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ABSTRACT
Distributed computing remains inaccessible to a large number of

users, in spite of many open source platforms and extensive com-

mercial offerings. While distributed computation frameworks have

moved beyond a simple map-reduce model, many users are still

left to struggle with complex cluster management and configuration

tools, even for running simple embarrassingly parallel jobs. We argue

that stateless functions represent a viable platform for these users,

eliminating cluster management overhead, fulfilling the promise

of elasticity. Furthermore, using our prototype implementation, Py-

Wren, we show that this model is general enough to implement a

number of distributed computing models, such as BSP, efficiently.

Extrapolating from recent trends in network bandwidth and the ad-

vent of disaggregated storage, we suggest that stateless functions are

a natural fit for data processing in future computing environments.
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1 INTRODUCTION
Despite a decade of availability, the twin promises of scale and elas-

ticity [2] remain out of reach for a large number of cloud computing

users. Academic and commercially-successful platforms (Apache

Hadoop, Apache Spark) with tremendous corporate backing (Ama-

zon, Microsoft, Google) still present high barriers to entry for the

average data scientist or scientific computing user. In fact, taking

advantage of elasticity remains challenging for even sophisticated

users, as the majority of these frameworks were designed to first
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target on-premise installations at large scale. On commercial cloud

platforms, a novice user confronts a dizzying array of potential deci-

sions: one must ahead of time decide on instance type, cluster size,

pricing model, programming model, and task granularity.

Such challenges are particularly surprising considering that the

vast number of data analytic and scientific computing workloads

remain embarrassingly parallel. Hyperparameter tuning for machine

learning, Monte Carlo simulation for computational physics, and

featurization for data science all fit well into a traditional map-reduce

framework. Yet even at UC Berkeley, we have found via informal

surveys that the majority of machine learning graduate students have

never written a cluster computing job due to complexity of setting

up cloud platforms.

In this paper we argue that a serverless execution model with

stateless functions can enable radically-simpler, fundamentally elas-

tic, and more user-friendly distributed data processing systems. In

this model, we have one simple primitive: users submit functions

that are executed in a remote container; the functions are stateless as

all the state for the function, including input, output is accessed from

shared remote storage. Surprisingly, we find that the performance

degradation from using such an approach is negligible for many

workloads and thus, our simple primitive is in fact general enough

to implement a number of higher-level data processing abstractions,

including MapReduce and parameter servers.

Recently cloud providers (e.g., AWS Lambda, Google Cloud

Functions) and open source projects (e.g., OpenLambda [16], Open-

Whisk [31]) have developed infrastructure to run event-driven, state-

less functions as micro-services. In this model, a function is de-

ployed once and is invoked repeatedly whenever new inputs arrive

and elastically scales with input size. Our key insight is that we

can dynamically inject code into these functions, which combined

with remote storage, allows us to build a data processing system that

inherits the elasticity of the serverless model while addressing the

simplicity for end users.

We describe a prototype system, PyWren1, developed in Python

with AWS Lambda. By employing only stateless functions, Py-

Wren helps users avoid the significant developer and management

overhead that has until now been a necessary prerequisite. The com-

plexity of state management can instead be captured by a global

scheduler and fast remote storage. With PyWren, we seek to under-

stand the trade-offs of using stateless functions for large scale data

analytics and specifically what is the impact of solely using remote

storage for inputs and outputs. We find that we can achieve around

30-40 MB/s write and read performance per core to a remote bulk

object store (S3), matching the per-core performance of a single

local SSD on typical EC2 nodes. Further we find that this scales to

60-80 GB/s to S3 across 2800 simultaneous functions, showing that

existing remote storage systems may not be a significant bottleneck.

1PyWren is available at https://pywren.io
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Using this as a building block we implement image processing

pipelines where we extract per-image features during a map phase

via unmodified Python code. We also show how we can implement

BSP-style applications on PyWren and that a word count job on

83M items is only 17% slower than PySpark running on dedicated

servers. Shuffle-intensive workloads are also feasible as we show

PyWren can sort 1TB data in 3.4 minutes. However, we do identify

storage throughput as a major bottleneck for larger shuffles. Finally

we discuss how parameter servers, a common construct in distributed

ML [23] can be used with this model. We conclude the paper with

some remaining systems challenges, including launch overhead,

storage performance and scalable scheduling.

2 IS THE CLOUD USABLE?
The advent of elastic computing has greatly simplified access to

computing resources, as the complexity of management is now han-

dled by cloud providers. Thus the complexity has now shifted to

applications or programming frameworks. However most software,

especially in scientific and analytics applications, is not written by

computer scientists [18, 26], and it is many of these users who have

been left out of the cloud revolution.

The layers of abstraction present in distributed data processing

platforms are complex and difficult to correctly configure. For exam-

ple, PySpark, arguably one of the easier to use platforms, runs on top

of Spark [49] (written in Scala) which interoperates and is closely

coupled with HDFS [42] (written in Java), Yarn [46] (Java again),

and the JVM. The JVM in turn is generally run on virtualized Linux

servers. Merely negotiating the memory limit interplay between the

JVM heap and the host operating system is an art form [10, 44, 45].

These systems often promote “ease of use" by showing powerful

functionality with a few lines of code, but this ease of use means

little without mastering the configuration of the layers below.

In addition to the software configuration issues, cloud users are

also immediately faced with tremendous planning and workload

management before they even begin running a job. AWS offers 70

instances types across 14 geographical datacenters – all with subtly

different pricing. This complexity is such that recent research has

focused on algorithmic optimization of workload trade-offs [17, 47].

While several products such as Databricks and Qubole simplify clus-

ter management, the users still need to explicitly start and terminate

clusters, and pick the number and type of instances.

Finally, the vast majority of scientific workloads could take ad-

vantage of dynamic market-based pricing of servers, such as AWS

spot instances – but computing spot instance pricing is challenging,

and additionally most of the above-mentioned frameworks make it

difficult to handle machine preemption. To avoid the risk of losing

intermediate data, users must be careful to either regularly check-

point their data or run the master and a certain number of workers

on non-spot instances. This adds another layer of management com-

plexity which makes elasticity hard to obtain in practice.

What users want: Our proposal in this paper was motivated by a

professor of computer graphics at UC Berkeley asking us “Why is

there no cloud button?" He outlined how his students simply wish

they could easily “push a button" and have their code – existing,

optimized, single-machine code – running on the cloud. Thus, our
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Figure 1: System architecture for stateless functions

fundamental goal here is to allow as many users as possible to take

existing, legacy code and run it in parallel, exploiting elasticity. In

an ideal world, users would simply be able to run their desired

code across a large number of machines, bottlenecked only by serial

performance. Executing 100 or 10000 five-minute jobs should take

roughly five minutes, with minimal start-up and tear-down overhead.

Further, in our experience far more users are capable of writing

reasonably-performant single-threaded code, using numerical lin-

ear algebra libraries (e.g., OpenBLAS, Intel’s MKL), than writing

complex distributed-systems code. Correspondingly the goal for

these users is not to get the best parallel performance, but rather

to get vastly better performance than available on their laptop or

workstation while taking minimal development time.

For compute-bound workloads, it becomes more useful to par-

allelize across functions for many cases; to say sweep over a wide

range of parameters (such as machine learning hyperparameter op-

timization) or try a large number of random initial seeds (Monte

Carlo simulations of physical systems). In these cases, exposing

function-level parallelism is more worthwhile than having com-

plex interfaces for intra-function optimization. Therefore, a simple

function interface that captures sufficient local state, performs com-

putation remotely, and returns the result is more than adequate. For

data-bound workloads, a large number of users would be served

by a simpler version of the existing map-reduce framework where

outputs can be easily persisted on object storage.

Thus, a number of compute-bound and data-bound workloads can

be captured by having a simple abstraction that allows users to run

arbitrary functions in the cloud without setting up and configuring

servers/frameworks etc. We next discuss why such an abstraction is

viable now and the components necessary for such a design.

3 A MODEST PROPOSAL
Many of the problems with current cloud computing abstractions

stem from the fact that they are designed for a server-oriented re-

source model. Having servers as the unit of abstraction ties together

multiple resources like memory, CPU and network bandwidth. Fur-

ther servers are also often long running and hence require DevOps

support for maintenance. Our proposal is to instead use a serverless

architecture with stateless functions as the unifying abstraction for

data processing. Using stateless functions will simplify program-

ming and deployment for end users. In this section we present the

high level components for designing data processing systems on a

serverless architecture. While other proposals [4] have looked at im-

plementing data processing systems on serverless infrastructure, we

propose a simple API that is tightly integrated with existing libraries

and also study performance trade-offs of this approach by using our

prototype implementation on a number of workloads.
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Table 1: Comparison of single-machine write bandwidth to instance
local SSD and remote storage in Amazon EC2. Remote storage is faster
than single SSD on the standard c3.8xlarge instance and the storage-
optimized i2.8xlarge instance.

Storage Medium Write Speed (MB/s)

SSD on c3.8xlarge 208.73

SSD on i2.8xlarge 460.36

4 SSDs on i2.8xlarge 1768.04

S3 501.13

3.1 Systems Components
The main components necessary for executing stateless functions

include a low overhead execution runtime, a fast scheduler and high

performance remote storage as shown in Figure 1. Users submit

single-threaded functions to a global scheduler and while submitting

the function they can also annotate the runtime dependencies re-

quired. Once the scheduler determines where a function is supposed

to run, an appropriate container is created for the duration of exe-

cution. While the container maybe reused to improve performance

none of the state created by the function will be retained across

invocations. Thus, in such a model all the inputs to functions and all

output from functions need to be persisted on remote storage and

we include client libraries to access both high-throughput and low

latency shared storage systems.

Fault Tolerance: Stateless functions allow simple fault tolerance

semantics. When a function fails, we restart it (at possibly a differ-

ent location) and execute on the same input. We only need atomic

writes to remote storage for tracking which functions have suc-

ceeded. Assuming that functions are idempotent we obtain similar

fault tolerance guarantees as existing systems.

Simplicity: As evidenced by our discussion above, our architec-

ture is very simple and only consists of the minimum infrastructure

required for executing functions. We do not include any distributed

data structures or dataflow primitives in our design. We believe that

this simplicity is necessary in order to make simple workloads like

embarrassingly parallel jobs easy to use. More complex abstractions

like dataflow or BSP can be implemented on top and we discuss this

in Section 3.3.

Why now? The model described above is closely related to sys-

tems like Linda [6], Celias [15] and database trigger-based sys-

tems [34, 35]. While their ideas are used in work-stealing queues

and shared file system, the specific programming model has not been

widely adopted. We believe that this model is viable now given exist-

ing infrastructure and technology trends. While the developer has no

control of where a stateless function runs (e.g., the developer cannot

specify that a stateless function should run on the node storing the

function’s input), the benefits of colocating computation and data –

a major design goal for prior systems like Hadoop, Spark and Dryad

– have diminished.

Prior work has shown that hard disk locality does not provide

significant performance benefits [12]. To see whether the recent

datacenter migration from hard disks to SSDs has changed this

conclusion, we benchmarked the I/O throughput of storing data

on a local SSD of an AWS EC2 instance vs. storing data on S3.

Our results, in Table 1, show that currently that writing to remote

storage is faster than a single SSD but using multiple SSDs can

yield better performance. However, technology trends [9, 14, 41]

indicate that the gap between network bandwidth and storage I/O

bandwidth is narrowing, and many recently published proposals for

rack-scale computers feature disaggregated storage [3, 20] and even

disaggregated memory [13]. All these trends suggest diminishing

performance benefits from colocating compute with data in the

future.

3.2 PyWren: A Prototype
We developed PyWren2 to rapidly evaluate these ideas, seamlessly

exposing a map primitive from Python on top of AWS Lambda.

While Lambda was designed to run event-driven microservices (such

as resizing a single user-uploaded image) with a fixed funtion, by

extracting new code from S3 during runtime we make each Lambda

invocation run a different function. Currently AWS Lambda provides

a very restricted containerized runtime with a maximum 300 seconds

of execution time, 1.5 GB of RAM, 512 MB of local storage and no

root access, but we believe these limits will be increased as AWS

Lambda is used for more general purpose applications.

PyWren serializes a Python function using cloudpickle [7],

capturing all relevant information as well as most modules that are

not present in the server runtime3. This eliminates the majority of

user overhead about deployment, packaging, and code versioning.

We submit the serialized function along with each serialized datum

by placing them into globally unique keys in S3, and then invoke a

common Lambda function. On the server side, we invoke the relevant

function on the relevant datum, both extracted from S3. The result

of the function invocation is serialized and placed back into S3 at a

pre-specified key, and job completion is signaled by the existence

of this key. In this way, we are able to reuse one registered Lambda

function to execute different user Python functions and mitigate the

high latency for function registration, while executing functions that

exceed Lambda’s code size limit.

Map for everyone: As discussed in Section 2, many scientific

and analytic workloads are embarrassingly parallel. The map primi-

tive provided by PyWren makes addressing these use cases easy –

serializing all local state necessary for computation, transparently

invoking functions remotely and returning when complete. Calling

map launches as many stateless functions as there are elements in

the list that one is mapping over. An important aspect to note here is

that this API mirrors the existing Python API for parallel process-

ing and thus, unlike other serverless MapReduce frameworks [4],

this integrates easily with existing libraries for data processing and

visualization.

Microbenchmarks: Using PyWren we ran a number of bench-

marks(Figures 2,3,4) to determine the impact of solely using remote

storage for IO, and how this scales with worker count. In terms

of compute, we ran a matrix multiply kernel within each Lambda

and find that we get 18 GFLOPS per core and that this unsurpris-

ingly scales to more than 40 TFLOPS while using 2800 workers.

To measure remote I/O throughput we benchmarked the read, write

bandwidth to S3 and our benchmarks show that we can get on av-

erage 30 MB/s write and 40 MB/s read per Lambda and that this

2A wren is much smaller than a Condor
3While there are limitations in the serialization method (including an inability to transfer
arbitrary Python C extensions), we find this can be overcome using libraries from
package managers such as Anaconda.
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Figure 2: Running a matrix multiplication
benchmark inside each worker, we see a lin-
ear scalability of FLOPs across 3000 work-
ers.

Figure 3: Remote storage on S3 linearly
scales with each worker getting around 30
MB/s bandwidth (inset histogram).

Figure 4: Remote key-value operations
to Redis scales up to 1000 workers. Each
worker gets around 700 synchronous trans-
actions/sec.
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also scales to more than 60 GB/s write and 80 GB/s read. Assuming

that 16 such Lambdas are as powerful as a single server, we find that

the performance from Lambda matches the S3 performance shown

in Table 1. To measure the overheads for small updates, we also

benchmarked 128-byte synchronous put/gets to two c3.8xlarge
instances running in-memory Redis. We match the performance re-

ported in prior benchmarks [37] and get less than 1ms latency up to

1000 workers.

Applications: In our research group we have had students use Py-

Wren for applications as diverse as computational imaging, scientific

instrument design, solar physics, and object recognition. Working

with heliphysicists at NASA’s Solar Dynamics Observatory, we have

used PyWren for extracting relevant features across 16TB of solar

imaging data for solar flare prediction. Working with applied physics

colleagues, we have used PyWren to design novel types of micro-

scope point-spread functions for 3d superresolution microscopy. This

necessitates rapid and repeat evaluation of a complex physics-based

optical model inside an inner loop.

3.3 Generality for the rest of us ?
While the map primitive in PyWren covers a number of applications,

it prohibits any coordination among the various tasks. We next look

at how stateless functions along with high performance storage can

also be used as a flexible building block to develop more complex

abstractions.

Map + monolithic Reduce The first abstraction we consider is

one where output from all the map operations is collected on to

one machine (similar to gather in HPC literature) for further pro-

cessing. We find this pattern covers a number of classical machine

learning workloads which consist of a featurization (or ETL) stage

that converts large input data into features and then a learning stage

where the model is built using SVMs or linear classifiers. In such

workloads, the featurization requires parallel processing but the gen-

erated features are often small and fit on a single large machine [5].

These applications can be implemented using a map that runs using

stateless functions followed by a learning stage that runs on a single

multi-core server using efficient multi-core libraries [28]. The wide

array of machine choices in the cloud means that this approach can

handle learning problems with features up to 2TB in size [48].

As an example application we took off-the-shelf image featur-

ization code [8] and performed cropping, scaling, and GIST image

featurization [29] of the 1.28M images in the ImageNet LargeScale

Visual Recognition Challenge [39]. We run the end-to-end featuriza-

tion using 3000 workers on AWS Lambda. and store the features on

S3. This takes 113 seconds and following that we run a monolithic
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Table 2: Time taken for featurization and classification

phase mean std

lambda start latency 9.7s 29.1s

lambda setup time 14.2s 5.2s

featurization 112.9s 10.2s

result fetch 22.0s 10.0s

fit linear classifier 4.3s 0.5s

reduce on a single r4.16xlarge instance. Fetching the features

from S3 to this instance only takes 22s and building a linear classifier

using NumPy and Intel MKL libraries takes 4.3s. Thus, we see that

this model is a good fit where a high degree of parallelism is initially

required to do ETL / featurization but a single node is sufficient (and

most efficient [25]) for model building.

MapReduce: For more general purpose coordination, a com-

monly used programming model is the bulk-synchronous processing

(BSP) model. To implement the BSP model, in addition to parallel

task execution, we need to perform data shuffles across stages. The

availability of high-bandwidth remote storage provides an natural

mechanism to implement such shuffles. Using S3 to store shuffle

data, we implemented a word count program in PyWren. On the

Amazon reviews [24] dataset consisting of 83.68M product reviews

split across 333 partitions, this program took 98.6s. We ran a similar

program using PySpark. Using 85 r3.xlarge instances, each hav-

ing 4 cores to match the parallelism we had with PyWren, the Spark

job took 84s. The slow down is from the lack of parallel shuffle block

reads in PyWren and some stragglers while writing/reading from S3.

Despite that we see that PyWren is only around 17% slower than

Spark and our timings do not include the 5-10 minutes it takes to

start the Spark instances.

We also run the Daytona sort benchmark [43] on 1TB input, to see

how PyWren handles a shuffle-intensive workload. We implemented

the Terasort [30] algorithm to perform sort in two stages: a partition

stage that range-partitions the input and writes out to intermediate

storage, and a merge stage that, for each partition, merges and sorts

all intermediate data for that partition and writes out the sorted out-

put. Due to the resource limitation on each Lambda worker, we need

at least 2500 tasks for each stage. This results in 2500
2, or 6,250,000

intermediate files (each 160Kb) to shuffle in between. While S3 does

provide abundant I/O bandwidth to Lambda for this case, it is not

designed to sustain high request rate for small objects. Also as S3 is a

multi-tenant service, there is an imposed limit on request throughput

per S3 bucket for the benefit of overall availability. Therefore, we

use S3 only for storing input and writing final output, and deploy a

Redis cluster with cache.m4.10xlarge nodes for intermediate

storage.4 Figure 5 shows the end-to-end performance with varying

numbers of concurrent Lambda workers and Redis shards, with

breakdown of task time. We see that higher level of parallelism does

greatly improve job performance (up to 500 workers) until Redis

throughput becomes a bottleneck. From 500 to 1000 workers, the

Redis I/O time increases by 42%. Fully leveraging this parallelism

requires more Redis shards, as shown by the 44% improvement with

30 shards. Interestingly, adding more resources does not necessarily

4Redis here can be replaced by any other key-value store, e.g., memcached, as we were
only using the simple set/get API.

increase total cost due to the reduction in latency with scale (Fig-

ure 6).5 Supporting a larger sort, e.g., 100TB, does become quite

challenging, as the number of intermediate files increases quadrati-

cally. We plan to investigate more efficient solutions.

Parameter Servers: Finally using low-latency, high throughput

key-value stores like Redis, RAMCloud [38] we can also implement

parameter-server [1, 23] style applications in PyWren. For example,

we can implement HOGWILD! stochastic gradient descent by having

each function compute the gradients based on the latest version of

shared model. Since the only coordination across functions happens

through the parameter server, such applications fit very well into the

stateless function model. Further we can use existing support for

server-side scripting [36] in key value stores to implement features

like range updates and flexible consistency models [23]. However,

currently this model is not easy to use as unlike S3, the ElasticCache

service requires users to select a cache server type and capacity.

To deploy more performant parameter servers [23] that go beyond

simple key-value store would involve more complexity, e.g., setting

up on a EC2 cluster or requiring a new hosted service, leaving the

economic implications for further investigation.

4 DISCUSSION
While we studied the performance provided by existing infrastruc-

ture in the previous section, there are a number of systems aspects

that need to be addressed to enable high performance data process-

ing.

Resource Balance: One of the primary challenges in a serverless

design is in how a function’s resource usage is allocated and as

we mentioned in §3.2, the existing limits are quite low. The fact

that the functions are stateless and need to transfer both input and

output over the network can help cloud providers come up with

some natural heuristics. For example if we consider the current

constraints of AWS Lambda we see that each Lambda has around

35 MB/s bandwidth to S3 and can thus fill up its memory of 1.5GB

in around 40s. Assuming it takes 40s to write output, we can see that

the running time of 300s is appropriately proportioned for around

80s of I/O and 220s of compute. As memory capacity and network

bandwidths grow, this rule can be used to automatically determine

memory capacity given a target running time.

Pricing The simplicity of elastic computing comes with a pre-

mium that the users pay to the cloud providers. At the time of writing

Lambda is priced at ∼$0.06 per GB-hour of execution, measured in

100ms-increments. Lambda is thus only ∼2× more expensive than

on-demand instances. This cost premium seems worthwhile given

substantially finer-grained billing, much greater elasticity, and the

fact that many dedicated clusters are often running at 50% utilization.

Another benefit that stems from PyWren’s disaggregated architecture

is that cost estimation or even cost prediction becomes much simpler.

In the future we plan to explore techniques that can automatically

predict the cost of a computation.

Scalable Scheduling: A number of cluster scheduling papers [21,

32, 33, 40] have looked at providing low latency scheduling for data

parallel frameworks running on servers. However, to implement

such scheduling frameworks on top of stateless functions, we need

5Lambda bills in 100ms increments. Redis is charged per hour and is prorated here to
seconds per CloudSort benchmark rules [43].
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to handle the fact that information about the cluster status (i.e., which

containers are free, input locations, resource heterogeneity) is only

available to the infrastructure provider, while the structure of the job

(i.e. how functions depend on each other) is only available to the user.

In the future we plan to study what information needs to exposed

by cloud providers and if scheduling techniques like offers [19] can

handle this separation.

Debugging: Debugging can be a challenge as PyWren is com-

posed of multiple system components. For monitoring Lambda ex-

ecution we rely on service tools provided by AWS. For example,

CloudWatch saves off-channel logs from Lambda workers which

can be browsed through a cloud-viewer. S3 is another place to track

as it contains metadata about the execution. To understand a job

execution comprehensively, e.g., caclulating how much time is spent

at each stage, however, would require tools to align events from both

the host and Lambda.

Distributed Storage: With the separation of storage and compute

in the PyWren programming model, a number of performance chal-

lenges translate into the need for more efficient distributed storage

systems. Our benchmarks in §3.2 showed the limitations of current

systems, especially for supporting large shuffle-intensive workloads,

and we plan to study how we can enable a flat-datacenter storage

system in terms of latency and bandwidth [27]. Further, our existing

benchmarks also show the limitation of not lacking API support for

append in systems like S3 and we plan to develop a common API

for storage backends that power serverless computation.

Launch Overheads: Finally one of the main drawbacks in our

current implementation is that function invocation can take up to 20-

30 seconds (∼10% of the execution time) without any caching. This

is partly due to lambda invocation rate limits imposed by AWS and

partly due to the time taken to setup our custom Python runtime. We

plan to study if techniques used to make VM forks cheaper [22], like

caching containers or layering filesystems can be used to improve

latency. We also plan to see if the scheduler can be modified to queue

functions before their inputs are ready to handle launch overheads.

Other Applications: While we discussed data analytics applica-

tions that fit well with the serverless model, there are some applica-

tions that do not fit today. Applications that use specialized hardware

like GPUs or FPGAs are not supported by AWS Lambda, but we

envision that more general hardware support will be available in the

future. However, for applications like particle simulations, which

require a lot of coordination between long running processes, the Py-

Wren model of using stateless functions with remote storage might

not be a good fit. Finally, while we primarily focused on existing an-

alytics applications in this paper, the serverless model has also been

used successfully in other domains like video compression [11].

5 CONCLUSION
The server-oriented focus of existing data processing systems in the

cloud presents a high barrier for a number of users. In this paper we

propose that using stateless functions with remote storage, we can

build a data processing system that inherits the elasticity, simplicity

of the serverless model while providing a flexible building block for

more complex abstractions.

ACKNOWLEDGEMENT
We want to thank Vaishaal Shankar for his contribution to the project,

the various anonymous reviewers and our shepherd Ymir Vigfusson

for their insightful comments and suggestions. This research is sup-

ported in part by DHS Award HSHQDC-16-3-00083, NSF CISE

Expeditions Award CCF-1139158, and gifts from Ant Financial,

Amazon Web Services, CapitalOne, Ericsson, GE, Google, Huawei,

Intel, IBM, Microsoft and VMware. EJ and BR are generously sup-

ported by ONR award N00014-17-1-2401 and research grants from

Amazon. EJ is additionally supported by a grant from Microsoft. BR

is also generously supported by NSF award CCF-1359814, ONR

awards N00014-14-1-0024 and N00014-17-1-2191, a Sloan Re-

search Fellowship, and a Google Faculty Award.

REFERENCES
[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN, J., DEVIN,

M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL. Tensorflow: A system for
large-scale machine learning. In OSDI (2016).

[2] ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R., KONWIN-
SKI, A., LEE, G., PATTERSON, D., RABKIN, A., STOICA, I., ET AL. A view of
cloud computing. CACM 53, 4 (2010), 50–58.

[3] ASANOVIC, K., AND PATTERSON, D. Firebox: A hardware building block for
2020 warehouse-scale computers. In FAST (2014).

[4] Serverless Reference Architecture: MapReduce. https://github.com/awslabs/
lambda-refarch-mapreduce.

[5] CANNY, J., AND ZHAO, H. Big data analytics with small footprint: Squaring the
cloud. In KDD (2013).

[6] CARRIERO, N., AND GELERNTER, D. Linda in context. CACM 32, 4 (Apr.
1989).

[7] cloudpickle: Extended pickling support for python objects. https://github.com/
cloudpipe/cloudpickle.

[8] DOUZE, M., JÉGOU, H., SANDHAWALIA, H., AMSALEG, L., AND SCHMID, C.
Evaluation of gist descriptors for web-scale image search. In ACM International
Conference on Image and Video Retrieval (2009).

[9] IEEE P802.3ba, 40Gb/s and 100Gb/s Ethernet Task Force. http://www.ieee802.
org/3/ba/.

[10] FANG, L., NGUYEN, K., XU, G., DEMSKY, B., AND LU, S. Interruptible tasks:
Treating memory pressure as interrupts for highly scalable data-parallel programs.
In SOSP (2015).

[11] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRAMANIAM, K. V.,
ZENG, W., BHALERAO, R., SIVARAMAN, A., PORTER, G., AND WINSTEIN,
K. Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of
Tiny Threads. In NSDI (2017).

[12] G. ANANTHANARAYANAN, A. GHODSI, S. SHENKER, I. STOICA. Disk-Locality
in Datacenter Computing Considered Irrelevant. In Proc. HotOS (2011).

[13] GAO, P. X., NARAYAN, A., KARANDIKAR, S., CARREIRA, J., HAN, S., AGAR-
WAL, R., RATNASAMY, S., AND SHENKER, S. Network requirements for resource
disaggregation. In OSDI (2016).

[14] HAN, S., EGI, N., PANDA, A., RATNASAMY, S., SHI, G., AND SHENKER, S.
Network support for resource disaggregation in next-generation datacenters. In
HotNets (2013).

[15] HAN, S., AND RATNASAMY, S. Large-scale computation not at the cost of
expressiveness. In HotOS (2013).

[16] HENDRICKSON, S., STURDEVANT, S., HARTER, T., VENKATARAMANI, V.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Serverless computa-
tion with OpenLambda. In HotCloud (2016).

[17] HERODOTOU, H., LIM, H., LUO, G., BORISOV, N., DONG, L., CETIN, F. B.,
AND BABU, S. Starfish: A self-tuning system for big data analytics. In CIDR
(2011).

[18] HETTRICK, S., ANTONIOLETTI, M., CARR, L., CHUE HONG, N., CROUCH,
S., DE ROURE, D., EMSLEY, I., GOBLE, C., HAY, A., INUPAKUTIKA, D.,
JACKSON, M., NENADIC, A., PARKINSON, T., PARSONS, M. I., PAWLIK, A.,
PERU, G., PROEME, A., ROBINSON, J., AND SUFI, S. Uk research software
survey 2014. https://doi.org/10.5281/zenodo.14809, Dec. 2014.

[19] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A., JOSEPH, A.,
KATZ, R., SHENKER, S., AND STOICA, I. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In Proc. NSDI (2011).

[20] HP The Machine: Our vision for the Future of Computing. https://www.labs.hpe.
com/the-machine.

[21] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U., TALWAR, K., AND

GOLDBERG, A. Quincy: Fair Scheduling for Distributed Computing Clusters. In
Proc. SOSP (2009), pp. 261–276.

450



Occupy the Cloud: Distributed Computing for the 99% SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

[22] LAGAR-CAVILLA, H. A., WHITNEY, J. A., SCANNELL, A. M., PATCHIN, P.,
RUMBLE, S. M., DE LARA, E., BRUDNO, M., AND SATYANARAYANAN, M.
Snowflock: Rapid virtual machine cloning for cloud computing. In EuroSys
(2009).

[23] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J., AHMED, A., JOSI-
FOVSKI, V., LONG, J., SHEKITA, E. J., AND SU, B.-Y. Scaling distributed
machine learning with the parameter server. In OSDI (2014).

[24] MCAULEY, J., TARGETT, C., SHI, Q., AND VAN DEN HENGEL, A. Image-based
recommendations on styles and substitutes. In SIGIR (2015).

[25] MCSHERRY, F., ISARD, M., AND MURRAY, D. G. Scalability! but at what
COST? In HotOS (2015).

[26] MOMCHEVA, I., AND TOLLERUD, E. Software Use in Astronomy: an Informal
Survey. arXiv 1507.03989 (2015).

[27] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN, O., HOWELL, J., AND

SUZUE, Y. Flat datacenter storage. In OSDI (2012).
[28] NIU, F., RECHT, B., RE, C., AND WRIGHT, S. Hogwild: A lock-free approach

to parallelizing stochastic gradient descent. In NIPS (2011).
[29] OLIVA, A., AND TORRALBA, A. Modeling the shape of the scene: A holistic

representation of the spatial envelope. International Journal of computer vision
42, 3 (2001), 145–175.

[30] O’MALLEY, O. TeraByte Sort on Apache Hadoop. http://sortbenchmark.org/
YahooHadoop.pdf.

[31] OpenWhisk. https://developer.ibm.com/openwhisk/.
[32] OUSTERHOUT, K., PANDA, A., ROSEN, J., VENKATARAMAN, S., XIN, R.,

RATNASAMY, S., SHENKER, S., AND STOICA, I. The case for tiny tasks in
compute clusters. In HotOS (2013).

[33] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I. Sparrow:
distributed, low latency scheduling. In SOSP (2013).

[34] PENG, D., AND DABEK, F. Large-scale incremental processing using distributed
transactions and notifications. In OSDI (2010).

[35] POWER, R., AND LI, J. Piccolo: Building fast, distributed programs with parti-
tioned tables. In OSDI (2010).

[36] Redis server side scripting. https://redis.io/commands/eval.
[37] Redis benchmarks. https://redis.io/topics/benchmarks.
[38] RUMBLE, S. M., ONGARO, D., STUTSMAN, R., ROSENBLUM, M., AND

OUSTERHOUT, J. K. It’s Time for Low Latency. In Proc. HotOS (2011).
[39] RUSSAKOVSKY, O., DENG, J., SU, H., KRAUSE, J., SATHEESH, S., MA, S.,

HUANG, Z., KARPATHY, A., KHOSLA, A., BERNSTEIN, M., BERG, A. C., AND

LI, F.-F. ImageNet Large Scale Visual Recognition Challenge. IJCV 115, 3
(2015), 211–252.

[40] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M., AND WILKES, J.
Omega: flexible, scalable schedulers for large compute clusters. In Proc. EuroSys
(2013).

[41] SCOTT, C. Latency trends. http://colin-scott.github.io/blog/2012/12/24/
latency-trends/.

[42] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The Hadoop
Distributed File System. In Mass storage systems and technologies (MSST) (2010).

[43] Sort Benchmark. http://sortbenchmark.org.
[44] Tuning Java Garbage Collection for Apache Spark Applications. https://goo.gl/

SIWlqx.
[45] Tuning Spark. https://spark.apache.org/docs/latest/tuning.html#

garbage-collection-tuning.
[46] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGARWAL, S., KONAR,

M., EVANS, R., GRAVES, T., LOWE, J., SHAH, H., SETH, S., ET AL. Apache
Hadoop YARN: Yet another resource negotiator. In SoCC (2013).

[47] VENKATARAMAN, S., YANG, Z., FRANKLIN, M., RECHT, B., AND STOICA,
I. Ernest: Efficient performance prediction for large-scale advanced analytics. In
NSDI (2016).

[48] X1 instances. https://aws.amazon.com/ec2/instance-types/x1/.
[49] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MCCAULEY, M.,

FRANKLIN, M., SHENKER, S., AND STOICA, I. Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proc. NSDI
(2011).

451


