
Balancing Efficiency and Fairness in
Heterogeneous GPU Clusters for Deep Learning

Shubham Chaudhary
t-shucha@microsoft.com
Microsoft Research India

Ramachandran Ramjee
ramjee@microsoft.com
Microsoft Research India

Muthian Sivathanu
muthian@microsoft.com
Microsoft Research India

Nipun Kwatra
nipun.kwatra@microsoft.com

Microsoft Research India

Srinidhi Viswanatha
srinidhi.viswanatha@microsoft.com

Microsoft Research India

Abstract
We present Gandivafair, a distributed, fair share sched-
uler that balances conflicting goals of efficiency and fair-
ness in GPU clusters for deep learning training (DLT).
Gandivafair provides performance isolation between users,
enabling multiple users to share a single cluster, thus,
maximizing cluster efficiency. Gandivafair is the first
scheduler that allocates cluster-wide GPU time fairly
among active users.
Gandivafair achieves efficiency and fairness despite

cluster heterogeneity. Data centers host a mix of GPU
generations because of the rapid pace at which newer
and faster GPUs are released. As the newer generations
face higher demand from users, older GPU generations
suffer poor utilization, thus reducing cluster efficiency.
Gandivafair profiles the variable marginal utility across
various jobs from newer GPUs, and transparently incen-
tivizes users to older GPUs by a novel resource trading
mechanism that maximizes cluster efficiency without af-
fecting fairness guarantees of any user. With a prototype
implementation and evaluation in a heterogeneous 200-
GPU cluster, we show that Gandivafair achieves both
fairness and efficiency under realistic multi-user work-
loads.

ACM Reference Format:
Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, and Srinidhi Viswanatha. 2020. Balancing Effi-
ciency and Fairness in Heterogeneous GPU Clusters for Deep

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
EuroSys ’20, April 27–30, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s). Publication rights li-
censed to ACM.
ACM ISBN 978-1-4503-6882-7/20/04. . . $15.00
https://doi.org/10.1145/3342195.3387555

Learning. In Fifteenth European Conference on Computer Sys-
tems (EuroSys ’20), April 27–30, 2020, Heraklion, Greece.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3342195.3387555

1 Introduction
Love Resource only grows by sharing. You can only have
more for yourself by giving it away to others.

- Brian Tracy

Several products that are an integral part of modern
living, such as web search and voice assistants, are pow-
ered by deep learning. Companies building such products
spend significant resources for deep learning training
(DLT), managing large GPU clusters with tens of thou-
sands of GPUs. Multiple teams compete for these GPUs
to run DLT jobs. Partitioning GPUs statically across mul-
tiple users provides predictability and performance isola-
tion, but results in poor cluster utilization.

A single shared cluster across all users is attractive
for overall efficiency, but in order to be practical, such a
cluster must guarantee that each user will get at least the
same performance as they would have with a statically
partitioned cluster. In other words, if a user A was enti-
tled to a 20% global share of GPUs, regardless of other
jobs/users running on the shared cluster, the effective
performance of user A in the shared cluster must be at
least the same as if A ran on a dedicated cluster with 20%
of the GPUs. If user A is unable to utilize their quota, the
unused capacity must be shared across other active users,
thus, maximizing cluster efficiency.

An additional dimension that complicates sharing is
hardware heterogeneity, a particularly stark problem in
GPU clusters. As newer GPU generations get released at
a rapid pace, large clusters, over time, typically have a
mix of heterogeneous GPUs. Users prefer newer genera-
tions of GPUs for their higher performance, thus leaving
the older generations under-utilized. With a single shared
cluster, the scheduler needs to intelligently allocate GPUs
of different generations across users, to maximize effi-
ciency while ensuring fairness.

https://doi.org/10.1145/3342195.3387555
https://doi.org/10.1145/3342195.3387555
https://doi.org/10.1145/3342195.3387555

Unfortunately, while there have been several DLT job
schedulers proposed in the literature [19, 33, 41], none of
them support user fairness even in homogeneous clusters.
In fact, none of them have a notion of users and oper-
ate at a job-level, either focusing on improving cluster
efficiency [41] or job-completion time [19, 33]. Even
schedulers used in companies today [25] simply divide a
cluster statically into virtual clusters to isolate one group
from another, resulting in poor efficiency.

In this paper, we present Gandivafair, a scheduler that
guarantees cluster-wide fair share of GPU minutes across
users in a shared cluster of heterogeneous GPUs, while
ensuring cluster efficiency by distributing unused quota
fairly among other active users. Like traditional fair-share
schedulers [39], Gandivafair uses the notion of tickets
to provide fair-share of resources in a cluster to a par-
ticular user. Gandivafair assumes that GPU is the only
dominant resource for DLT jobs [33, 41]. However, if
network/CPU can also become bottlenecks, one could
extend Gandivafair to incorporate a fairness metric like
dominant resource fairness [14] for apportioning multi-
ple resources fairly.

While big-data schedulers like Yarn [38] also support
user fairness, there are two key differences between big-
data jobs and DLT jobs that make big-data schedulers
unsuitable for the deep learning setting. First, unlike Yarn,
DLT job scheduler needs to be gang-aware, i.e, they need
to schedule all the GPUs required by a DLT job in an all-
or-nothing manner. Second, big-data schedulers resort
to job preemption during over-subscription. However,
DLT jobs are typically long-running and their preemption
can result in loss of hours/days of job state. Instead,
Gandivafair relies on job migration as a key primitive
for enforcing fairness without forfeiting job state.
Gandivafair achieves fairness and efficiency using three

key techniques. First, it uses a novel split, gang-aware
stride scheduler to enforce fairness at short time-scales
(time-quantum of few minutes). A central scheduler is
responsible for gang-aware scheduling of large jobs, jobs
that require large number of GPUs and span multiple
servers, while a local per-server gang-aware scheduler
schedules small jobs, jobs whose GPU requirement fit
within that server. Such a split design allows the central
scheduler to coordinate multiple servers, necessary for
scheduling a large job in a gang-aware manner, while the
distributed, local schedulers managing small jobs allow
scalability.

However, the split scheduler by itself cannot guaran-
tee fairness as jobs arrive and depart. Thus, a second
component of Gandivafair is a load balancer that uses
job migration as a key mechanism to distribute jobs,
weighted by their tickets, evenly throughout the cluster.

Third, Gandivafair addresses hardware heterogeneity
by employing a novel technique of automatic resource
trading across users. From a fairness perspective,Gandivafair
maps user tickets to a proportional share of each gener-
ation of GPUs in the cluster. For example, if the cluster
had 5000 V100 and 10000 P100 GPUs, a user with a 20%
share of the cluster would be entitled to 1000 V100s and
2000 P100s, and Gandivafair guarantees that the user’s
performance would be at least the same as a dedicated
cluster with 1000 V100s and 2000 P100s. While preserv-
ing such guarantee, Gandivafair uses automatic trading
to maximize cluster efficiency. The key insight behind
Gandivafair’s resource trading is to leverage the varying
marginal utility of faster GPUs for different DLT jobs.
As an example, if jobs of user A achieve a speedup of
1.25x on V100 compared to a K80 GPU, while jobs of
user B achieve a 5x speedup on V100, user B has a 4x
higher marginal utility, and thus would be better off trad-
ing 4 of his K80 GPUs in exchange for 1 V100; both
users benefit from this trade, and cluster efficiency also
improves. As we show in Section 2, the factor speedup
varies across a wide spread between jobs, enabling such
win-win trades that maximize cluster efficiency. Further-
more, this mechanism prevents users from gaming these
incentives since it leverages the incentive-compatible
benefits of second-price auctions [32].

We have implemented Gandivafair as a custom sched-
uler in Kubernetes [10], and evaluate it on a cluster of
200 GPUs, running a wide diversity of jobs across multi-
ple users. We show that Gandivafair achieves inter-user
fairness at the cluster-wide level, while also maximizing
cluster efficiency. We also demonstrate the efficacy of
automatic resource trading in Gandivafair, that results in
faster progress rate for user jobs compared to a fairness-
only scheduler without trading.

We make the following contributions in the paper:

• We present the first cluster scheduler for deep learning
training jobs that guarantees user-level fair share of
cluster-wide GPU minutes, while maximizing cluster
efficiency.
• We demonstrate that migration can be used as a first-

class primitive to achieve cluster-wide fairness without
resorting to preemption.
• We present an automated trading strategy to handle

GPU heterogeneity, by leveraging the variable mar-
ginal utility of faster GPUs for various jobs, thus im-
proving efficiency while ensuring fairness.
• Using a prototype implementation on a 200-GPU het-

erogeneous cluster, we show that Gandivafair is able
to achieve its goals of fairness and efficiency under
large-scale multi-user workloads.

2 Motivation
In this section, we motivate the design of Gandivafair
by highlighting the challenges involved in supporting
fairness and heterogeneous GPUs for DLT jobs.

2.1 Fairness
In order to illustrate the various options available to a
fair scheduler and motivate Gandivafair’s design choice,
consider the simple example shown in Figure 1. In this
example, the cluster consists of two servers with four
GPUs each. All GPUs are of the same model (homoge-
neous). Let two 2-GPU jobs of two users, A and B, be
running on the eight GPUs of the cluster.

Inter-user fairness. One of the goals of Gandivafair is
inter-user fairness. For simplicity, let us assume that all
users have the same number of tickets. Then, a scheduler
is inter-user fair if each active user receives a resource
allocation of at least the total cluster GPU resources
divided by the number of active users. In case an active
user does not have sufficient number of jobs to make
use of their fair-share, then the scheduler should allocate
enough resources to satisfy that user and then recursively
apply the fairness definition to the remaining resources
and active users. In this example, the cluster has 8-GPUs
and user A and user B have been allocated four GPUs
each. Thus, the allocation is inter-user fair.

Let us now assume that a new 2-GPU job arrives for
user C. User C’s fair share in this example is 8 GPUs/3
active users = 2.66 GPUs (i.e., 2 GPUs + 2/3rd of time on
one GPU) but since the user has only one 2-GPU job, user
C’s fair share is 2 GPUs. After allocating user C’s fair
share of 2-GPUs, for inter-user fairness, the remaining 6
GPUs needs to be divided equally between user A and
user B, resulting in 3 GPUs for each of them in aggregate.

Now consider the various fairness options provided
by current schedulers in this scenario. Schedulers like
Optimus [33] or Tiresias [19] don’t have inter-user fair-
ness as a goal and optimize their scheduling decisions
based on minimizing job completion time. So, they either
allow user C’s job to stay in the queue or move one of the
existing jobs back to queue and schedule user C’s job in
its place. Apart from Optimus or Tiresias, any scheduler
that does not time-share GPUs such as [9, 25] will also
be left with only these two options. These options are
shown in Figures 1(a) and (b), respectively. In either case,
note that the scheduler is not inter-user fair. In the former
case, user C does not get its fair share of 2 GPUs while
in the latter case, one user (user A as shown) is allocated
four GPUs while the other user is allocated two GPUs.
Thus, these options point out the need for time-sharing
of GPU resources for supporting inter-user fairness.

(a) Place new job in Queue: inter-user unfairness

A B

(b) Preempt existing job & schedule new job: inter-user unfairness

A C

(c) Gandiva time-share: inter-user unfairness

(d) Gandivafair user-aware time-share: inter-user fair but intra-user unfair

(e) Ideal: inter-user and intra-user fair but at cost of frequent job migrations

A B
C

A B

A B

A B

A B
C A

C B
A

C B
A

A B
B A

Figure 1. Two 4-GPU servers running two 2-GPU jobs of users
A and B; A new 2-GPU job arrives for user C. Five scheduling
options shown.

Gandiva [41] is a scheduler that uses time-sharing to
schedule more jobs than GPUs. However, Gandiva is
optimized for efficiency and not fairness. In this example,
Gandiva would simply add user C’s job to one of the
nodes and time-slice all jobs equally on that node as
shown in Figure 1(c). However, this approach also does
not provide inter-user fairness as user C will receive only
4/3 GPUs when its fair-share is 2-GPUs.

As we will show in Section 3, Gandivafair allocates
GPUs as shown in Figure 1(d). On one server, user C
is allocated 2-GPUs for its job while user A and user B
time-share equally on 2-GPUs. This allocation is inter-
user fair since user C has been allocated 2-GPUs while
user A and user B are allocated three GPUs in aggre-
gate. However, this allocation is not intra-user fair, i.e.,
all jobs of a given user do not get equal resources. For
example, one of user A’s job gets the equivalent of one
GPU through time-share while another of user A’s job
gets two GPUs.

If achieving intra-user fairness is necessary, then Fig-
ure 1(e) shows one possible way to achieve it. To support
intra-user fairness, jobs of user A and user B are mi-
grated periodically between the two servers so that each
of the jobs of user A and B get a time-average of 1.5
GPU resources. While such a solution is intra-user fair,
it will result in significant number of job migrations in
a large cluster. Furthermore, it is not clear that strict
intra-user fairness is a necessary requirement for deep
learning since jobs that are part of multi-job are released
at different times. Thus, intra-user fairness is not a goal
for Gandivafair. Instead, Gandivafair balances efficiency
and fairness by opting for only guaranteeing inter-user
fairness, as shown in Figure 1(d).

While this simple example motivates the various de-
sign choices, providing inter-user fairness gets challeng-
ing as we consider the following three realistic needs.

B
B

A A

4-GPU Server 1

E

F

E

4-GPU Server 2

C
E

C

E
E

D

Figure 2. Gang scheduling with a mix of 1/2/4/8-GPU jobs
from six users (A–F) on two 4-GPU servers. Job sizes depict
their GPU requirements.

Inter-server gang scheduling. The above scenario as-
sumes that all user jobs require the same number of GPUs.
In reality, user jobs can require anywhere from one GPU
to 128 GPUs or more. Satisfying inter-user fairness with
a mix of job sizes with gang-scheduling is challenging
for several reasons.

Consider two servers with a mix of job sizes shown
in Figure 2. How do we ensure that all the jobs shown
in the figure get their fair-share without sacrificing effi-
ciency. In fact, Gandiva [41] avoids such scenarios by
job-size based partitioning such that each server has jobs
of only a given size. Since jobs of different sizes vary
significantly [25], such partitioning will result in unbal-
anced load, causing unfairness and inefficiency. Thus,
time-sharing a mix of job types on a single server is
necessary for inter-user fairness.

In the above figure, first consider scheduling small jobs
that span only Server 1. In a given time quantum, say we
need to schedule user A and user C’s jobs from a inter-
user fairness perspective. However, since the sum of their
requirements is 5 GPUs, this assignment is infeasible.
One option to meet this fairness constraint is to schedule
user-A’s 1-GPU job in one time quantum and user C’s
4-GPU job in the next time quantum but this is inefficient
since in the first time quantum, three of the four GPUs
will remain idle. We could allocate these three GPUs to
1-GPU and 2-GPU jobs of users A and B but, as we shall
see in Section 3, such backfilling [13] without careful
fairness consideration can result in unfairness. How then
do we keep all GPUs utilized while ensuring inter-user
fairness? We show how Gandivafair balances efficiency
and fairness to handle such scenarios using a gang-aware
scheduling algorithm in Section 3.

Second, how do we ensure that the 8-GPU job of user
D that spans multiple servers get scheduled? We would
like each of the servers to make independent schedul-
ing decisions for scalability reasons but we also need to
ensure that they make coordinated choices so that user
D’s 8-GPU job gets scheduled at the same time quan-
tum across servers 1 and 2. In Section 3, we present
Gandivafair’s distributed, split scheduler that addresses
this challenge.

Job K80 P40 P100 V100
(ms) (%) (%) (%)

VAE [26] 11.5 117 119 125
SuperResolution [37] 207.5 143 173 187
DCGAN [35] 183.4 434 431 642
GRU [12] 48.4 300 358 481
LSTM [6] 48.9 310 358 481
ResNet-50 [20] 134 317 334 514
ResNext-50 [42] 2005.7 370 412 633

Table 1. Performance speedup of various DLT models on dif-
ferent GPU generations compared against time per mini-batch
in milliseconds on K80 GPU

Third, we have assumed so far that GPUs are homoge-
neous. However, a cluster will over time accrue a variety
of GPU models since new GPU models are released ev-
ery year while depreciation of older hardware typically
takes three years or longer. Given heterogeneity, users
prefer the newer GPUs as they are able to run their mod-
els faster. How then can a scheduler incentivize users to
use older GPUs? We discuss this issue next.

2.2 GPU Heterogeneity
Table 1 lists the time per mini-batch in milliseconds
for different deep learning training jobs for the older
K80 GPU model and the speedup ratios for newer GPUs
like P40, P100, and V100. The jobs span a variety of
deep learning training tasks including Variational Auto-
Encoders (VAE), Image Super Resolution, Deep Con-
volutional Generative Adversarial Networks (DCGAN),
Gated Recurrent Units (GRU), Long Short-Term Mem-
ory (LSTM) and well-known convolution network mod-
els such as ResNet and ResNext. The speedup ratio
shown is mini-batch time in K80 divided by mini-batch
time in newer GPU, expressed as a percentage. These
measurements were obtained using PyTorch v0.4 (more
details in Section 5), and the mini-batch sizes were cho-
sen as default values specified by the author of the model.
The speedup for VAE and SuperResolution tasks in V100
are much lower than the other tasks because these are
smaller models that end up significantly under-utilizing
the powerful GPUs like V100.

For these measurements, the model parameters were
trained using the typical 32-bit floating point (FP32) for-
mat. However, there is increasing realization in the deep
learning community that many models with 16-bit param-
eters train as well as models with 32-bit parameters and
newer GPUs have advanced support for FP16. Thus, the
latest generation V100 GPU has specialized tensor cores
designed specifically to support FP16 models. Compared
to FP32, running ResNext-50 on a V100 with FP16 re-
sults in a further speedup of 10-15% while running the

same on a K80 results in a slowdown of 20%, thus, ex-
acerbating the already large 6.33x gap between K80 and
V100 to over 8x!
Heterogeneous GPU performance observations. There
are four interesting observations that one can make from
these measurements. First, it is clear that all models bene-
fit from newer generation GPUs compared to older GPUs.
Thus, users preferring newer GPU models is natural from
their individual perspective of reducing the training time
for their models. Second, we can see that the marginal
utility of using a newer GPU varies significantly across
models. For example, while running VAE on a V100
provides only a 25% gain in time relative to a K80, a
ResNext-50 model sees a time gain of 533%. The third
observation is that it is hard to predict a model’s perfor-
mance on different GPUs. For example, in the case of
DCGAN, P40 and P100 performance is similar while
V100 performs significantly better than P40 and P100.
On the other hand, for SuperResolution, P40, P100 and
V100 each provide incremental gains over each other.
To handle this unpredictability, Gandivafair uses job mi-
gration across GPU generations along with profiling to
measure the performance of each model with different
GPU generations to make its trading decisions. Finally,
we note that models that utilize FP16 format for its pa-
rameters gain even more speedup compared to a K80,
attesting to the specialized support for this format in
newer GPUs and greater marginal utility of newer GPUs
for models that specifically use FP16 parameters. We
discuss in Section 3.4, how Gandivafair leverages these
observations to design an automated GPU trading strat-
egy that maximizes efficiency while ensuring fairness.

3 Design
We assume each DLT job is assigned a number of tickets
which represents its share of resources. Our goal is to
provide proportional-share of resources based on job
tickets like classic schedulers [39].

To achieve this goal, Gandivafair scheduler consists
of three key components. First, Gandivafair uses a gang-
aware, split stride scheduler to schedule DLT jobs of
various sizes. Second, Gandivafair uses a ticket-adjusted
height-based load balancer that uses migration to en-
sure that jobs across the cluster are balanced. Balanced
load in conjunction with the split stride scheduler re-
sults in a fair and efficient service across a cluster of
servers. Third, Gandivafair transparently handles GPU
heterogeneity and implements an automated GPU trading
strategy to improve efficiency across heterogeneous clus-
ters while maintaining fairness. We discuss each of these
components next and then present the full Gandivafair
system.

Scheme User Job1 (%) Job2 (%)
Lottery A (1-GPU) 71.8 71.8

plus B (2-GPU) 36.7 36.7
backfilling C (4-GPU) 12.4 11.4

Gang-Aware A (1-GPU) 66 66.5
Lottery B (2-GPU) 46 24

(100 intervals) C (4-GPU) 20 12
Gang-Aware A (1-GPU) 66.7 66.7

Stride B (2-GPU) 33.3 33.3
(6 intervals) C (4-GPU) 16.7 16.7

Table 2. Scheduling in a 4-GPU server with 3 users, each with
two 1/2/4-GPU jobs (Figure 2). Percentage of GPU-minutes
job was scheduled.

3.1 Split Stride Gang-scheduling
Small jobs. Lottery [40] and Stride [39] are classic ticket-
based scheduling algorithms. Let us first consider if we
can utilize these for scheduling small jobs, i.e., jobs
whose GPU needs can be served by a single server.

In Lottery scheduling, at every time-quantum the sched-
uler performs a lottery with the total number of tickets
of all active jobs and schedules the job with the win-
ning ticket. To support multi-GPU gang scheduling, we
first normalize the tickets with their respective job sizes
(divide tickets by number of GPUs) and draw winning
tickets. Consider a 4-GPU server with a mix of small
jobs. Let the first winning ticket be that of a 1-GPU job
and we schedule it. Say the next winning ticket is for a
4-GPU job which does not fit. To maintain proportional-
share, one option is to leave three GPUs idle for this time
quantum and schedule the 4-GPU job in the next time
quantum but this is inefficient. To improve efficiency,
one option is to simply skip this 4-GPU job and generate
another winning ticket. If the new ticket is for a 1 or a 2
GPU job, we allocate it, else we skip that job as well and
we iterate until all GPUs are allocated or full allocation
is infeasible. This approach is called backfilling [13] and
can improve efficiency but at the cost of fairness.

Consider the 4-GPU Server 1 in Figure 2 that has six
jobs from three users (ignore the 8-GPU job for now).
Users A, B, and C, have two jobs each that require 1/2/4-
GPUs, respectively. If all users have the same number of
tickets, we should expect to see each of the 1/2/4-GPU
jobs be scheduled for 66.7/33.3/16.7% of the available
GPU-minutes, so that each of three user’s two jobs in
aggregate get 33.3% of the 4-GPU server. Table 2 shows
the time share using lottery scheduling with backfilling.
We can see that this scheme is unfair. This unfairness
is because 4-GPU jobs are more likely to be skipped
compared to 1/2-GPU jobs.

We can correct for the unfairness above as follows. In-
stead of drawing multiple lottery tickets, we conduct mul-
tiple lotteries to schedule jobs in a given time-quantum

(i.e., use sampling with replacement vs sampling with-
out replacement). Each lottery winner gets scheduled in
the time-quantum if it fits; if not, the job gets placed
in the waiting queue. Jobs in the waiting queue always
get scheduling priority at the beginning of every time
quantum, ensuring that lottery winners get their fair-
share. For the three user example (Table 2), while this
scheme improves fairness over backfilling, due to lot-
tery’s probabilistic nature, it still results in unbalanced al-
locations over 100 time intervals. In this example, we find
that the above gang-aware lottery scheduling achieves
fair-share over intervals of only size 1000 or more (not
shown). However, due to GPU context-switching over-
head [41], each time-quantum in Gandivafair is on the
order of a minute. Since guaranteeing fairness over in-
tervals of 1000 minutes is too long to be useful, we con-
clude that gang-aware lottery scheduling is not suitable
for Gandivafair.

Let us now consider Stride [39]. A job’s stride is in-
versely proportional to its tickets and denotes the interval
between when it’s scheduled. Strides are represented in
virtual time units called passes. A new job’s pass value
is set to the minimum pass value of all jobs in the node.
At each time quantum, the job with the minimum pass
value is scheduled. The job’s pass value is then updated
by the job’s stride.

Algorithm 1: Gang-Aware Stride
Data: Set of running jobs.
Result: Jobs scheduled this time-quantum.

1 begin
2 sortBy(jobs, λx : x .pass)
3 f reeGPUs ← numGPUs

4 scheduled ← ∅

5 i ← 1
6 while f reeGPUs > 0 and i ≤ |jobs | do
7 job ← jobs[i]

8 if job .size ≤ f reeGPUs then
9 f reeGPUs ← f reeGPUs − job .size

10 scheduled ← scheduled ∪ {job}

11 job .pass ← job .pass + job .stride

12 i ← i + 1

13 return scheduled

We extend Stride to be gang-aware (Algorithm 1). The
algorithm is called every time quantum and returns the
jobs that are scheduled for the next time quantum out of
the list of jobs available to be scheduled in the queue. Just
as in classic Stride, jobs are chosen to be scheduled by
the minimum pass value (line 2) but an additional check
is performed to make sure they fit within the available
resources (line 8). If the job fits, we schedule the job and

N-GPU Server 1

Central Stride Scheduler
Run gang-aware Stride on large
jobs (GPU size > N) and one
aggregate job for each Server
(1..K).

Schedule large job j
(GPU size=2N)

Schedule
small job

Local Stride Scheduler 1
Schedule large job OR run
gang-aware Stride to
schedule small job (GPU
size 1-N).

N-GPU Server K

Local Stride Scheduler K
Schedule large job OR run
gang-aware Stride to
schedule small job (GPU
size 1-N).

… …

N-GPU Server 2

Local Stride Scheduler 2
Schedule large job OR run
gang-aware Stride to
schedule small job (GPU
size 1-N).

…

…

Schedule
small job

Figure 3. Split Stride Scheduler: Central scheduler for large
jobs and local per-server scheduler for small jobs

update its pass value (line 9 – 11). If the job does not
fit, we skip the job but note that the job retains it pass
value; in the next time quantum, the job will have the
minimum pass value and thus higher priority in being
scheduled. For example, assume a 1-GPU job has mini-
mum pass value and it gets scheduled on a 4-GPU server.
Say a 4-GPU job has the next minimum pass value but
we cannot schedule it. In gang-aware Stride, we skip this
job but retain its pass value. We continue this process
until all GPUs are allocated or there is no feasible alloca-
tion. Since we do not update the pass value of skipped
jobs, they (e.g., the 4-GPU job) are guaranteed to have
minimum pass values in the next time quantum and will
get scheduled then. Thus, from a fairness perspective, the
gang-aware Stride results in a service delay of at most
1-time quantum compared to the classic Stride algorithm.
Finally, because of Stride’s deterministic nature, the time
interval required for providing the fairness guarantee in
gang-aware Stride is significantly shorter than for the
probabilistic gang-aware Lottery scheduling algorithm.
Large jobs. Now consider large jobs that require GPUs
across multiple servers (e.g., 8-GPU job in Figure 2).
While we can run the gang-aware stride algorithm over
the entire cluster, it will be inefficient as it will result in
too many migrations (in each time quantum, jobs can be
scheduled in any GPU in the cluster).

A key requirement for scheduling large jobs that span
multiple servers is coordination for gang-awareness, i.e.,
all the GPUs across multiple servers for a given large
job has to be allocated in the same time quantum. On
the other hand, for scalability and efficiency reasons,
we would like to run the gang-aware stride algorithm
independently on each of the servers for small jobs.

To balance these conflicting goals, Gandivafair uses
a Split Stride scheduler, as depicted in Figure 3. A cen-
tral scheduler maintains pass values of all large jobs
and one aggregate job/pass value for each of the servers.
The aggregate pass value for the aggregate job is in-
versely proportional to the cumulative number of tickets

of all small jobs in that server. When the central sched-
uler runs gang-aware stride, it selects the aggregate jobs
and/or large jobs based on minimum pass value; in the
former case, it simply instructs the respective server to
run its own gang-aware Stride and schedule from its lo-
cal pool of small jobs while in the latter case, it instructs
the corresponding servers to run the large job. In this
way, Gandivafair achieves the coordination necessary for
gang-aware scheduling of large jobs while simultane-
ously allowing independent servers to schedule small
jobs.

The fairness provided by the Split Stride scheduler de-
pends on how the job tickets are balanced across servers.
If all servers are load balanced, ie., have equal aggregate
tickets, the fairness provided by the split Stride sched-
uler can be shown to be identical to running a single
cluster-level gang-aware Stride scheduler (but without
the inefficiency of constant migrations). To see this, con-
sider Figure 2. Assume all the small jobs in each of the
servers have 200 tickets in total and the 8-GPU job has
100 tickets. In this case, the small jobs in aggregate will
get 2 out of every 3 slots while the 8-GPU job will get 1
out of every 3. Thus, balancing the load among servers is
crucial for fairness and efficiency. We discuss this next.

3.2 Load balancing
The key idea in Gandivafair for ensuring fair share, is to
distribute the ticket load across nodes as evenly as possi-
ble, and then use the Split Stride scheduler to schedule
jobs in each node, proportional to the ticket load of each
job.

Formally, let ti , be the tickets of the i ′th user, and let
ji1, ji2, ..., jini be the jobs of this user. Let the number of
GPUs required by the job jab be rab . We can then define
the ticketsPerGPUi for user i to be:

ticketsPerGPUi =
ti∑k=ni

k=1 rik
, (1)

where ni is the number of jobs of user i. ticketsPerGPU
can be thought of as the number of tickets the user will
be utilizing per GPU for its workload.

We can now define the ticket load per GPU on the i ′th

node to be

ticketLoadPerGPUl =

∑
jab ∈Al rab ∗ ticketsPerGPUa

дl
,

(2)
where дl is the number of GPUs on node l , and Al is
the set of jobs scheduled on node l . ticketLoadPerGPU
can be thought of as the number of tickets each GPU on
a particular node has to service. Now, if we achieve an
equitable distribution of ticketLoadPerGPU across all
nodes, then it will ensure that all nodes service similar
number of tickets. We can then achieve a fair distribution

(in proportion of tickets) of GPU compute across jobs,
by simply making sure that each node locally does a fair
scheduling proportional to the local tickets.

For equitable distribution of load across all nodes, we
follow the greedy heuristic of assigning a new job to the
node with minimum value of ticketLoadPerGPU . Note
that since the new job will change the ticketsPerGPU
(eq 1), we recalculate the ticketLoadPerGPU for each
node as per the updated ticketsPerGPU , and then choose
the node with the least value.

For scheduling jobs within a node, we first calculate
the tickets to be utilized for each job. For a job jik , this
is simply given by

jobTicketsik = ticketsPerGPUi ∗ rik , (3)

where i is the job’s user and rik is the number of GPUs
required by the job. To ensure fair share locally, the sched-
uler then assigns time quantum to each job proportional
to its jobTickets using the Split gang-aware stride sched-
uling algorithm described in the previous section.

Note that, due to a burst of job departures, the load
of the servers may get imbalanced. Gandivafair fixes
such imbalances using job migration as discussed in
Section 3.5. Also, we have assumed so far, for simplicity,
that each user has enough jobs to completely utilize their
share of GPUs. However, it may be that a user submits
much fewer jobs than needed to utilize his full share. In
this case, we satisfy the needs of such users first, remove
them from the list, recalculate the weights for the remain-
ing users and iterate to determine each subsequent user’s
fair share. In this way, users with sufficient load get a
bonus share from users who under-utilize their shares.

In order to implement this iteration in an optimized
manner, we use the weight readjustment algorithm in
[11] to calculate each users’ effective tickets and then
follow the above algorithm. Finally, care must be taken
during placement as well as migration to ensure that
jobs are "packed" in servers as far as possible to avoid
non-work conserving scenarios, as discussed in the next
section.

3.3 Scheduler Efficiency
A key aspect determining the efficiency of a scheduler
is whether the scheduler is work-conserving, i.e., does
the scheduler leave resources idle when there are active
jobs that could be scheduled on them. The combined
requirement of being fair while also handling variable-
sized jobs, makes it challenging for the scheduler to be
work-conserving in all scenarios.

For example, consider the case where only one job
each of 1-GPU and 4-GPU sizes are active on a 4-GPU

server, each with equal number of tickets. To ensure fair-
share, three GPUs will have to go idle in every alternate
time interval.
Gandivafair addresses this apparent conflict between

fairness and efficiency by leveraging two domain-specific
customizations. First, Gandivafair leverages the mecha-
nism to migrate a job on-demand at a low cost (detailed in
§ 4), that allows jobs to be moved across servers. Second,
the specific workload of DLT jobs in large clusters is par-
ticularly well-suited to a migration policy that performs
intelligent packing of jobs to avoid such pathological
scenarios.

For example, consider the job size distribution from
the deep learning training job traces in Microsoft’s Philly
cluster [24]. Out of the over 110K jobs submitted in that
trace, about 86.6% are 1-GPU jobs, 2.3% are 2-GPU jobs,
4.9% are 4-GPU jobs and 6.2% use more than 4-GPUs.
The dominance of 1-GPU jobs implies that migration
can be an effective mechanism to ensure that sufficient
number of 1-GPU jobs are "packed" in servers to avoid
the above non-work conserving scenario.

3.4 Handling GPU heterogeneity transparently
So far in the scheduler design, we have assumed that
GPUs are homogeneous. We now discuss howGandivafair
handles GPU heterogeneity transparently to users. This
has two components, first, allocation of jobs to GPUs
of a particular model transparently and second, allowing
two users to automatically trade their assigned GPUs to
benefit each other.
Assigning jobs in a heterogeneous GPU cluster. Con-
sider a cluster with a mix of V100s and K80s. Based on
a given user’s tickets, let us say their fair-share allocation
is 4 V100 GPUs and 4 K80s.

If a user wants a particular GPU model, the user can
specify that along with the job and scheduler simply
’pins’ the job to that GPU and the rest of the section is
moot for this job. However, we expect that most users
will not want to pin GPUs, since, as we will see below,
automated trading allows users to get higher throughput
than pinning. In this case, when a job for the given user
arrives, where do we allocate this job – on a V100 or a
K80?
Gandivafair assumes a strict priority order among vari-

ous GPU models, with the newer GPUs like V100 having
higher priority over older GPUs like K80. If a new job
arrives, the scheduler automatically picks the newer GPU
(V100), assigns the job there and profiles its performance.
If the user is performing hyper-parameter tuning, many
more similar jobs will be submitted by the user. Let us
say the user submits 8 jobs. Initially, these jobs will all
be placed on the V100 and time-shared. When jobs are

User K80 V100 Speedup Aggregate
Inter-user fair allocation

A (VAE) 20 4 1.25 25
B (DCGAN) 20 4 5.0 40
C (ResNext) 20 4 6.25 45

Inter-user fair allocation with trading
A (VAE) 40 0 1.25 40
B (DCGAN) 20 4 5.0 40
C (ResNext) 0 8 6.25 50

Table 3. Heterogeneous GPU allocations on a 12 V100, 60 K80
GPU cluster with inter-user fairness and trading. Aggregate
performance shown in normalized K80 units.

time-shared and scheduler estimates that the job’s mem-
ory requirements will fit on the older K80, the scheduler
transparently migrates the job to K80 and profiles its
performance there. Now, the scheduler can compare the
job’s performance on V100 and on K80, and decide how
best to optimize performance for the user.

For example, say the job is a VAE that gets 1.25x
speedup on the V100 compared to the K80. In this case,
since these jobs are being time-shared on the V100 cur-
rently, the scheduler transparently migrates the time-
shared jobs to the K80 so that four jobs run fully on
the V100 while four jobs run on the K80. In contrast,
if the job is a DCGAN that gets a 5x speedup on the
V100, Gandivafair will continue to time-share the eight
jobs on the V100 so that these jobs proceed on average
at 2.5x the rate. Thus,Gandivafair automatically chooses
the GPU model that maximizes each job’s performance.

Once the jobs have been allocated their GPUs,Gandivafair
supports GPU trading among users to further improve ef-
ficiency. To support automated GPU trading,Gandivafair
utilizes a key observation from Section 2, viz., that DLT
jobs have variable marginal utility from newer GPU gen-
erations.
Trading heterogeneous GPUs. One of the unique as-
pects of DLT jobs is the need to train jobs using a va-
riety of hyper-parameters, in order to identify the best
accuracy. Thus, the users submit what is called a multi-
job [41], which is typically 10-100 copies of a DLT job,
each with different hyper-parameters such as learning
rate, weight decay, etc. Crucially, the job performance
characteristics are identical across these large number of
jobs from a given user. In this section, we show how trad-
ing can be used in such scenarios to increase application
throughput of both users involved in a trade.

Consider a cluster with 60 K80s and 12 V100s, and
three active users, A, B, and C, running hyper-parameter
tuning over their VAE, ResNet and ResNext models, re-
spectively. Assume that each of the users have submitted
tens of jobs to the cluster as part of their hyper-parameter
tuning experiments so that the cluster is fully utilized. If

the scheduler simply provided fair-share, each user will
be allocated 20 K80s and 4 V100s. In terms of perfor-
mance, user A will see a speedup of 25% when running in
V100s, for an aggregate performance of 20 + 4*1.25 = 25
normalized K80 GPUs. Similarly, user B using ResNet
will see a speedup of 5x from V100 for an aggregate
performance of 20 + 4*5 = 40 normalized K80 GPUs.
Finally, user C using ResNext will see a speedup of 6.25x
from V100 for an aggregate performance of 20 + 4*6.25
= 45 normalized K80 GPUs. This is shown in Table 3.

Since users see varying marginal utility of using a
V100 as compared to a K80, there is scope for improving
overall efficiency using trading. Consider user A who
benefits the least (125% faster) from a V100 compared
to user C who benefits the most (625% faster). A V100
allocated to user C is 5 times more efficient (in terms
of rate of job progress) than a V100 allocated to user A.
Thus, it makes sense to trade K80s of user C to user A
in exchange for V100s to maximize efficiency. The key
question is, at what price do we do this trade?

Automatic trade pricing. One simple solution is to trade
1.25 K80s from user C for 1 V100 from user A. In this
case, all the efficiency gains (trade surplus of 5x per
V100) accrue to user C. However, this solution is sus-
ceptible to gaming by shrewd users. Consider user B
who modifies his job to check for GPU architecture the
job executes on and simply slows down its performance
when running on K80 so that his model’s overall speedup
is 6.5X on V100 compared to K80. User B would then
win the trade and recoup sufficient gains using the V100
to compensate for the slowdown in K80s. Thus, the trade
price must be carefully chosen to avoid such gaming.
Another solution is to trade 6.25 K80s from user C for
1 V100 from user A. In this case, the trade surplus goes
entirely to user A and user C is not incentivized to trade.
Gandivafair addresses this pricing dilemma by borrow-

ing from the second-price auction mechanisms that have
been extensively studied [8]. Specifically, Gandivafair
executes the trade at the second highest price, i.e., user
C trades 5 K80s for each 1 V100 from user A, where the
5x is determined by second price (the speedup of user
B; if there is no such user, we simply split the surplus
equally). Second-price auction has nice properties such
as incentive-compatibility, which implies that every user
can achieve their best outcome by bidding their true pref-
erences [32]. Under this scenario, artificially speeding up
or slowing down their jobs will not help users. Further,
both users of the trade benefit from some of the surplus
efficiency gains.

Vickrey auctions have some weaknesses as well. In
particular, Vickrey auctions are not collusion proof. If all
the bidders in an auction reveal their prices to each other,

they can lower their valuations. In our setting, collusion
is not a major concern as we are using the auction to
mainly distribute the performance gains from the trade;
each user in the trade is still guaranteed to get their fair
share.

Table 3 shows the allocation at the end of four such
trades. User A has 40 K80s for an aggregate performance
of 40 (compared to 25 earlier) while user C has 8 V100s
for an aggregate performance of 50 (compared to 45
earlier). Thus, both users achieve better aggregate perfor-
mance from the trade and overall efficiency of the cluster
is maximized while ensuring inter-user fairness.

As described in the next section, Gandivafair uses pro-
filing to continuously maintain job performance statis-
tics such as mini-batch progress rate. For jobs that may
change their performance behavior in the middle of train-
ing such as in [43], Gandivafair can detect such a change
and undo the trades if necessary. Finally, while we cur-
rently only consider trading for hyper-parameters jobs
where the jobs of a given user are homogeneous, as part
of future work, we are interested in exploring if trading
can be made practical even for heterogeneous jobs.

3.5 Gandivafair

We now present the complete design of Gandivafair. The
time quantum is set to one/two minutes to ensure that the
overhead of GPU context switching is under 1%.

Algorithm 2: Allocating a job.
Data: Set of users, дpus, servers, and jobs.
Result: The job, it’s tickets, and allocation.

1 begin
2 user ←minBy(users, λu : u .tickets)
3 job ←maxBy(jobs[user], λj : j .priority)
4 if job .per f , ∅ then
5 дpu ←minBy(дpus, λд : job .per f [д]

user .t ickets[д])

6 else
7 дpu ←maxBy(дpus, λд : д.rank)

8 tickets ← user .tickets[дpu] ∗ job .size

9 k ← ⌈ job .size
numGPU sPerServer ⌉

10 sortBy(servers[дpu], λs : s .load)
11 allocation ← servers[дpu][1..k]
12 return job,allocation, tickets

Allocation. As discussed in Section 3.2, the scheduler
maintains updated values for the three key variables de-
picted in equations 1–3 to make its scheduling decisions.
Algorithm 2 shows how a job is first allocated to a node.
The scheduler maintains a job queue for each user. The
scheduler first finds the user using the least resources so
far based on ticketsPerGPU (line 2) and picks one job
from that user based on the job’s priority/arrival time for

scheduling (high priority and jobs which were submitted
earliest are preferred). If the job has been seen before
(say, part of a multi-job) and Gandivafair has the job’s
profile information available for different GPU models,
then Gandivafair picks the fastest GPU model (line 5, 6)
as discussed in Section 3.4. Note that job .per f [д] refers
to the mini-batch duration of the job on GPU д. Oth-
erwise, it simply picks the latest GPU model in line 8
(e.g., V100). Once the GPU model is chosen, the actual
node to schedule the job is based on the nodes with the
lowest ticketLoadPerGPU (line 11, 12). The scheduler
computes jobTickets, the number of tickets for the job
(line 9) and then schedules the job on the chosen nodes.
The split gang-aware stride scheduler uses the jobTickets
to then schedule the job at each time quantum and ensure
its fair-share.
Profiling. Gandivafair uses job profiling to determine
the speed-up of each job on various GPU models in
the system. Job profiling statistics are collected oppor-
tunistically as the jobs are scheduled and thus incur no
additional overhead. For example, when a user submits
their first job, it’s scheduled on the fastest available GPU
(e.g., V100). For every time quantum, the job is profiled
to determine its average time taken per mini-batch and
this data is collected by the scheduler. As the user sub-
mits more jobs, the jobs are scheduled on the V100s
until the user exhausts their V100 allocation (based on
their tickets). The next job the user submits is sched-
uled on the second fastest GPU (e.g., P100). The job is
then profiled on the new GPU. If the user is performing
hyper-parameter tuning, the jobs will be similar and, thus,
the scheduler can determine the speedup of the job on
a V100 over a P100. Thus, as jobs arrive and are sched-
uled on different GPU models, the profiled value gets
updated to the average of most recent statistics to reflect
the current speedups. By maintaining average of recent
statistics, Gandivafair can detect and adapt to jobs that
may change their performance behavior in the middle of
training such as in [43].
Migration. Job migration options are evaluated every
time quantum. In a homogeneous cluster, migration is
used only for load balancing. Jobs from the highest
loaded server are migrated to the least loaded server if the
difference in their ticketLoadPerGPU is above a thresh-
old. In a heterogeneous cluster, migration is used for
improving job performance and efficiency through trad-
ing. The scheduler looks at the average progress rate and
tokensPerGpu of each user’s jobs on each GPU model
and calculates effective performance (mini-batch rate
divided by tokensPerGpu). Based on the profiled infor-
mation, if the user will benefit from having their jobs
migrated from one GPU model to another and if the re-
sulting improvement is greater than a threshold, then the

scheduler adds this user to the candidate migration list.
Among all such (user, source GPU model, destination
GPU model) tuples, the scheduler picks the one that will
gain the most and migrates one job to the node(s) with
the lowest ticketLoadPerGPU of the destination GPU
model.
Trading. GPU trading options are also evaluated every
time quantum. For each (fast GPU model, slow GPU
model) tuple (e.g. V100, K80), the scheduler finds a
"seller" (the user with the fastest speedup on fast GPU
relative to slow GPU) and a "buyer" (the user with the
least speedup). The trade price is obtained by using the
second highest bid, i.e., if the user with second fastest
speedup has speedup r , then r slow GPUs are traded for
one fast GPU between the buyer and seller, and then jobs
for the seller and buyer are migrated to the traded GPUs.
Each trade results in increased efficiency corresponding
to the difference between the speedups of the buyer and
the seller while the efficiency gains are distributed to
both the buyer and seller based on the second price (Sec-
tion 3.4). Further, during both job arrivals and departures,
a trading check is performed to see if some of the trades
must be undone (e.g., a new user has arrived and the
traded GPUs are needed for fair allocation).
Scalability. The auctioning run time is O(numUsers)
and the allocation run time is O(numUsers + numJobs).
Thus, scaling with the number of users/jobs is not com-
putationally challenging in Gandivafair.

4 Implementation
Gandivafair uses Kubernetes [10] as a cluster manager
with a custom scheduler that allocates jobs to nodes. Jobs
are submitted as Docker [31] containers. We have imple-
mented the scheduler in around 4k lines of Scala [7] code,
using the Akka Actors library [1] for concurrency and
gPRC [5] for performing remote procedure calls. There
are four main modules: manager, scheduler, executor,
and client.

Manager exposes a REST API and a gRPC endpoint
for the clients to connect to the scheduler. Scheduler
makes decisions like placement, migration, ticket alloca-
tion, management of bonus tokens, trading, etc.. There is
one global executor for performing gang scheduling of
multi-server jobs and one local executor for each server in
the cluster and together they are responsible for running
the jobs on servers in proportion to the tickets allocated
by the scheduler. Finally, the client, which runs inside
the container alongside the job, also exposes a gRPC end-
point, and is responsible for receiving commands from
the executor to perform operations like suspend/resume,
checkpoint/migrate, report job metadata, and report the
status of the running jobs.

A key mechanism utilized byGandivafair is the ability
to migrate jobs between nodes. In order to migrate jobs,
we need to be able to checkpoint jobs on-demand and
then resume these jobs on a different node. Some DLT
jobs are written with checkpoint capability so that they
can resume from a previous checkpoint if it exists. A
simple search of GitHub repositories at the time of this
writing showed that only about 20% of PyTorch jobs had
such checkpoint functionality implemented. Moreover,
even among those DLT jobs that use checkpoint, they
typically only checkpoint every epoch. An epoch can last
several hours or more. While such checkpoints are useful
to guard against occasional server failures, Gandivafair
requires much more fine-grained checkpointing for fair-
ness and efficiency. Thus, we implement an automatic,
on-demand checkpoint mechanism in Gandivafair.

To support job migration, we have modified PyTorch
and Tensorflow frameworks. Our implementation can
handle unmodified user code, and requires only surgical
changes to both the frameworks. Although generic pro-
cess migration tools such as CRIU [3] exist, they cannot
handle processes with GPU state. In our implementation,
we fork a proxy process from the main process. We inter-
cept all CUDA calls made by the process, and direct it
via our proxy. This way the main process’ address space
remains CPU only, and can be easily checkpointed via
CRIU. The proxy process is responsible for 1) translating
all CUDA handles such as stream, context, etc. 2) keep-
ing a log of all state changing CUDA calls, so that they
can be replayed upon a restore, and 3) memory manage-
ment of GPU memory. The memory manager mmaps the
virtual address space to the physical GPU address space
in a consistent manner across migration, so that pointers
to GPU memory remain completely transparent for the
parent process. Upon checkpoint, the proxy’s memory
manager copies the GPU state to the parent process’ CPU
memory and dies. The parent process can then be sim-
ply CRIU’ed. Upon restore the proxy process replays
the log of state changing CUDA calls and copies the
GPU memory back. All communication between proxy
and the parent process is handled via shared memory
with negligible overhead. The proxy implementation re-
mains unchanged between PyTorch and Tensorflow, and
requires only minimal modifications to the actual frame-
works.

Our overhead for suspend-resume is similar to [41],
i.e., about 100-250ms depending on the size of the model.
However, compared to [41], we optimize the migration
performance overhead by implementing a three-phase
context switch called the suspend-preload-resume. When
the framework is notified to suspend, it completes it
within about 100ms by copying the minimal data in the

04:00 05:00 06:00 07:00 08:00 09:00 10:00
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

user1
user2
user3
Ideal Share
Total Throughput

Figure 4. User Total GPU Throughput on 4 V100s.

06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30
Time

0

1

2

3

4

5

6

7

8

user1
user2
user3
Ideal Share
Total Throughput

Figure 5. User Total GPU Throughput on 8 P100s.

GPU (proxy process) at the end of a mini-batch of train-
ing to the CPU memory (parent process), thus, allowing
the scheduler to run another job on the GPU. If the job
needs to be migrated across servers, then the scheduler
performs a CRIU checkpoint on the job container and
restores it on the target server. The framework then waits
for a preload notification. When it receives the preload,
it sets up the state on the new GPU(s) by replaying the
log of all stateful operations but does not resume. Thus,
preload hides the 5s latency for initialization of the GPU
context. Finally, when the framework is notified to re-
sume, it copies the data back to GPU memory, which
takes about 100ms, and quickly resumes the GPU com-
putation.

Thus, migration mostly occurs in the background while
other jobs utilize the GPU.

5 Evaluation
We present our evaluation of Gandivafair. In aggregate,
our cluster has 50 servers with 200 GPUs in total, com-
prising 24 V100, 48 P100 and 128 K80 GPUs. Each
server has four GPUs of a single model, i.e., either K80,
P100 or V100. The servers are 12-core Intel Xeon E5-
2690@2.60GHz with either 224GB RAM (K80s) or
448GB RAM (P100, V100) and with 40Gbps ethernet
(no RDMA), running Ubuntu 16.04 (Linux version 4.15).

08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15
Time

0

1

2

3

4

5 ± for 1-GPU
± for 2-GPU
± for 4-GPU
± for 8-GPU

Ideal Share
Total Throughput

0

10

20

30

40

Figure 6. User Total GPU Throughput on 48 P100s (70 users/4
types).

06:00 07:00 08:00 09:00 10:00 11:00
Time

0

10

20

30

40

50

60

user1
user2
user3
Ideal Share
Total
Throughput

Figure 7. User Total GPU Throughput on 64 K80s (3
users/groups).

15:00 16:00 17:00 18:00 19:00 20:00
Time

0

500

1000

1500

2000

2500

3000

3500

user1
user2
user3
user4
Trading On
Trading Off

Figure 8. Mini-batch Rate with and without Trading.

Time Bought Sold Rate
15:09 V100/user1 K80/user4 1.71
15:11 V100/user1 K80/user3 1.94
15:29 P100/user2 K80/user4 3.42
15:31 P100/user2 K80/user4 3.43
18:06 P100/user1 K80/user3 -1.49
18:06 V100/user1 K80/user2 -1.93
18:06 V100/user1 K80/user3 -1.94
18:07 V100/user2 K80/user4 1.50
18:23 V100/user3 P100/user2 1.00
18:25 V100/user3 P100/user2 1.00

Figure 9. Sample of trades executed by the scheduler.

User data is stored in Azure blobs and mounted in the con-
tainer using blobfuse [2]. Additionally, we use Docker
version 18.06.2-CE, NVIDIA Driver version 390.116,
and CUDA version 9.1.

We evaluate Gandivafair using a variety of deep learn-
ing training jobs written in PyTorch 0.4, TensorFlow
1.13, and Horovod 0.18.1. For jobs that use more than
one GPU, we use data parallelism with synchronous up-
dates as this is common practice. For large jobs, we use
Horovod [36] that performs efficient all-reduce directly
between the GPUs. The batch size and hyper-parameters
used are model defaults.

In the following sections, we first present results to
provide a detailed view of the various components of
the Gandivafair system. We then present cluster-wide
evaluation results with all components of the system.

5.1 Single-server Gang-aware Stride scheduling
In this experiment, we show that our gang-aware stride
scheduling is able to guarantee fair share to users with
small jobs. We use a single server with 4 V100 GPUs and
three users, each with 100 tickets. User1 submits four
1-GPU jobs running VAE [26] on MNIST [28] dataset,
User2 submits four 2-GPU jobs running DCGAN [35] on
CIFAR10 [27] dataset, and User3 submits four 4-GPU
jobs running ResNet-50 [20] on CIFAR10 dataset. From
Figure 4, we see that the gang-aware stride scheduler
gives each user their ideal fair share of 1.33 GPUs on the
4 GPU server. After about four hours, jobs of User1 and
User3 complete and we see that User2 starts to get the
full throughput of the 4 GPU server.

5.2 Multi-server Split Stride scheduling
In this experiment, we show that our split stride scheduler
is fair to both small jobs and large jobs that span multiple
servers. We use 2 servers each with 4 P100 GPUs and
three users, each with 100 tickets. User1 submits one
8-GPU job running ResNet-50 [20], User2 submits two
2-GPU jobs running ResNet50 [20], and User3 submits
four 1-GPU jobs running VAE [26]. From Figure 5, we
see that the split stride scheduler gives each user their
ideal fair share of 2.66 GPUs on the 8 GPU cluster. After
about one and a half hours, the job of User1 completes
and jobs of User2 and User3 now get 4 GPUs each.

5.3 Homogeneous cluster
We now evaluate Gandivafair on a large homogeneous
GPU cluster with 48 P100s to illustrate load balancing
working along with the Split stride scheduler. To design
a realistic multi-user workload, we use the distribution
of job sizes from Microsoft’s Philly cluster job trace [24]
and sample 70 jobs from this distribution randomly. Each
user submits one job of the corresponding size.

0

10

20

Tesla K80

0

5

10
Tesla P100-PCIE-16GB

15:00 16:00 17:00 18:00 19:00 20:00
Time

0

2

4

Tesla V100-PCIE-16GB

Figure 10. Total GPU Throughput on each GPU Model
with Trading Disabled. Legend same as Figure 8.

0

20

40
Tesla K80

0

10

Tesla P100-PCIE-16GB

15:00 16:00 17:00 18:00 19:00 20:00
Time

0

5

Tesla V100-PCIE-16GB

Figure 11. Total GPU Throughput on each GPU Model
with Trading Enabled. Legend same as Figure 8.

In this experiment, we have 70 users in total, divided
into four classes: 62 users with one 1-GPU job running
VAE or SuperResolution [37] on BSDB300 [30] dataset,
3 users with one 2-GPU job running ResNet50, 3 users
with one 4-GPU job running ResNet50, and 2 users with
one large (8-GPU) job running ResNet50. Each user has
tickets equal to the size of the job. Job arrival is random
and around midway during the experiment, all the 8-GPU
jobs complete. Figure 6 shows the average total GPU
minutes for the four classes of users as well as their ideal
fair share throughput (dotted-line) based on their tickets.
One can see from the figure that each class of user gets
throughput close to their fair-share and after the large
jobs depart, the remaining users get their fair-share of the
full cluster. The total throughput obtained by our sched-
uler, the scale for which is on the right, remains close
to 48, with only momentary dips during job departures.
However, migration policy activates, re-balancing the
ticketAdjustedLoad and bringing the aggregate through-
put (therefore efficiency) and fair-share back on track.

In the second experiment, we have three users but
each with a large number of jobs. This configuration can
represent a large-scale hyper-parameter tuning experi-
ment since hyper-parameter exploration benefits from
increased parallelism [29].

Alternatively, this can also represent the workload of
three product groups, each with multiple users work-
ing on one particular model. In this experiment, each
user/group has 100 tickets each. User1 submits 128 1-
GPU jobs running SuperResolution while User2 submits
128 4-GPU jobs running ResNet50 and User3 submits
128 2-GPU jobs running DCGAN. From Figure 7, we see

the three users/groups get equal share of the cluster-wide
GPU minutes (about 21.3). After about 1 hour, jobs of
User3 start finishing. At that point, we see that the clus-
ter is now equally shared between User1 and User2 with
each user/group getting on average 32 GPUs in aggregate.
Finally, after 4 hours, the jobs of User1 completes and
User3 has full access to the entire cluster throughput. As
before, the aggregate throughput obtained by the sched-
uler throughout the duration of experiment remains close
to 64. Thus, these experiments show thatGandivafair pro-
vides fair-share and efficiency across a mix of large and
small jobs as well as a mix of small and large number of
users.

5.4 Heterogeneous Cluster: No Trading
We now evaluate Gandivafair’s performance on a hetero-
geneous 100-GPU cluster with 64 K80s, 24 P100s and
12 V100s. In order to highlight the dynamics of various
components of Gandivafair, we have four users/groups
using the cluster with large number of jobs submitted
per user/group. Each user/group again has 100 tickets,
and each user/group submits 150 jobs of various GPU
sizes. In this experiment, User1 submits 150 1-GPU jobs
running ResNet50, User2 submits 150 2-GPU jobs run-
ning ResNet50, User3 submits 150 4-GPU jobs running
ResNet50, all on CIFAR10, and User4 submits 150 1-
GPU jobs running SuperResolution on BSDS300 dataset.

Figure 8 shows the total job progress rate of each user
using the total mini-batch rate of all jobs of each user and
shows the comparison of the progress rate with trading.

Figure 10 shows three plots, each corresponding to one
of the three GPU models. As we can see from the figure,

the jobs of the four users start by occupying an equal fair-
share of aggregate throughput on each GPU model, i.e.,
3 V100s, 6 P100s and 16 K80s. After 4 hours, the jobs of
User1 finish. At this time, we can see that the inter-user
fair share readjusts and the remaining three users now get
an equal share of about 4 V100s, 8 P100s and 21.3 K80s.
Thus, Gandivafair is able to provide inter-user fair-share
in a heterogeneous setting.

5.5 Heterogeneous Cluster: Automated trading
On a similar heterogeneous 100-GPU cluster with 64
K80s, 24 P100s and 12 V100s and the same workload,
we evaluate the efficacy of automated trading. As is evi-
dent from Figure 11, users start out by receiving roughly
their fair share of GPU throughput. However, through the
course of the experiment, Gandivafair performs a multi-
tude of GPU trades between the various users. This can
be seen by comparison with Figure 10 as well as by the
variation in the GPU throughput each user receives on
each GPU model. Note that the scales of the y-axis of
Figure 11 is larger than that of Figure 10. We can see the
effect of trades where the user share diverges from the
fair-share in terms of absolute throughput. However, the
net job performance improves or remains the same, thus
ensuring that the trades performed do not result in un-
fairness. Table 9 shows a subset of the trades performed
during the experiment. A negative exchange rate implies
that the trade was being undone because of changing
system dynamics (job arrival/departure).

Figure 8 shows that the mini-batch progress rate of
users with and without trade. Specifically, User1 and
User4 gain about 30% higher efficiency due to automated
trading. Also, observe how around the four hour mark,
the progress rate with trading dips and then increases.
This is because one of the users has departed and some
trades are undone (resulting in a dip in efficiency back to
pre-trade levels) and then new trades take place (result-
ing in increase in efficiency). This shows that trading is
robust to user/job arrivals and departures.

6 Related Work
Big data cluster schedulers. There has been a lot of
work on cluster schedulers in the context of scheduling
big data jobs [16, 18, 22, 23, 44]. These jobs are modeled
as data flow graphs and tasks from the graph are sched-
uled dynamically on a cluster, respecting the dependency
relationships between tasks.

Fairness for big data jobs have also been explored
extensively [4, 14, 15, 17, 21, 34]. By default, fairness
in big data schedulers takes only CPU memory into ac-
count [4]. Dominant resource fairness [14] generalizes
the notion of max-min fairness to multiple resources,
specifically CPU and memory. Faircloud [34] considers

the problem of sharing network while Tetris [17] sched-
ules based on multiple resource requirements such as
CPU, memory, disk and network.

Compared to big data jobs, deep learning jobs have
very different characteristics. GPU resource is typically
the primary bottleneck resource for DLT jobs. Further,
unlike big data jobs, DLT jobs are unique in that they ex-
ecute a repetitive set of processing tasks on the GPU [41].
Gandivafair leverages the uniqueness of DLT jobs for
providing inter-user fairness and transparent heterogene-
ity support.
DLT job schedulers. Early schedulers for DLT jobs bor-
rowed directly from the big data schedulers [9, 25]. These
schedulers treat DLT jobs as generic big data jobs that
simply required an extra resource, the GPU. In these sys-
tems, GPUs are assigned exclusively for the lifetime of a
DLT job. Thus, large job queueing times of hundreds of
minutes [19] are common.

Optimus [33] is one of the first cluster schedulers that
is customized for DLT jobs. Optimus builds a perfor-
mance model for each DLT job on the fly and then
schedules jobs to reduce overall job completion time.
However, a key assumption in Optimus is that remaining
time for a job is predictable. Tiresias [19] also optimizes
job completion time for DLT jobs but without making
any assumptions. Gandiva [41] introduces mechanisms
like time-sharing, migration and profiling, made efficient
by customizing to DLT jobs, to improve efficiency and
reduce job queueing time. However, none of these sched-
ulers address fairness issues; in fact, these schedulers
don’t even have a notion of users, and only operate at the
granularity of DLT jobs. Gandivafair also leverages the
uniqueness of DLT jobs and is the first DLT job scheduler
that supports inter-user fairness and GPU heterogeneity.

7 Conclusion
Gandivafair is a cluster scheduler designed to meet three
key requirements of deep learning training. First, it iso-
lates one users’ jobs from another, ensuring that each user
gets their fair-share of cluster-wide GPU time. Second,
it ensures that all users’ jobs make progress. It achieves
these through a mix of load balanced allocation at the
cluster-level coupled with a gang-aware fair scheduler
at the server level. Third, Gandivafair manages GPU het-
erogeneity transparently to users. It achieves this through
a combination of profiling of jobs across GPU models
and a novel automated trading scheme that maximizes
cluster efficiency while maintaining fairness.

Acknowledgments
We thank our shepherd Jacob Gorm Hansen and the
anonymous reviewers for their valuable comments and
suggestions.

References
[1] Akka Actors. https://akka.io.
[2] Blobfuse. https://docs.microsoft.com/bs-latn-ba/azure/

storage/blobs/storage-how-to-mount-container-linux.
[3] Checkpoint/Restore in User Space. https://criu.org/Main_Page.
[4] Fair scheduler in hadoop. https://hadoop.apache.org/docs/r2.

7.4/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.
[5] gRPC, A high-performance, open-source universal RPC frame-

work. https://grpc.io.
[6] Lstm training on wikitext-2 dataset. https://github.com/pytorch/

examples/tree/master/word_language_model.
[7] The Scala Programming Language. https://www.scala-lang.org.
[8] AUSUBEL, L. M., MILGROM, P., ET AL. The lovely but lonely

vickrey auction. Combinatorial auctions 17 (2006), 22–26.
[9] BOAG, S., DUBE, P., HERTA, B., HUMMER, W., ISHAKIAN,

V., JAYARAM, K., KALANTAR, M., MUTHUSAMY, V., NAG-
PURKAR, P., AND ROSENBERG, F. Scalable Multi-Framework
Multi-Tenant Lifecycle Management of Deep Learning Training
Jobs. In Workshop on ML Systems, NIPS (2017).

[10] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E.,
AND WILKES, J. Borg, Omega, and Kubernetes. ACM Queue 14
(2016), 70–93.

[11] CHANDRA, A., AND SHENOY, P. Hierarchical scheduling for
symmetric multiprocessors. IEEE Transactions on Parallel and
Distributed Systems 19, 3 (2008), 418–431.

[12] CHO, K., VAN MERRIËNBOER, B., BAHDANAU, D., AND BEN-
GIO, Y. On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259 (2014).

[13] FEITELSON, D. G., AND WEIL, A. M. Utilization and pre-
dictability in scheduling the ibm sp2 with backfilling. In Pro-
ceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Process-
ing (1998), IEEE, pp. 542–546.

[14] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant resource fairness: Fair
allocation of multiple resource types. In Nsdi (2011), vol. 11,
pp. 24–24.

[15] GHODSI, A., ZAHARIA, M., SHENKER, S., AND STOICA, I.
Choosy: Max-min fair sharing for datacenter jobs with constraints.
In Proceedings of the 8th ACM European Conference on Com-
puter Systems (2013), ACM, pp. 365–378.

[16] GOG, I., SCHWARZKOPF, M., GLEAVE, A., WATSON, R. N. M.,
AND HAND, S. Firmament: Fast, Centralized Cluster Scheduling
at Scale. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16) (Savannah, GA, 2016),
USENIX Association, pp. 99–115.

[17] GRANDL, R., ANANTHANARAYANAN, G., KANDULA, S., RAO,
S., AND AKELLA, A. Multi-resource packing for cluster sched-
ulers. ACM SIGCOMM Computer Communication Review 44, 4
(2015), 455–466.

[18] GRANDL, R., KANDULA, S., RAO, S., AKELLA, A., AND

KULKARNI, J. GRAPHENE: Packing and dependency-aware
scheduling for data-parallel clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16)
(Savannah, GA, 2016), USENIX Association, pp. 81–97.

[19] GU, J., CHOWDHURY, M., SHIN, K. G., ZHU, Y., JEON, M.,
QIAN, J., LIU, H., AND GUO, C. Tiresias: A {GPU} cluster
manager for distributed deep learning. In 16th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI}
19) (2019), pp. 485–500.

[20] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition (2016),

pp. 770–778.
[21] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A.,

JOSEPH, A. D., KATZ, R. H., SHENKER, S., AND STOICA, I.
Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center. In NSDI (2011), vol. 11, pp. 22–22.

[22] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: Distributed data-parallel programs from
sequential building blocks. In Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems
2007 (New York, NY, USA, 2007), EuroSys ’07, ACM, pp. 59–
72.

[23] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U.,
TALWAR, K., AND GOLDBERG, A. Quincy: fair scheduling
for distributed computing clusters. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles (2009),
ACM, pp. 261–276.

[24] JEON, M., VENKATARAMAN, S., PHANISHAYEE, A., QIAN,
J., XIAO, W., AND YANG, F. Analysis of large-scale multi-
tenant {GPU} clusters for {DNN} training workloads. In 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19)
(2019), pp. 947–960.

[25] JEON, M., VENKATARAMAN, S., QIAN, J., PHANISHAYEE, A.,
XIAO, W., AND YANG, F. Multi-tenant gpu clusters for deep
learning workloads: Analysis and implications. MSR-TR-2018-13
(2018).

[26] KINGMA, D. P., AND WELLING, M. Stochastic gradient vb and
the variational auto-encoder. In Second International Conference
on Learning Representations, ICLR (2014).

[27] KRIZHEVSKY, A., NAIR, V., AND HINTON, G. Cifar-10 (cana-
dian institute for advanced research).

[28] LECUN, Y., AND CORTES, C. MNIST handwritten digit data-
base.

[29] LI, L., JAMIESON, K., ROSTAMIZADEH, A., GONINA, E.,
HARDT, M., RECHT, B., AND TALWALKAR, A. Massively
parallel hyperparameter tuning. arXiv preprint arXiv:1810.05934
(2018).

[30] MARTIN, D., FOWLKES, C., TAL, D., AND MALIK, J. A data-
base of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological
statistics. In Proc. 8th Int’l Conf. Computer Vision (July 2001),
vol. 2, pp. 416–423.

[31] MERKEL, D. Docker: Lightweight linux containers for consistent
development and deployment. Linux J. 2014, 239 (Mar. 2014).

[32] NISAN, N., ROUGHGARDEN, T., TARDOS, E., AND VAZIRANI,
V. V. Algorithmic game theory. Cambridge university press,
2007.

[33] PENG, Y., BAO, Y., CHEN, Y., WU, C., AND GUO, C. Optimus:
An Efficient Dynamic Resource Scheduler for Deep Learning
Clusters. In Proceedings of the Thirteenth European Conference
on Computer Systems (2018), ACM.

[34] POPA, L., KUMAR, G., CHOWDHURY, M., KRISHNAMURTHY,
A., RATNASAMY, S., AND STOICA, I. Faircloud: sharing the
network in cloud computing. ACM SIGCOMM Computer Com-
munication Review 42, 4 (2012), 187–198.

[35] RADFORD, A., METZ, L., AND CHINTALA, S. Unsupervised
representation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434 (2015).

[36] SERGEEV, A., AND DEL BALSO, M. Horovod: fast and
easy distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799 (2018).

[37] SHI, W., CABALLERO, J., HUSZÁR, F., TOTZ, J., AITKEN,
A. P., BISHOP, R., RUECKERT, D., AND WANG, Z. Real-time

https://akka.io
https://docs.microsoft.com/bs-latn-ba/azure/storage/blobs/storage-how-to-mount-container-linux
https://docs.microsoft.com/bs-latn-ba/azure/storage/blobs/storage-how-to-mount-container-linux
https://criu.org/Main_Page
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://grpc.io
https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
https://www.scala-lang.org

single image and video super-resolution using an efficient sub-
pixel convolutional neural network. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2016),
pp. 1874–1883.

[38] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGAR-
WAL, S., KONAR, M., EVANS, R., GRAVES, T., LOWE, J.,
SHAH, H., SETH, S., ET AL. Apache hadoop yarn: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing (2013), ACM, p. 5.

[39] WALDSPURGER, C. A. Lottery and stride scheduling: Flexible
proportional-share resource management, MIT.

[40] WALDSPURGER, C. A., AND WEIHL, W. E. Lottery scheduling:
Flexible proportional-share resource management. In Proceedings
of the 1st USENIX conference on Operating Systems Design and
Implementation (1994), pp. 1–es.

[41] XIAO, W., BHARDWAJ, R., RAMJEE, R., SIVATHANU, M.,
KWATRA, N., HAN, Z., PATEL, P., PENG, X., ZHAO, H.,
ZHANG, Q., ET AL. Gandiva: Introspective cluster scheduling

for deep learning. In 13th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 18) (2018),
pp. 595–610.

[42] XIE, S., GIRSHICK, R., DOLLÁR, P., TU, Z., AND HE, K.
Aggregated residual transformations for deep neural networks. In
Computer Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on (2017), IEEE, pp. 5987–5995.

[43] YOU, Y., LI, J., REDDI, S., HSEU, J., KUMAR, S., BHOJANA-
PALLI, S., SONG, X., DEMMEL, J., KEUTZER, K., AND HSIEH,
C.-J. Large batch optimization for deep learning: Training bert
in 76 minutes. In International Conference on Learning Repre-
sentations (2020).

[44] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGSSON,
U., GUNDA, P. K., AND CURREY, J. Dryadlinq: A system for
general-purpose distributed data-parallel computing using a high-
level language. In OSDI’08: Eighth Symposium on Operating
System Design and Implementation (December 2008), USENIX.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Fairness
	2.2 GPU Heterogeneity

	3 Design
	3.1 Split Stride Gang-scheduling
	3.2 Load balancing
	3.3 Scheduler Efficiency
	3.4 Handling GPU heterogeneity transparently
	3.5 Gandivafair

	4 Implementation
	5 Evaluation
	5.1 Single-server Gang-aware Stride scheduling
	5.2 Multi-server Split Stride scheduling
	5.3 Homogeneous cluster
	5.4 Heterogeneous Cluster: No Trading
	5.5 Heterogeneous Cluster: Automated trading

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

