from step to step; invocations appear
as arguments and responses as return values. The gener-
ated history consists of the invocations and responses, in
order, with CONTINUES removed.

An implementation m is correct for some specification
- when the responses it generates are always allowed
by the specification. Specifically, assume H € .¥ is a
valid history and r is a response where m can generate
H || r. We say that m is correct when for any such H and r,
H ||r € .. Note that a correct implementation need not
be capable of generating every possible valid response;
it’s just that every response it does generate is valid.

To reason about conflict freedom, we must peek into
implementation states, identify reads and writes, and
check for access conflicts. Let each state s € S be a tuple
(5.0, ..., s.m), and let s;._, indicate component replace-
ment: s;y = (5.0, ..., s.(i—1), x, s.(i+ 1), ..., s.m).
Now consider an implementation step m(s,a) = (s', r).
This step writes state component i when s.i # 5 .i. It reads
state component i when s.i may affect the step’s behavior;
that is, when for some y,

m(Sicy,a) # <s;ey, ry.

Two implementation steps have an access conflict when
they are on different threads and one writes a state com-
ponent that the other either writes or reads. A set of im-
plementation steps is conflict-free when no pair of steps
in the set has an access conflict. This notion of access
conflicts maps directly onto read and write access con-
flicts on real shared-memory machines. Since modern
MESI-based cache-coherent machines usually provide
good scalability on conflict-free access patterns, we can
loosely say that a conflict-free set of implementation steps
“scales.”

IThere are restrictions on how implementation arguments are
chosen—we assume, for example, that CONTINUE invocations are
passed only when a thread has an outstanding request. Since imple-
mentations are functions, they must be deterministic. We could model
implementations instead as relations, allowing non-determinism, though
this would complicate later arguments somewhat.



Mps(s,a) =
If head(s.h) = a:
r <~ CONTINUE
else if « = CONTINUE and head(s.h) is a response
and thread(head(s.)) = thread(a):

r < head(s.h) !l replay s.h
else if s.h  EMULATE: // H complete or input diverged
H'’ < an invocation sequence consistent with s.

For each invocation x in H':
(s.refstate, _) < M(s.refstate,x)
5.h <= EMULATE
If s.h = EMULATE:
(s.refstate, r) < M(s.refstate,a)
else: /I replay mode
s.h  tail(s.h)
return (s, r)

/1 switch to emulation mode

Figure 1: Constructed non-scalable implementation
mys for history H and reference implementation M.

3.4 Rule

We can now formally state the scalable commutativity
rule. Assume a specification . with a correct reference
implementation M. Consider a history H = X ||Y where Y
SIM-commutes in H, and where M can generate H. Then
there exists a correct implementation m of .’ whose steps
in the Y region of H are conflict-free.

3.5 Proof

A constructive proof for the commutativity rule can be ob-
tained by building a scalable implementation m from the
reference implementation M and history H = X || Y. The
constructed implementation emulates the reference im-
plementation and is thus correct for any history. Its perfor-
mance properties, however, are specialized for H. For any
history X || P where P is a prefix of a reordering of Y, the
constructed implementation’s steps in P are conflict-free.
This means that, within the SIM-commutative region, m
scales.

To understand the construction, it helps to first imagine
constructing a non-scalable implementation myg from the
reference M. This non-scalable implementation begins
in replay mode. While the input invocations match H,
mys responds exactly according to H, without invoking
the reference. When the input invocations diverge from
H, however, mys no longer knows how to respond, so
it enters emulation mode. This requires feeding M all
previously received invocations to prepare its state.

A state s for myg contains two components. First, 5./
holds either the portion of H that remains to be replayed
or EMULATE, which denotes emulation mode. It is ini-
tialized to H. Second, s.refstate is the state of the refer-
ence implementation, and is initialized accordingly. Fig-
ure 1 shows how the simulated implementation works.

m(s,a) =
t + thread(a)
If head(s.h[t]) = COMMUTE: // enter conflict-free mode
s.commutelt] - TRUE; s.h[t] <+ tail(s.h[t])
If head(s.h[t]) = a:
r < CONTINUE
else if a = CONTINUE and head(s.h[t]) is a response
and thread(head(s.h[t])) =1
r < head(s.hlt])
else if s.h[f] 2 EMULATE: // H complete/input diverged
H' + an invocation sequence consistent with s./[x]
For each invocation x in H':
(s.refstate, _) < M(s.refstate,x)
s.h[u] <~ EMULATE for each thread u
If 5./[t] = EMULATE:
(s.refstate, r) < M(s.refstate,a)
else if s.commutelt]:
s.h[t] < tail(s.h[t])

/] replay s.h

/I conflict-free mode

else: /I replay mode
s.h|u] + tail(s.h[u]) for each thread u
return (s, r)

Figure 2: Constructed scalable implementation m for
history H and reference implementation .

We make several simplifying assumptions, including that
Mys Teceives CONTINUE invocations in a restricted way;
these assumptions aren’t critical for the argument. One
line requires expansion, namely the choice of H' “con-
sistent with s.4”” when the input sequence diverges. This
step calculates the prefix of H up to, but not including,
s.h; excludes responses; and adds CONTINUE invocations
as appropriate.

This implementation is correct—its responses for any
history always match those from the reference implemen-
tation. But it doesn’t scale. In replay mode, any two steps
of mys conflict on accessing s.h. These accesses track
which invocations have occurred; without them it would
be impossible to later initialize the state of M. And this
is where commutativity comes in. The action order in
a SIM-commutative region doesn’t matter by definition.
Since the specification doesn’t distinguish among orders,
it is safe to initialize the reference implementation with
the commutative actions in a different order than they
were received. All future responses will still be valid
according to the specification.

Figure 2 shows the construction of m, a version of
M that scales over Y in H = X || Y. m is similar to mys,
but extends it with a conflict-free mode used to execute
actions in Y. Its state is as follows:

* s.ht]—a per-thread history. Initialized to X ||
COMMUTE || (Y|t), where the special COMMUTE ac-
tion indicates the commutative region has begun.



* s.commute(t|—a per-thread flag indicating whether
the commutative region has been reached. Initialized
to FALSE.

* s.refstate—the reference implementation’s state.

Each step of m in the commutative region accesses only
state components specific to the invoking thread. This
means that any two steps in the commutative region are
conflict-free, and the commutativity rule is proved. The
construction uses SIM commutativity when initializing
the reference implementation’s state via H'. If the ob-
served invocations diverge before the commutative re-
gion, then just as in mys, H' will exactly equal the ob-
served invocations. If the observed invocations diverge
in or after the commutative region, however, there’s not
enough information to recover the order of invocations.
(The s.h[t] components track which invocations have hap-
pened per thread, but not the order of those invocations
between threads.) Therefore, H' might reorder the invoca-
tions in Y. SIM commutativity guarantees that replaying
H' will nevertheless produce results indistinguishable
from those of the actual invocation order, even if the
execution diverges within the commutative region.”

3.6 Discussion

The commutativity rule and proof construction push state
and history dependence to an extreme: the proof con-
struction is specialized for a single commutative region.
Repeated application of the construction can build an
implementation that scales over multiple commutative
regions in a history, or for the union of many histories.
(This is because, once the constructed machine leaves the
specialized region, it passes invocations directly to the
reference and has the same conflict-freedom properties
as the reference.) Nevertheless, the proof construction
is impractical, and real implementations usually achieve
scalability using different techniques.

We believe it is easier to create practical scalable im-
plementations for operations that commute in more situ-
ations. The arguments and system states for which a set
of operations commutes often collapse into fairly well-
defined classes (e.g., file creation might commute when-
ever the containing directories are different). In practice,
implementations scale for whole classes of states and
arguments, not just for specific histories.

2We effectively have assumed that M, the reference implementation,
produces the same results for any reordering of the commutative region.
This is stricter than SIM commutativity, which places requirements
on the specification, not the implementation. We also assumed that M
is indifferent to the placement of CONTINUE invocations in the input
history. Neither of these restrictions is fundamental, however. If during
replay M produces responses that are inconsistent with the desired
results, m could throw away M’s state, produce a new H’ with different
CONTINUE invocations and/or commutative region ordering, and try
again. This procedure must eventually succeed.

It is also often the case that a set of operations com-
mutes in more than one class of situation, but no single
implementation scales for all classes. Consider, for exam-
ple, an interface with two calls: put(x) records a sample
with value x, and max() returns the maximum sample
recorded so far (or 0). Suppose

H=[@=put(1), D, @=put(1),D,@=max(). g = 1.

An implementation could store per-thread maxima rec-
onciled by max and be conflict-free for (Y @B in
H. Alternatively, it could use a global maximum that
put checked before writing. This is conflict-free for
anD in H. But no correct implementation can be
conflict-free across all of H. In the end, a system de-
signer must decide which situations involving commu-
tative operations are most important, and find practical
implementation strategies that scale in those situations.
In §6 we show that many operations in POSIX have im-
plementations that scale quite broadly, with few cases of
incompatible scalability classes.

The commutativity rule shows that SIM-commutative
regions have conflict-free implementations. It does not
show the converse, however: commutativity suffices
for conflict-free accesses, but it may not be necessary.
Some non-commutative interfaces may have scalable
implementations—for instance, on machines that offer
scalable access to strictly increasing sources of time, or
when the core interconnect allows certain communication
patterns to scale. Furthermore, some conflict-free access
patterns don’t scale on real machines; if an application
overwhelms the memory bus with memory accesses, scal-
ability will suffer regardless of whether those accesses
have conflicts. We hope to investigate these problems in
future, but as we show below, the rule is already a good
guideline for achieving practical scalability.

4 Designing commutative interfaces

The rule facilitates scalability reasoning at the interface
and specification level, and SIM commutativity lets us
apply the rule to complex interfaces. This section demon-
strates the interface-level reasoning enabled by the rule.
Using POSIX as a case study, we explore changes that
make operations commute in more situations, enabling
more scalable implementations. Already, many POSIX
operations commute with many other operations, a fact
we will quantify in the next section; this section focuses
on problematic cases to give a sense of the subtler issues
of commutative interface design.

Decompose compound operations. Many POSIX
APIs combine several operations into one, limiting the
combined operation’s commutativity. For example, fork
both creates a new process and snapshots the current pro-
cess’s entire memory state, file descriptor state, signal



mask, and several other properties. As a result, fork fails
to commute with most other operations in the same pro-
cess, such as memory writes, address space operations,
and many file descriptor operations. However, applica-
tions often follow fork with exec, which undoes most
of fork’s sub-operations. With only fork and exec, ap-
plications are forced to accept these unnecessary sub-
operations that limit commutativity.

POSIX has a little-known API called posix_spawn that
addresses this problem by creating a process and loading
an image directly (CreateProcess in Windows is simi-
lar). This is equivalent to fork/exec, but its specification
eliminates the intermediate sub-operations. As a result,
posix_spawn commutes with most other operations and
permits a broadly scalable implementation.

Another example, stat, retrieves and returns many dif-
ferent attributes of a file simultaneously, which makes it
non-commutative with operations on the same file that
change any attribute returned by stat (such as link, chmod,
chown, write, and even read). In practice, applications
invoke stat for just one or two of the returned fields. An
alternate API that gave applications control of which field
or fields were returned would commute with more opera-
tions and enable a more scalable implementation of stat,
as we show in §7.2.

POSIX has many other examples of compound return
values. sigpending returns all pending signals, even if the
caller only cares about a subset; and select returns all
ready file descriptors, even if the caller needs only one
ready FD.

Embrace specification non-determinism. POSIX’s
“lowest available FD” rule is a classic example of overly
deterministic design that results in poor scalability. Be-
cause of this rule, open operations in the same process
(and any other FD allocating operations) do not com-
mute, since the order in which they execute determines
the returned FDs. This constraint is rarely needed by
applications and an alternate interface that could return
any unused FD would allow FD allocation operations to
commute and enable implementations to use well-known
scalable allocation methods. We will return to this exam-
ple, too, in §7.2. Many other POSIX interfaces get this
right: mmap can return any unused virtual address and
creat can assign any unused inode number to a new file.

Permit weak ordering. Another common source of
limited commutativity is strict ordering requirements be-
tween operations. For many operations, ordering is natu-
ral and keeps interfaces simple to use; for example, when
one thread writes data to a file, other threads can im-
mediately read that data. Synchronizing operations like
this are naturally non-commutative. Communication in-
terfaces, on the other hand, often enforce strict ordering,
but may not need to. For instance, most systems order

all messages sent via a local Unix domain socket, even
when using SOCK_DGRAM, so any send and recv system
calls on the same socket do not commute (except in er-
ror conditions). This is often unnecessary, especially in
multi-reader or multi-writer situations, and an alternate
interface that does not enforce ordering would allow send
and recv to commute as long as there is both enough free
space and enough pending messages on the socket, which
would in turn allow an implementation of Unix domain
sockets to support scalable communication (which we
use in §7.3).

Release resources asynchronously. A closely related
problem is that many POSIX operations have global ef-
fects that must be visible before the operation returns.
This is generally good design for usable interfaces, but
for operations that release resources, this is often stricter
than applications need and expensive to ensure. For exam-
ple, writing to a pipe must deliver SIGPIPE immediately
if there are no read FDs for that pipe, so pipe writes do
not commute with the last close of a read FD. This re-
quires aggressively tracking the number of read FDs; a
relaxed specification that promised to eventually deliver
the SIGPIPE would allow implementations to use more
scalable read FD tracking. Similarly, munmap does not
commute with memory reads or writes of the unmapped
region from other threads. Enforcing this requires non-
scalable remote TLB shootdowns before munmap can
return, even though depending on this behavior usually
indicates a bug. An munmap (perhaps an madvise) that
released virtual memory asynchronously would let the
kernel reclaim physical memory lazily and batch or elim-
inate remote TLB shootdowns.

5 Analyzing interfaces using COMMUTER

Fully understanding the commutativity of a complex in-
terface is tricky, and achieving an implementation that
avoids sharing when operations commute adds another
dimension to an already difficult task. However, by lever-
aging the formality of the commutativity rule, develop-
ers can automate much of this reasoning. This section
presents a systematic, test-driven approach to applying
the commutativity rule to real implementations embod-
ied in a tool named COMMUTER, whose components are
shown in Figure 3.

First, ANALYZER takes a symbolic model of an inter-
face and computes precise conditions under which that
interface’s operations commute. Second, TESTGEN takes
these conditions and generates concrete test cases of sets
of operations that commute according to the interface
model, and thus should have a conflict-free implementa-
tion according to the commutativity rule. Third, MTRACE
checks whether a particular implementation is conflict-
free for each test case.
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Figure 3: The components of COMMUTER.
A developer can use these test cases to understand the SymInode = tStruCt(ﬁﬁik - ;i;;;gym]gyte) ’
commutative cases they should consider, to iteratively SymIMap = tdict(SymInt, SymInode)

find and fix scalability issues in their code, or as a regres-
sion test suite to ensure scalability bugs do not creep into
the implementation over time.

5.1 ANALYZER

ANALYZER automates the process of analyzing the com-
mutativity of an interface, saving developers from the
tedious and error-prone process of considering large num-
bers of interactions between complex operations. AN-
ALYZER takes as input a model of the behavior of an
interface, written in a symbolic variant of Python, and
outputs commutativity conditions: expressions in terms of
arguments and state for exactly when sets of operations
commute. A developer can inspect these expressions to
understand an interface’s commutativity or pass them to
TESTGEN (§5.2) to generate concrete examples of when
interfaces commute.

Given the Python code for a model, ANALYZER uses
symbolic execution to consider all possible behaviors of
the interface model and construct complete commutativ-
ity conditions. Symbolic execution also enables ANA-
LYZER to reason about the external behavior of an in-
terface, rather than specifics of the model’s implemen-
tation, and enables models to capture specification non-
determinism (like creat’s ability to choose any free inode)
as under-constrained symbolic values.

ANALYZER considers every set of operations of a cer-
tain size (typically we use pairs). For each set of opera-
tions o, it constructs an unconstrained symbolic system
state s and unconstrained symbolic arguments for each
operation in o, and executes all permutations of o, each
starting from a copy of s. This execution forks at any
branch that can go both ways, building up path condi-
tions that constrain the state and arguments that can lead
to each code path. At the end of each code path, ANA-
LYZER checks if its path condition yields an initial state
and arguments that make o commute by testing if each
operation’s return value is equivalent in all permutations
and if the system states reached by all permutations are
equivalent (or can be equivalent for some choice of non-
deterministic values like newly allocated inode numbers).
For sets larger than pairs, ANALYZER must also check
that the intermediate states are equivalent for every per-
mutation of each subset of o.

This test codifies the definition of SIM commutativity

SymFilename = tuninterpreted(’Filename’)
SymDir tdict(SymFilename, SymInt)

def __init__(self, ...):
self. fname_to_inum = SymDir.any()
self.inodes = SymIMap.any()

@symargs(src=SymFilename, dst=SymFilename)
def rename(self, src, dst):
if not self.fname_to_inum.contains(src):
return (-1, errno.ENOENT)
if src == dst:
return 0
if self.fname_to_inum.contains(dst):
self.inodes[self.fname_to_inum[dst]].nlink -= 1
self.fname_to_inum[dst] = self.fname_to_inum[src]
del self.fname_to_inum[src]
return 0

Figure 4: A simplified version of our rename model.

from §3.2, except that (1) it assumes the specification is
sequentially consistent, and (2) instead of considering all
possible future operations (which would be difficult in
symbolic execution), it substitutes state equivalence. It’s
up to the model’s author to define state equivalence as
whether two states are externally indistinguishable. This
is standard practice for high-level data types (e.g., two
sets represented as trees could be equal even if they are
balanced differently). For the POSIX model we present
in §6, only a few types need special handling beyond
what the standard data types provide automatically.

Figure 4 gives an example of how a developer could
model rename. The first five lines declare symbolic types
(tuninterpreted declares a type whose values support
only equality), and _init__ instantiates the file system
state. The implementation of rename itself is straight-
forward. Indeed, the familiarity of Python and ease of
manipulating state were part of why we chose it over
abstract specification languages.

Given two rename operations, rename(a,b) and
rename(c,d), ANALYZER outputs that they commute if
any of the following hold:

¢ Both source files exist, and the file names are all dif-
ferent (a and c exist, and a, b, c, d all differ).

¢ One rename’s source does not exist, and it is not the
other rename’s destination (either a exists, ¢ does not,
and bc, or c exists, a does not, and d#£a).



 Neither a nor c exist.
¢ Both calls are self-renames (a=b and c=d).

¢ One call is a self-rename of an existing file (a exists
and a=Db, or c exists and c=d) and it’s not the other
call’s source (ac).

* Two hard links to the same inode are renamed to the
same new name (a and c point to the same inode, a#c,
and b=d).

As this example shows, when system calls access
shared, mutable state, reasoning about every commuta-
tive case by hand can become difficult. Developers can
easily overlook cases, both in their understanding of an
interface’s commutativity, and when making their im-
plementation scale for commutative cases. ANALYZER
automates reasoning about all possible system states, all
possible sets of operations that can be invoked, and all
possible arguments to those operations.

5.2 TESTGEN

While a developer can examine the commutativity con-
ditions produced by ANALYZER directly, for complex
interfaces these formulas can be large and difficult to
decipher. Further, real implementations are complex and
likely to contain unintentional sharing, even if the devel-
oper understands an interface’s commutativity. TESTGEN
takes the first step to helping developers apply commuta-
tivity to real implementations by converting ANALYZER’s
commutativity conditions into concrete test cases.

To produce a test case, TESTGEN computes a sat-
isfying assignment for the corresponding commutativ-
ity condition. The assignment specifies concrete values
for every symbolic variable in the model, such as the
fname_to_inum and inodes data structures and the rename
arguments shown in Figure 4. TESTGEN then invokes a
model-specific function on the assignment to produce
actual C test case code. For example, one test case that
TESTGEN generates is shown in Figure 5. The test case
includes setup code that configures the initial state of the
system and a set of functions to run on different cores.
Every TESTGEN test case should have a conflict-free
implementation.

The goal of these test cases is to expose potential scala-
bility problems in an implementation, but it is impossible
for TESTGEN to know exactly what inputs might trig-
ger conflicting memory accesses. Thus, as a proxy for
achieving good coverage on the implementation, TEST-
GEN aims to achieve good coverage of the Python model.

We consider two forms of coverage. The first is
the standard notion of path coverage, which TESTGEN
achieves by relying on ANALYZER’s symbolic execution.
ANALYZER produces a separate path condition for every
possible code path through a set of operations. However,
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void setup_rename_rename_path_ec_test®(void) {
close(open("__i0", O_CREAT|O_RDWR, 0666));

link("__i0", "f0");
link("__i0", "f1");
unlink("__i0");

}

int test_rename_rename_path_ec_test®_op®(void) {
return rename("f0", "f0");

}

int test_rename_rename_path_ec_test®_opl(void) {
return rename("f1", "f0");

}

Figure 5: An example test case for two rename calls
generated by TESTGEN for the model in Figure 4.

even a single path might encounter conflicts in interest-
ingly different ways. For example, the code path through
two pwrites is the same whether they’re writing to the
same offset or different offsets, but the access patterns are
very different. To capture different conflict conditions as
well as path conditions, we introduce a new notion called
conflict coverage. Conflict coverage exercises all pos-
sible access patterns on shared data structures: looking
up two distinct items from different operations, looking
up the same item, etc. TESTGEN approximates conflict
coverage by concolically executing itself to enumerate
distinct tests for each path condition. TESTGEN starts
with the constraints of a path condition from ANALYZER,
tracks every symbolic expression forced to a concrete
value by the model-specific test code generator, negates
any equivalent assignment of these expressions from the
path condition, and generates another test, repeating this
process until it exhausts assignments that satisfy the path
condition or the SMT solver fails. Since path conditions
can have infinitely many satisfying assignments (e.g.,
there are infinitely many calls to read with different FD
numbers that return EBADF), TESTGEN partitions most
values in isomorphism groups and considers two assign-
ments equivalent if each group has the same pattern of
equal and distinct values in both assignments. For our
POSIX model, this bounds the number of enumerated
test cases.

These two forms of coverage ensure that the test cases
generated by TESTGEN will cover all possible paths and
data structure access patterns in the model, and to the
extent that the implementation is structured similarly to
the model, should achieve good coverage for the imple-
mentation as well. As we demonstrate in §6, TESTGEN
produces a total of 13,664 test cases for our model of 18
POSIX system calls, and these test cases find scalability
issues in the Linux ramfs file system and virtual memory
system.

5.3 MTRACE

Finally, MTRACE runs the test cases generated by TEST-
GEN on a real implementation and checks that the im-



plementation is conflict-free for every test. If it finds a
violation of the commutativity rule—a test whose commu-
tative operations are not conflict-free—it reports which
variables were shared and what code accessed them. For
example, when running the test case shown in Figure 5
on a Linux ramfs file system, MTRACE reports that the
two functions make conflicting accesses to the dcache
reference count and lock, which limits the scalability of
those operations.

MTRACE runs the entire operating system in a modi-
fied version of gemu [4]. At the beginning of each test
case, it issues a hypercall to gemu to start recording mem-
ory accesses, and then executes the test operations on
different virtual cores. During test execution, MTRACE
logs all reads and writes by each core, along with infor-
mation about the currently executing kernel thread, to
filter out irrelevant conflicts by background threads or in-
terrupts. After execution, MTRACE analyzes the log and
reports all conflicting memory accesses, along with the C
data type of the accessed memory location (resolved from
DWAREF [20] information and logs of every dynamic allo-
cation’s type) and stack traces for each conflicting access.

5.4 Implementation

We built a prototype implementation of COMMUTER’s
three components. ANALYZER and TESTGEN consist
of 3,050 lines of Python code, including the symbolic
execution engine, which uses the Z3 SMT solver [19] via
73’s Python bindings. MTRACE consists of 1,594 lines
of code changed in gemu, along with 612 lines of code
changed in the guest Linux kernel (to report memory type
information, context switches, etc.). Another program,
consisting of 2,865 lines of C++ code, processes the log
file to find and report memory locations that are shared
between different cores for each test case.

6 Finding scalability opportunities

To understand whether COMMUTER is useful to kernel
developers, we modeled several POSIX file system and
virtual memory calls in COMMUTER, then used this both
to evaluate Linux’s scalability and to develop a scalable
file and virtual memory system for our sv6 research ker-
nel. The rest of this section uses this case study to answer
the following questions:

* How many test cases does COMMUTER generate, and
what do they test?

* How good are current implementations of the POSIX
interface? Do the test cases generated by COMMUTER
find cases where current implementations don’t scale?

* What techniques are necessary to achieve scalabil-
ity for cases where current file and virtual memory
systems do not scale?
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* What situations might be too difficult or impractical
to make scale, despite being commutative?

6.1 POSIX test cases

To answer the first question, we developed a simplified
model of the POSIX file system and virtual memory APIs
in COMMUTER. The model covers 18 system calls, and
includes inodes, file names, file descriptors and their off-
sets, hard links, link counts, file lengths, file contents, file
times, pipes, memory-mapped files, anonymous memory,
processes, and threads. Our model also supports nested
directories, but we disable them because Z3 does not
currently handle the resulting constraints. We restrict file
sizes and offsets to page granularity; some sv6 data struc-
tures are conflict-free for offsets on different pages, but
offsets within a page conflict. COMMUTER generates a
total of 13,664 test cases from our model. Generating the
test cases and running them on both Linux and sv6 takes
a total of 8 minutes on the machine described in §7.1.

The model implementation and its model-specific test
code generator are 596 and 675 lines of Python code,
respectively. Figure 4 showed a part of our model, and
Figure 5 gave an example test case generated by COM-
MUTER. We verified that all test cases return the expected
results on both Linux and sv6.

6.2 Current implementation scalability

To evaluate the scalability of existing file and virtual
memory systems, we used MTRACE to check the above
test cases against Linux kernel version 3.8. Linux devel-
opers have invested significant effort in making the file
system scale [9], and it already scales in many interesting
cases, such as concurrent operations in different directo-
ries or concurrent operations on different files in the same
directory that already exist [17]. We evaluated the ramfs
file system because ramfs is effectively a user-space in-
terface to the Linux buffer cache. Since exercising ramfs
is equivalent to exercising the buffer cache and the buffer
cache underlies all Linux file systems, this represents the
best-case scalability for a Linux file system. Linux’s vir-
tual memory system, in contrast, involves process-wide
locks that are known to limit its scalability and impact
real applications [9, 14, 41].

The left half of Figure 6 shows the results. Out of
13,664 test cases, 4,275 cases, widely distributed across
the system call pairs, were not conflict-free. This indi-
cates that even a mature and reasonably scalable operat-
ing system implementation misses many cases that can
be made to scale according to the commutativity rule.

A common source of access conflicts is shared refer-
ence counts. For example, most file name lookup opera-
tions update the reference count on a struct dentry; the
resulting write conflicts cause them to not scale. Simi-
larly, most operations that take a file descriptor update the
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Figure 6: Scalability for system call pairs, showing the fraction and number of test cases generated by COM-
MUTER that are not conflict-free for each system call pair. One example test case was shown in Figure 5.

reference count on a struct file, making commutative op-
erations such as two fstat calls on the same file descriptor
not scale. Coarse-grained locks are another source of ac-
cess conflicts. For instance, Linux locks the parent direc-
tory for any operation that creates file names, even though
operations that create distinct names generally commute.
Similarly, we see that coarse-grained locking in the vir-
tual memory system severely limits the conflict-freedom
of address space manipulation operations. This agrees
with previous findings [9, 14, 15], which demonstrated
these problems in the context of several applications.

6.3 Making test cases scale

Given that Linux does not scale in many cases, how hard
is it to implement scalable file systems and virtual mem-
ory systems? To answer this question, we designed and
implemented a ramfs-like in-memory file system called
ScaleFS and a virtual memory system called RadixVM
for sv6, our research kernel based on xv6 [18]. RadixVM
appeared in previous work [15], so we focus on ScaleFS
here. Although it is in principle possible to make the same
changes in Linux, we chose not to implement ScaleFS
in Linux because ScaleFS’s design would have required
modifying code throughout the Linux kernel. The de-
signs of both RadixVM and ScaleFS were guided by
the commutativity rule. For ScaleFS, we relied heavily
on COMMUTER throughout development to guide its de-
sign and identify sharing problems in its implementation
(RadixVM was built prior to COMMUTER). The right half
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of Figure 6 shows the result of applying COMMUTER to
svo.

ScaleFS makes extensive use of existing techniques for
scalable implementations, such as per-core resource allo-
cation, double-checked locking, lock-free readers using
RCU [31], scalable reference counts using Refcache [15],
and seqlocks [28: §6]. These techniques lead to several
common patterns, as follows; we illustrate the patterns
with example test cases from COMMUTER that led us to
discover these situations:

Layer scalability. ScaleFS uses data structures that
themselves naturally satisfy the commutativity rule, such
as linear arrays, radix arrays [15], and hash tables. In
contrast with structures like balanced trees, these data
structures typically share no cache lines when different
elements are accessed or modified. For example, ScaleFS
stores the cached data pages for a given inode using a
radix array, so that concurrent reads or writes to different
file pages scale, even in the presence of operations ex-
tending or truncating the file. Many operations also use
this radix array to determine if some offset is within the
file’s bounds without risking conflicts with operations
that change the file’s size.

Defer work. Many kernel resources are shared, such
as files and pages, and must be freed when no longer
referenced. Typically, kernels release resources imme-
diately, but this requires eagerly tracking references to
resources, causing commutative operations that access



the same resource to conflict. Where releasing a resource
is not time-sensitive, ScaleFS uses Refcache [15] to batch
reference count reconciliation and zero detection. This
way, resources are eventually released, but within each
Refcache epoch commutative operations can be conflict-
free.

Some resources are artificially scarce, such as inode
numbers in a typical Unix file system. When a typical
Unix file system runs out of free inodes, it must reuse an
inode from a recently deleted file. However, the POSIX
interface does not require that inode numbers be reused,
only that the same inode number is not used for two
files at once. Thus, ScaleFS never reuses inode numbers.
Instead, inode numbers are generated by a monotonically
increasing per-core counter, concatenated with the core
number that allocated the inode. This allows ScaleFS to
defer inode garbage collection for longer periods of time,
and enables scalable per-core inode allocation.

Precede pessimism with optimism. Many operations
in ScaleFS have an optimistic check stage followed by
a pessimistic update stage, a generalized sort of double-
checked locking. The optimistic stage checks conditions
for the operation and returns immediately if no updates
are necessary (this is often the case for error returns, but
can also happen for success returns). This stage does no
writes or locking, but because no updates are necessary,
it is often easy to make atomic. If updates are necessary,
the operation acquires locks or uses lock-free protocols,
re-verifies its conditions to ensure atomicity of the update
stage, and performs updates. For example, Iseek first com-
putes the new offset using a lock-free read-only protocol
and returns early if the new offset is invalid or equal to
the current offset. Otherwise, Iseek locks the file offset,
and re-computes the new offset to ensure consistency.

rename is similar. If two file names a and b point to
the same inode, rename(a, b) should remove the directory
entry for a, but it does not need to modify the directory
entry for b, since it already points at the right inode. By
checking the directory entry for b before updating it,
rename(a, b) avoids conflicts with other operations that
look up b.

Don’t read unless necessary. A common internal in-
terface in a file system implementation is a namei func-
tion that checks whether a path name exists, and if so,
returns the inode for that path. However, reading the inode
is unnecessary if the caller wants to know only whether a
path name existed, such as an access(F_OK) system call.
In particular, the namei interface makes it impossible for
concurrent access(b, F_OK) and rename(a, b) operations
to scale when a and b point to different inodes, even
though they commute. ScaleFS has a separate internal
interface to check for existence of a file name, without
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looking up the inode, which allows access and rename to
scale in such situations.

6.4 Difficult-to-scale cases

As Figure 6 illustrates, there are a few (136 out of 13,664)
commutative test cases for which ScaleFS is not conflict-
free. The majority of these tests involve idempotent up-
dates to internal state, such as two Iseek operations that
both seek a file descriptor to the same offset, or two
anonymous mmap operations with the same fixed base
address and permissions. While it is possible implement
these scalably, every implementation we considered sig-
nificantly impacted the performance of more common
operations, so we explicitly chose to favor common-case
performance over total scalability. Even though we de-
cided to forego scalability in these cases, the commutativ-
ity rule and COMMUTER forced us to consciously make
this trade-off.

Other difficult-to-scale cases are more varied. Several
involve reference counting of pipe file descriptors. Clos-
ing the last file descriptor for one end of a pipe must
immediately affect the other end; however, since there’s
generally no way to know a priori if a close will close the
pipe, a shared reference count is used in some situations.
Other cases involve operations that return the same result
in either order, but for different reasons, such as two reads
from a file filled with identical bytes.

7 Performance evaluation

The previous section showed that ScaleFS and RadixVM
achieve conflict-freedom for nearly all commutative oper-
ations, which should result in perfect scalability in theory.
This section shows that these results translate to scalabil-
ity on real hardware for a complete operating system by
answering the following questions:

* Do non-commutative operations limit performance on
real hardware?

* Do conflict-free implementations of commutative op-
erations scale on real hardware?

* Does optimizing for scalability sacrifice sequential
performance?

7.1 Experimental setup

To answer these questions, we use sv6. In addition to the
operations analyzed in §6, we scalably implemented other
commutative operations (e.g., posix_spawn) and many of
the modified POSIX APIs from §4. All told, sv6 totals
51,732 lines of code, including user space and library
code.

We ran experiments on an 80-core machine with eight
2.4 GHz 10-core Intel E7-8870 chips and 256 GB of
RAM. When varying the number of cores, benchmarks
enable whole sockets at a time, so each 30 MB socket-
level L3 cache is shared by exactly 10 enabled cores. We



also report single-core numbers for comparison, though
these are expected to be higher because one core can use
the entire 30 MB cache.

We run all benchmarks with the hardware prefetcher
disabled because we found that it often prefetched con-
tended cache lines to cores that did not ultimately ac-
cess those cache lines, causing significant variability in
our benchmark results and hampering our efforts to pre-
cisely control sharing. We believe that, as large multicores
and highly parallel applications become more prevalent,
prefetcher heuristics will likewise evolve to avoid induc-
ing this false sharing.

As a single core performance baseline, we compare
against the same benchmarks running on Linux 3.5.7
from Ubuntu Quantal. Direct comparison is difficult be-
cause Linux implements many features sv6 does not, but
this comparison indicates sv6’s performance is sensible.

7.2 Microbenchmarks

We evaluate scalability and performance on real hardware
using two microbenchmarks and an application-level
benchmark. Each benchmark has two variants, one that
uses standard, non-commutative POSIX APIs and another
that accomplishes the same task using the modified, more
broadly commutative APIs from §4. By benchmarking
the standard interfaces against their commutative counter-
parts, we can isolate the cost of non-commutativity and
also examine the scalability of conflict-free implementa-
tions of commutative operations.

We run each benchmark three times and report the
mean. Variance from the mean is always under 4% and
typically under 1%.

statbench. In general, it’s difficult to argue that an im-
plementation of a non-commutative interface achieves
the best possible scalability for that interface and that no
implementation could scale better. However, in limited
cases, we can do exactly this. We start with statbench,
which measures the scalability of fstat with respect to
link. This benchmark creates a single file that n/2 cores
repeatedly fstat. The other n/2 cores repeatedly link this
file to a new, unique file name, and then unlink the new
file name. As discussed in §4, fstat does not commute
with link or unlink on the same file because fstat returns
the link count. In practice, applications rarely invoke
fstat to get the link count, so sv6 introduces fstatx, which
allows applications to request specific fields (a similar
system call has been proposed for Linux [25]).

We run statbench in two modes: one mode uses fstat,
which does not commute with the link and unlink opera-
tions performed by the other threads, and the other mode
uses fstatx to request all fields except the link count, an
operation that does commute with link and unlink. We use
a Refcache scalable counter [15] for the link count so that
the links and unlinks do not conflict, and place it on its
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own cache line to avoid false sharing. Figure 7(a) shows
the results. With the commutative fstatx, statbench scales
perfectly and experiences zero L2 cache misses in fstatx,
while fstat severely limits the scalability of statbench.

To better isolate the difference between fstat and fstatx,
we run statbench in a third mode that uses fstat, but rep-
resents the link count using a simple shared counter in-
stead of Refcache. In this mode, fstat performs better (at
the expense of link and unlink), but still does not scale.
With a shared link count, each fstat call experiences ex-
actly one L2 cache miss (for the cache line containing
the link count), which means this is the most scalable
that fstat can possibly be in the presence of concurrent
links and unlinks. Yet, despite sharing only a single cache
line, this seemingly innocuous non-commutativity lim-
its the implementation’s scalability. One small tweak to
make the operation commute by omitting st_nlink elim-
inates the barrier to scaling, demonstrating the cost of
non-commutativity.

In the case of fstat, optimizing for scalability sacrifices
some sequential performance. Tracking the link count
with Refcache (or some scalable counter) is necessary
to make link and unlink scale linearly, but requires fstat
to reconcile the distributed link count to return st_nlink.
The exact overhead depends on the core count (which
determines the number of Refcache caches), but with
80 cores, fstat is 3.9 x more expensive than on Linux. In
contrast, fstatx can avoid this overhead unless link counts
are requested; like fstat with a shared count, it performs
similarly to Linux’s fstat on a single core.

openbench. Figure 7(b) shows the results of open-
bench, which stresses the file descriptor allocation per-
formed by open. In openbench, n threads concurrently
open and close per-thread files. These calls do not com-
mute because each open must allocate the lowest unused
file descriptor in the process. For many applications, it
suffices to return any unused file descriptor (in which
case the open calls commute), so sv6 adds an O_ANYFD
flag to open, which it implements using per-core par-
titions of the FD space. Much like statbench, the stan-
dard, non-commutative open interface limits openbench’s
scalability, while openbench with O_ANYFD scales lin-
early. Furthermore, there appears to be no performance
penalty to ScaleFS’s open, with or without O_ANYFD:
at one core, both cases perform identically and outper-
form Linux’s open by 27%. Some of the performance
difference is because sv6 doesn’t implement things like
permissions checking, but much of Linux’s overhead
comes from locking that ScaleFS avoids.

7.3 Application performance

Finally, we perform a similar experiment using a simple
mail server to produce a system call workload more rep-
resentative of a real application. Our mail server uses a se-
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Figure 7: Benchmark throughput in operations per second per core with varying core counts on sv6. The blue
dots indicate single core Linux performance for comparison.

quence of separate, communicating processes, each with
a specific task, roughly like gmail [5]. mail-enqueue takes
a mailbox name and a single message on stdin, writes the
message and the envelope to two files in a mail queue
directory, and notifies the queue manager by writing the
envelope file name to a Unix domain datagram socket.
mail-qman is a long-lived multithreaded process where
each thread reads from the notification socket, reads the
envelope information, opens the queued message, spawns
and waits for the delivery process, and then deletes the
queued message. Finally, mail-deliver takes a mailbox
name and a single message on stdin and delivers the mes-
sage to the appropriate Maildir. The benchmark models a
mail client with n threads that continuously deliver email
by spawning and feeding mail-enqueue.

As in the microbenchmarks, we run the mail server in
two configurations: in one we use lowest FD, an order-
preserving socket for queue notifications, and fork/exec
to spawn helper processes; in the other we use O_ANYFD,
an unordered notification socket, and posix_spawn, all
as described in §4. For queue notifications, we use a
Unix domain datagram socket; sv6 implements this with
a single shared queue in ordered mode and with per-
core message queues with scalable load balancing in
unordered mode. Finally, because fork commutes with
essentially no other operations in the same process, sv6
implements posix_spawn by constructing the new process
image directly and building the new file table. This im-
plementation is conflict-free with most other operations,
including operations on O_CLOEXEC files (except those
specifically duped into the new process).

Figure 7(c) shows the resulting scalability of these two
configurations. Even though the mail server performs a
much broader mix of operations than the microbench-
marks and doesn’t focus solely on non-commutative op-
erations, the results are quite similar. Non-commutative
operations cause the benchmark’s throughput to collapse
at a small number of cores, while the configuration that
uses commutative APIs achieves 7.5x scalability from
1 socket (10 cores) to 8 sockets.

8 Conclusion

The scalable commutativity rule provides a new approach
for software developers to understand and exploit mul-
ticore scalability starting at the software interface. We
defined SIM commutativity, which allows developers to
apply the rule to complex, stateful interfaces. We further
introduced COMMUTER to help programmers analyze
interface commutativity and test that an implementation
scales in commutative situations. Finally, using sv6, we
showed that it is practical to achieve a broadly scalable
implementation of POSIX by applying the rule, and that
commutativity is essential to achieving scalability and
performance on real hardware. We hope that program-
mers will find the commutativity rule helpful to produce
software that is scalable by design.

COMMUTER, sv6, and a browser for the data in this
paper are available at http://pdos.csail.mit.edu/
commuter.
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