Efficient Sparse Collective Communication and
its application to Accelerate Distributed Deep Learning

Jiawei Fei* Chen-Yu Ho*

KAUST

Abstract

Efficient collective communication is crucial to parallel-
computing applications such as distributed training of
large-scale recommendation systems and natural lan-
guage processing models. Existing collective communi-
cation libraries focus on optimizing operations for dense
inputs, resulting in transmissions of many zeros when in-
puts are sparse. This counters current trends that see in-
creasing data sparsity in large models.

We propose OmniReduce, an efficient streaming ag-
gregation system that exploits sparsity to maximize ef-
fective bandwidth use by sending only non-zero data
blocks. We demonstrate that this idea is beneficial and
accelerates distributed training by up to 8.2x. Even at
100 Gbps, we assess that OmniReduce delivers 1.2-2.6x
better performance for network-bottlenecked DNNs.

1 Introduction

Collective communication routines (or simply, collec-
tives) are a core building block of parallel-computing
applications. Collectives are commonly used to com-
bine data among multiple processes performing opera-
tions in parallel. Achieving high-performance collective
communication is paramount in virtually every scenario
where an unfavorable computation to communication ra-
tio restricts the ability to scale the workload efficiently.
One such scenario — also the focus of this paper —
is distributed deep learning (DDL), which is now in
widespread use to reduce the training time of large deep
neural networks (DNNs) by parallelizing training over
a large number of GPUs. The most common DDL ap-
proach is data-parallel training via stochastic gradient de-
scent (SGD) [29]. Distributed SGD is a parallel, iterative
workload with two steps: (1) every worker trains a lo-
cal copy of the model by processing in parallel a differ-
ent subset (mini-batch) of the training data; (2) all work-

*Equal contribution.

Atal Narayan Sahu

Amedeo Sapio'
TIntel

Marco Canini

—#— DeeplLight @~ LSTM—e— NCF—@— BERT—@— VGG19 —— ResNetl52

o

°
®

°
By

///

Scaling factor

o
N

=

°
g
{40

2 4
Workers

Figure 1: Scalability of six DDL workloads (cf. Table [1)
as the number of workers increases. The y-axis shows the
scaling factor defined as in [58]: 15—’} where T is the single
GPU throughput and 7y is the measured throughput for
a cluster with N workers. Linear scalability requires the
scaling factor to be 1 for any N. The experimental setup is

inﬁﬂ.

ers combine the results of their computation (local gradi-
ent) to produce an average gradient that is applied to the
model, prior to the next iteration

When distributing SGD on many workers, we can
either keep the per-iteration total mini-batch constant
(strong scaling) or linearly increase the mini-batch size
with the number of workers (weak scaling). In the
former case, the computation time decreases while the
per-worker gradient size stays constant; therefore train-
ing easily becomes communication-bound. In the latter
case, the computation to communication ratio (ideally)
remains constant. However, in reality, communication
time increases with the number of workers [31}, 142} 54]].
Moreover, a large mini-batch size can degrade training
quality [27]. To enable better scaling, we aim to decrease
communication overheads by optimizing collective com-
munication. Figure [I] shows that these overheads are
substantial in many DNN workloads, especially for large
models where there exists a significant gap between the

! Other DDL approaches are model-parallel, pipeline-parallel, and
asynchronous data-parallel. These are not as common and out of scope.

measured performance and ideal linear scaling.

Moreover, the size of new DNN models is increasing
at a faster pace than hardware compute capacity [22].
Therefore efficient communication is becoming even
more crucial. For instance, in a short span of 2.5 years,
model size has grown by over 1,000x from ~100M
weights in 2018 for ELMo [43], GPT, BERT to ~100B
for OpenAl GPT-3 [6] (May 2020). In contrast, the
current best-in-class NVIDIA A100 GPU (May 2020)
is advertised [40] as up to 10x and 20x faster for
floating-point and mixed-precision calculations, respec-
tively, than its V100 predecessor, released in Dec. 2017.

Indeed, the fact that communication is the main per-
formance bottleneck in DDL is well-known [28]], and
many works [10, 31} 33} 48 49, |55] proposed various
optimizations to achieve high-bandwidth collective com-
munication specialized for DDL. Besides, a recent body
of work, primarily within the ML community, developed
gradient compression methods [1}12,36L153,56] to reduce
communication time by decreasing the amount of com-
munication, albeit at the cost of reduced training quality
due to the lossy nature of compression.

However, these works have failed to observe that,
along with the fast-paced increase in model size, gradient
sparsity (i.e., the proportion of zero elements in the gra-
dient vector) follows a similar trend. Table [I] shows that
gradient sparsity exceeds 94% for the two largest DNN
workloads in our study. In fact, sparse gradient vectors
(i.e., with sparsity above 50%) are typical for DNNs with
a large proportion of embedding Weights This charac-
teristic spans a broad range of DL tasks.

Most existing collective libraries — including DDL-
specialized ones like NCCL [39] and Gloo [18] — have
no native support for sparse data. These libraries assume
dense input data and make inefficient use of precious
network bandwidth to transmit large volumes of zeros.
This is also a limitation for gradient compression meth-
ods because their implementations generally first gather
the sparse data into a dense-like format (which has over-
heads) before invoking a collective routine [S7] (§E]).

Our key innovation is the design of efficient collective
operations for sparse data. We present OmniReduce, a
streaming aggregation system designed to maximize the
efficient use of bandwidth, and serve as a drop-in re-
placement for the traditional collective libraries. Om-
niReduce exploits the sparsity of input data to reduce
the amount of communication. As shown in the last
column of Table [I} OmniReduce moves up to two or-
ders of magnitude less data by leveraging an aggrega-
tor component that determines the non-zero data at each

2Embedding layers are used to process high-dimensional and typi-
cally sparse data. Typically, updates to embedding weights are sparse
as only a few embedding vectors from a huge dictionary are used in
one batch, and only these vectors have non-zero gradients in the batch.

worker in a streaming look-ahead fashion. OmniRe-
duce splits input data into blocks where a block is ei-
ther a split of contiguous values within an input vector
in a dense format or a list of key-value pairs represent-
ing non-zero values. OmniReduce achieves high perfor-
mance through fine-grained parallelization across blocks
and pipelining to saturate network bandwidth. OmniRe-
duce leverages fine-grained control of the network to de-
sign a self-clocked, bandwidth-optimal protocol and an
application-aware failure recovery mechanism to recover
from packet losses. The block-oriented approach, fine-
grained parallelism and built-in flow control afford us the
opportunity to implement the aggregator in-network us-
ing modern programmable switching ASICs.
OmniReduce achieves the following goals:
e High performance and scalability. Algorithmi-
cally, computational and space complexity do not de-
pend on the number of nodes, while aggregation latency
is masked with pipelining. This allows OmniReduce to
scale better than previous approaches fundamentally.
e Data-format universality. The acceleration is propor-
tional to the sparsity of input data. At the same time, Om-
niReduce does not require data to be sparse to provide
benefits. In the limit, when data is dense, OmniReduce
is comparable to bandwidth-optimal dense AllReduce.
e Flexibility. OmniReduce’s streaming aggregation al-
gorithms admit a variety of instantiations. Sparse in-
put data can be in a block-based dense or sparse (key-
value) format without requiring a new API. The aggre-
gator component can run on dedicated server resources
(cheaper than worker nodes equipped with GPUs), can
run co-located on worker nodes, or with the aid of net-
work switches, as an in-network aggregation component
similarly to Mellanox SHARP [49] and SwitchML [48]].
To the best of our knowledge, OmniReduce is the first
system that realizes all of the above goals at once. Spar-
cML [45] is a collective library for sparse data; however,
it requires very high sparsity to achieve performance ben-
efits over dense AllReduce (their results, which we con-
firm (§6) show benefits when sparsity > 94%). Paral-
lax [30] is a parameter-server architecture specialized for
sparse data but requires runtime profiling. Unlike Om-
niReduce, both of these approaches require input data in
the sparse format. We believe that OmniReduce is a gen-
eral approach and could benefit other applications like
data-parallel analytics and sparse matrix multiplication.
‘We make the following contributions:
e We present the design (§3) and implementation (§3)) of
OmniReduce, an efficient streaming aggregation system
for sparse-native collective communication. Via perfor-
mance modeling, we demonstrate the theoretical advan-
tages of OmniReduce over standard approaches.
e We introduce block gradient sparsification (§4)), a gra-
dient compression technique that works by sampling gra-

Model Task Dataset Batch size | Dense weights | Embedding weights | Gradient sparsity | OmniReduce comm.
DeepLight [13] | Click-through Rate Prediction | Criteo 1TB [11] oM 1.8 MB 2.26 GB | 99.73% (50 epochs) | 16 MB (0.7%)
LSTM [25] Language Modeling GBW [8] 128 74 MB 1.52GB | 94.50% (50 epochs) | 90 MB (5.5%)
BERT [14] Question Answering SQuAD [44] 4 1GB 284 MB 9.31% (1 epoch *) | 1.13 GB (88%)

NCF [21 Recommendation ML-20mx4x16 [19 2%0 0.4 MB 679 MB 84.6% (30 epochs) | 280 MB (41%)
VGG19 [50 Image Classification ImageNet-1K [46 64 548 MB - 32.0% (1 epoch *) | 547 MB (100%)
ResNet152 [20] | Image Classification ImageNet-1K [46 64 230 MB - 21.6% (1 epoch *) | 230 MB (100%)

Table 1: Characteristics of benchmark DNN workloads. The table separates model size as dense and embedding weights
(which are the weights in embedding layers of a DNN). The gradient has the same size as the model and the table lists its
sparsity averaged over a longitudinal analysis of several epochs (* refers to a pre-trained model). The last column details the
average per-worker communication by using OmniReduce shown as volume (and % of the otherwise dense communication).

dients’ blocks of contiguous elements. We prove con-
vergence and demonstrate empirically that our block-
based sparsification techniques can sparsify data to ob-
tain training speedup with negligible degradation in
model performance.

e We quantify the performance benefits of OmniReduce
using six popular DNN workloads (§6). In end-to-end
settings, OmniReduce speeds up training throughput by
up to 8.2x at 10 Gbps, 3.5x at 25 Gbps compared
to standard ring AllReduce. We quantify the expected
speedup at 100 Gbps as being up to 2.6x. We also use
benchmarks to compare to state-of-the-art solutions and
show that OmniReduce outperforms them by 1.3-5.0x.

2 Background

Collective communication routines. The Message
Passing Interface (MPI) [16] standard defines a set of
communication protocols for point-to-point and collec-
tive routines. In DDL, three collectives are typically
used:
® Broadcast distributes data from one process to all other
processes. This is often used to sync model state among
workers, e.g., when reading from a model checkpoint.
® AllReduce combines data collected from all processes
into a global result by a chosen operator. AllReduce is
the most frequently used collective operation in DDL
workloads to aggregate gradients by summation.
o AllGather collects data from all processes and stores
the collected data on all processes. AllGather is useful
when the reduction operation is not an associative, point-
wise operation. Some gradient compressors use it [57]].
We refer to the datatype of collectives’ input and out-
put data as a tensor (i.e., a multi-dimensional matrix).
Let n be the input size, and ¢, be the number of bytes
needed to represent a non-zero input value. m is the num-
ber of non-zero values.
Tensor data format. The elements of a dense tensor
are consecutively stored like an array in memory. It is
often beneficial or sometimes necessary (due to insuffi-
cient memory capacity) to use specialized data structures
to store sparse tensors. For example, coordinate lists
(COO) store a list of non-zero values and a list of the

corresponding indices. Dictionary of keys (DOK) stores
a dictionary that maps indices to non-zero elements. Al-
though some ML toolkits support sparse tensors (typi-
cally in COO format), state-of-the-art collective libraries
like NCCL and Gloo operate only with dense tensors
(even though the underlying data may be sparse).

2.1 Related work

A strawman solution to collective communication with
sparse tensors is AllGather-based sparse AllReduce
(AGsparse), as implemented by PyTorch. AGsparse in-
vokes AllGather twice to collect the values and indices
of a sparse tensor and then makes a local reduction at
every process. Because AllGather needs to allocate an
intermediate buffer proportional to the number of pro-
cesses, AGsparse increments the memory footprint de-
spite sparse data. Further, AGsparse has poor scalability
(analyzed in §3.4) as it implicitly assumes no overlap of
non-zero indices and is viable iff m < p = Ci”j”CV, where
¢; is the number of bytes needed to store an index (i.e.,
sparsity above 50% assuming ¢, = ¢;).

SparCML [45] is a set of collectives for arbitrary
sparse input data designed for DDL. SparCML uses a
latency-bandwidth cost model to characterize different
cases and trade-offs between small vs. large messages
and whether the output remains sparse or becomes dense
(adapting to m > p), delineating two scenarios: static and
dynamic sparse AllReduce (SSAR/DSAR). Data repre-
sentation in SSAR is always in the sparse format. When
the amount of data is small, latency dominates the band-
width term, thus a latency-optimal recursive doubling al-
gorithm is used. With large data, SSAR_Split_allgather
is a two-phase algorithm that optimizes AGsparse by (1)
splitting the input into N partitions, one per process, each
processed via an AGsparse-like approach to gather data
at each designated process and (2) a gathering phase that
uses a concatenating AllGather to collect reduced sparse
data at all processes. In DASR, DSAR_Split_allgather
starts with sparse representation and switches to dense
representation during the reduction operation once the
condition m > p is detected.

In AGsparse and SparCML, communication and re-

duction occur separately and serially. Instead, OmniRe-
duce performs communication and reduction in parallel
by streaming data via the aggregator. This enables Om-
niReduce to make full use of network bandwidth, while
bandwidth is wasted when conducting local reductions
in AGsparse and SparCML. OmniReduce supports dense
inputs without the format conversion overheads paid by
AGsparse and SparCML (§6.1). OmniReduce can reduce
communication volume by adopting a block-based for-
mat because it does not need to transfer indices.
Parallax [30] devises a hybrid DDL system that has a
runtime sparsity monitor and uses a cost model to parti-
tion the model weights between a parameter server (PS)
architecture for sparse data and traditional AllReduce for
dense data. OmniReduce neither requires prior knowl-
edge nor introduces runtime profiling.
Gradient compression. Orthogonal to efficient sparse
collective communication, a recent body of work pro-
poses to reduce the amount of communication via gradi-
ent compression. As there is a vast literature on the topic,
we refer to a recent survey [57] for a more comprehen-
sive discussion. And while techniques abound [[1} 12} 36}
53, 156l, we distinguish two main approaches: sparsifi-
cation — which sends a subset of elements — and quan-
tization — which reduces the element bit-width. Gradi-
ent compression is typically lossy and, as a result, can
impact the resulted model quality; however, the drop in
accuracy is usually small, and one can regulate the com-
pression level to navigate the trade-off. These techniques
and OmniReduce are complementary: on the one hand,
gradient compression helps to sparsify data in a princi-
pled manner; on the other hand, OmniReduce accelerates
collective communication of sparse data (allowing for a
less aggressive compression level for a given communi-
cation budget). We defer other related work to §§]

3 OmniReduce Design

To minimize AllReduce latency, the core idea of Om-
niReduce is to partition an input tensor G into blocks of
tensor elements and transmit only non-zero blocks (i.e.,
blocks with at least one non-zero value). OmniReduce
consists of worker and aggregator components. The
aggregator coordinates workers, instructing them which
block to send next. For scalability, the aggregator ex-
ecutes over one or more nodes; in the latter case, each
node owns a disjoint shard of blocks. Each aggregator
node has a pool of slots, and each slot aggregates a block-
sized set of tensor elements. Workers are responsible for
detecting and sending non-zero blocks.

Depending on the application, the block format is ei-
ther dense (i.e., a contiguous subset of G) or sparse (i.e.,
a list of key-value pairs). We first consider the dense for-
mat and then generalize it to the sparse format.

OmniReduce fundamentally improves AllReduce per-

formance thanks to the following two design principles:
¢ Fine-grained parallelism and data pipelining. With
each block being independent of any other block, aggre-
gation can be easily parallelized. This enables tightly
coupled workers to stream data as a form of a latency-
masking pipeline to saturate the aggregator’s processing
rate, which also serves as a flow control function, yield-
ing a self-clocked protocol similar to other streaming ag-
gregation approaches [48] 49].
e Coordinated aggregation. Coordination is key to
sending only the non-zero data. The aggregator glob-
ally determines the positions of non-zero values among
workers in a look-ahead fashion based on the next posi-
tion metadata efficiently available at the workers (which
communicate it to the aggregator). This component dif-
ferentiates OmniReduce from any related work.

3.1 Basic solution

We first introduce the more straightforward scenario of
a lossless network with guaranteed packet delivery. We
relax this assumption in the next section. Figure [2]illus-
trates this scenario with an example.

Algorithm [I] illustrates the basic OmniReduce algo-
rithm for dense tensors. A dense tensor consists of a list
of values partitioned into blocks. Every block has a size
of bs. For ease of description, and without loss of gen-
erality, we assume that the tensor size is a multiple of
bs, and the pool size is 1 (i.e., the aggregator has a sin-
gle slot). We assume the reduction operation is sum (+).
Other commutative reduction operations are analogous.
What the Worker does: Every worker initially sets next
as the offset of the next non-zero block after the first
block and records it locally. The worker then sends a
packet p containing the first block and next (Figure [2a)).

Then, each worker enters a loop where it awaits the ag-
gregator’s response. Upon receiving a packet, the worker
obtains: (1) the aggregated block data (p.data) along
with its respective number (p.block), and (2) the next
block requested (p.next) by the aggregator (Figure [2b).

The worker stores the aggregated block into the local
tensor G; then, the worker checks whether its next non-
zero block corresponds to the aggregator’s request. If
s0, the worker updates next with the subsequent non-zero
block and sends the requested block to the aggregator
(Wi in Figure[2c). Otherwise the worker awaits a further
packet (W in Figure [2c). The loop repeats (Figure
and ends once the aggregator signals that reduction is
complete by requesting oo as the next block (Figure [2f).
What the Aggregator does: The aggregator does not
only aggregate blocks but also keeps track of each
worker’s next non-zero block. This state is updated
whenever a worker sends a packet and enables the ag-

Aggregator

Aggregator
Wait for block 2

Aggregator

global next block: 2

-] global next block: 2

| “’
'
I n
i

global next block: 3

2 3 3 | 3
2 oo 3 fo-oooooo, 3 [
[I I I R 7 N 7 S 7 R T I 7 K B I
7 7 T 7 D T

Aggregator

Wait for block 3

(b) Agg. returns block 0 and asks block 2.

Aggregator

(¢) Only W; sends non-zero block 2.

Aggregator

Wait for new tensor

global next block: 3 |-

global next block: e

global next block: -e° |--I-

= |l =

wfofafafs] [wfofs]2]s] wloJ:]2]s
4 4 4

woJ:]27]s wlofsT2Ts] [wfoJ:T205]
2 4

(d) Agg. returns block 2 and asks block 3.

(e) W; and W, send non-zero block 3.

(f) Agg. returns and signals the end ().

Figure 2: After every worker sends its first block, the aggregator maintains a view of the global next block necessary for
aggregation. Workers only transmit non-zero blocks when the block number matches the requested global next block and
inform the aggregator of their next non-zero block. Cumulatively, this ensures that aggregation completes once all non-zero

block are transmitted; zero blocks are not transmitted. Legends:

gregator to know the global next non-zero block number.
This information is piggybacked into a packet that the
aggregator multicasts to the worker with the aggregated
data once it determines that a slot is complete. To de-
termine so, the aggregator compares the packet’s block
number (p.block) with the minimum of next non-zero
blocks across all workers min(next). Note that next is
already updated to reflect p.next. If p.block is less than
min(next), then the current packet is the last one for this
slot. The aggregator then crafts a response packet for
p-block with the aggregated data in slot, resets the state
(next and slot), and multicasts that packet to the workers.

Fine-grained parallelism. It is easy to observe that the
above aggregation logic, while tightly coupling workers
at a particular slot, can be parallelized across slots. In
the limit, each slot is an independent unit of aggregation.
In practice, available network bandwidth limits the num-
ber of slots that can be addressed in parallel before the
aggregator responds.

OmniReduce exploits this kind of fine-grained paral-
lelism to achieve a form of pipelining that improves per-
formance. The aggregator maintains a pool of slots ad-
dressable by an index (carried in each packet). Workers
apply the logic of Algorithm [I|for S independent aggre-
gation streams (or threads), each of which addresses a
separate slot while proceeding at the same rate. As pack-
ets are serialized over the network, this architecture can
be viewed as pipeline-based processing of one slot per
time unit. The available network bandwidth dictates the
pipeline depth that is necessary to avoid processing stalls.
We present this complete architecture with the following
algorithm that also addresses packet loss recovery.

How sparsity affects performance: Since workers only
send non-zero blocks, a crucial performance factor is the

and | are non-zero blocks; = are aggregated blocks; [J are zero blocks.

tensor’s block sparsity, which is the proportion of all-
zero blocks in the tensor. In turn, block sparsity is de-
termined by not only the tensor itself but also the block
size. In general, smaller block size increases block spar-
sity, but it also decreases bandwidth utilization efficiency
due to packets carrying a smaller payload.

We analyze the effects of block size on the perfor-
mance of OmniReduce in the evaluation section. Therein
we empirically find (§6.3) that a block size of 256 ele-
ments is the best choice in our setting.

Another factor influencing the performance of Om-
niReduce in practice might be the cost of finding the next
non-zero block. But we find that checking all values in
one block has a negligible overhead when this operation
is done in parallel on the GPU, as we implement it (§5).

3.2 Packet loss recovery

We now extend our design to support packet retransmis-
sion to account for lossy network environments. First,
we revisit Algorithm [T] and see how it would fail in the
presence of packet loss. A packet loss in the upward path
from worker to aggregator prevents the aggregator from
completing block aggregation. Whereas, the loss of one
of the result packets sent to the workers on the down-
ward path (aggregator to worker) not only keeps a worker
from obtaining the aggregated block, but may also stop
the worker from sending the next block, and halt the en-
tire aggregation.

To tolerate packet loss, we include acknowledgment
packets and use a timer mechanism to detect losses. Fur-
ther, the aggregator keeps two versions of its per-slot
state. The revised algorithm is listed in Algorithm
Note that this description includes the pool of § slots,

Algorithm 1: OmniReduce block aggregation

1 At Worker:
2 | p.next,next < index of first non-zero block

past block 0
3 p-block + 0
4 | p.wid < worker ID
5 | p.data+ G[0: bs]
6 | send ptoagg
7 | repeat upon receive p(data, block, next, wid)
8 G[p.block : p.block + bs] + p.data
9 if p.next = next then
10 p.data < Glnext : next + bs|
11 p-block < next
12 p.next,next <— next non-zero block
index or else o
13 p-wid < worker ID
14 send p to agg

15 until p.next = oo

16 At Aggregator:

17 | slot[bs] := {0}

18 | next[N]:= {—eo}

19 forever upon receive p(data, block, next, wid)

20 slot < slot + p.data // reduction operation
21 next|[p.wid] < p.next

22 if p.block < min(next) then

23 p.data < slot

24 p.next < min(next)

25 slot[bs] := {0}

26 if min(next) = oo then next[N] := {—oo}
27 send p to all workers

one per stream used by independent worker threads.

Every time the worker receives a packet, it responds
to the aggregator for the requested block. But when
the aggregator requests a block that the worker would
not send (a zero block), the worker only sends an ack.
packet with no payload. The worker associates a timer to
every transmitted packet; if the timer fires, the worker
assumes packet loss and retransmits it. The aggrega-
tor has a count of aggregated packets; a result packet is
sent only once the count reaches the number of workers
N. To avoid (incorrectly) aggregating duplicate trans-
missions, the aggregator maintains a boolean vector seen
that tracks which worker’s packet has been processed.

Put together, the approach above ensures that single-
sided timers are sufficient to recover from packet loss,
regardless of whether a loss occurs on the upward or
downward path. However, the aggregator must be able
to retransmit a dropped result packet to worker i even af-
ter a different worker j has already sent its next non-zero
block addressing the same slot. This requires two ver-

sions of each slot that are used in alternate phases. When
the worker receives the resulting packet from the aggre-
gator, it changes the slot version by flipping p.ver before
sending the next block to the aggregator. Each version of
a slot gets reused only when it is certain that all work-
ers have received the aggregated result in that s/of. This
happens when all workers have sent their blocks to the
other version of that slot, signaling that all workers have
moved forward.

3.3 Extension to sparse block format

OmniReduce’s block aggregation approach generalizes
to sparse tensors (e.g., in COO format). We briefly dis-
cuss this extension, which is listed in Algorithm [3| (for
ease of presentation, we do not show stream parallelism
and packet loss recovery). In this case, the input tensor is
the pair K,V where K is the list of keys (or indices) and V
is the list of the corresponding values. The worker sends
a packet with a block of bs key-value pairs along with
the nextkey to indicate the key of the next non-zero value.
The aggregator keeps track of nextkey for every worker,
attaching the minimum next key it needs to receive from
any worker when sending back a result packet. Only
when a worker receives a p.nextkey matching its next
non-zero value will it send another block to the aggre-
gator. The aggregator internally uses a hashtable or a
similar keyed-memory abstraction to carry out aggrega-
tion based on key-value pairs.

While we present the above approach for complete-
ness, we do not investigate its practical realization and
leave that to future work. This is because our real-
world applications only use dense tensors, to begin with,
and format conversion entails non-negligible overheads
(§6.1). That being said, as this approach only transmits
non-zero values, it could be more advantageous than the
dense block format when the block has more than Lbli—cc‘v
zero values within it. We observe that in our settings, the
dense block format maintains high sparsity for a range of
practical block sizes (§6.3).

3.4 Performance analysis

We analyze the theoretical benefits of OmniReduce fol-
lowing the modeling approach of Patarasuk et al. [41].
We use a performance model to compare OmniReduce
versus ring AllReduce, which is bandwidth optimal [41]]
and versus AGsparse AllReduce. As the primary interest
is the dominating communication time, our analysis ig-
nores the unitary local reduction time in the model below
since pipelining could mask much of this latency term.

Ring AllReduce is a widely-adopted AllReduce algo-
rithm and is the default algorithm for Gloo and NCCL.
Consider N workers and that each worker has full-duplex

Algorithm 2: Block aggregation w/ loss recovery

1 At Worker:

® N AN R WN

10
11
12
13
14
15
16
17
18
19
20
21

22

23
24

p.next,next < first non-zero block past block 0
p-block,p.ver <0

p.stream <— stream/thread ID s

p-wid < worker 1D

p.data <+ G0 : bs]

send p to agg; start_timer(p)

wid)
cancel_timer(p)
Gi[p.block : p.block + bs] + p.data
p.ver < (p.ver+1)%2
if p.next = next then
p.block < next
p.data < Gs[next : next + bs]
p.next,next <—next non-zero block or else oo
p-wid < worker ID
send p to agg; start_timer(p)
else
p-next < next
p.data<+ {0} //empty packet payload
send p to agg; start_timer(p)
until p.next = oo

upon timeout for p // timeout handler
L send p to agg; start_timer(p)

repeat upon receive p(data, ver, block, next, stream,

25 At Aggregator:

26

27
28
29
30

31
32
33
34
35
36
37
38
39
40
4
42
43
4
45
46
47
48
49

for sin0...S—1do
versioned
slots[2] :== {0}
seeng[2,N],count,[2] := {0}
min_nexty = oo

// pool initialization, 2-way

forever upon receive p(data, ver, block, next,
stream, wid)
S < p.stream // reference p’s slot
if seeng[p.ver, p.wid] = 0 then
seeng|p.ver, p.wid) + 1
seeng|(p.ver +1)%2, p.wid] < 0
countg[p.ver| < (counts[p.ver] + 1) %N
if county[p.ver] = 1 then
slots[p.ver] + p.data
min_nexty <— p.next
else
slots[p.ver] < slot[p.ver] + p.data
min_nexts < min(min_nexts, p.next)
if count,[p.ver] = 0 then
p.data + slotg[p.ver]
p.-next <— min_next

send p to all workers
else
if countg[p.ver] = 0 then
p.data + slotg[p.ver]

send p to p.wid

Algorithm 3: Extension to sparse format

1 At Worker:

0 N NN AR W N

10
11

12

13
14
15
16
17
18

19
20
21
22

23
24
25
26
27

28

29
30
31
32

nextkey_idx := bs
p.nextkey := K[nextkey_idx]
p-keys < K[0 : bs]
p.values < V|0 : bs)
p-wid < Worker ID
send p to agg
repeat upon receive p(keys, values, nextkey,
wid)
update K,V according to p.keys, p.values
if p.nextkey > K[nextkey_idx] then
p.keys < K|nextkey_idx :
nextkey_idx + bs]
p.values < V[nextkey_idx :
nextkey_idx + bs)
p.nextkey < K|nextkey_idx + bs]
nextkey_idx < nextkey_idx + bs
p-wid < Worker ID
send p to agg
end
until update K,V is complete

At Aggregator:

nextkey[N| := {—oo}
sent :=0
forever upon receive p(keys, values, nextkey,
wid)
nextkey|p.wid] < p.nextkey
send_up_to < min(nextkey)
update K,V accordingly
if send_up_to > sent then
p.keys < keys from sent to send_up_to
in K
p.values < values from sent to
send_up toin'V
p.nextkey < send_up_to
sent <— send_up_to
send p to all workers
end

network bandwidth B; the time to perform a ring-based
AllReduce operation of S elements is:

Tying = 2(N — D)(a +)

Where « is the one-way network latency between
workers (assumed to be uniform).

AGsparse AllReduce is a commonly used method to re-
duce sparse format data (key and value pairs). It consists
of two steps: (1) AllGather keys and values, and (2) lo-
cal reduction. Let D € [0, 1] be the density of elements at
each worker; the number of input elements to AllGather
is 2DS (i.e., DS keys and DS values). An AllGather oper-
ation only performs the first phase of the AllReduce op-
eration, halving its time for input with 2DSN elements.
Thus, the AGsparse AllReduce time is:

TAGsparse = (N_ 1)((X—|— 2%;5‘)

OmniReduce achieves bandwidth-optimality when the
aggregator bandwidth matches the combined worker
bandwidth NB and only non-zero elements are transmit-
ted. This best-case scenario is analyzed here, which im-
plies that block density is the same as the element den-
sity D. Note that the number of aggregator nodes used
is not relevant because fine-grained parallelism enables
ideal linear scaling through sharding. The aggregator re-
ceives a total of DS elements (% from each worker).

As data transmission and aggregation at the aggrega-
tor is pipelined, the latency of intermediate packets is
masked. Thus, the OmniReduce time is:

_ DS
TomniReduce = O + B

Speedup. To ease comparison, we distinguish two cases:
(1) very sparse data and (2) sparse-to-dense data.

Very sparse data: in this case, D is very small and the
« latency term dominates the bandwidth term. OmniRe-
duce is expected to be better than both ring AllReduce
and AGsparse AllReduce because OmniReduce’s perfor-
mance does not depend on the number of workers N.
Sparse-to-dense data: as the data volume is larger in this
case, we can ignore the latency a. We calculate the the-
oretical speedup factor of OmniReduce relative to other
approaches as follows:

‘ SUvs. ring ‘ SUVSA AGsparse ‘
2(N-1)

e |ev-n |

The performance benefit of OmniReduce is two-fold.
First, OmniReduce is much more scalable, and both
speedup factors grow with the number of workers be-
cause OmniReduce’s time does not depend on the num-
ber of workers. This speedup is fundamental and exists
even with a dense input (D = 1). Second, in contrast to
ring AllReduce, OmniReduce only sends non-zero ele-
ments, which reduces the time proportion to %.

Tother
TomniReduce

Further, we observe that OmniReduce remains advan-
tageous even in a co-location setting where the aggrega-
tor service is sharded and co-located across N workers
(each of which thus has g bandwidth). In this case, the
benefit over ring AllReduce overall diminishes by a fac-
tor of 2 and SUys. ring = 1 when D = 1.

4 Block-based gradient sparsification

Given the performance benefits of OmniReduce for
sparse gradients by sending only non-zero blocks, one
can think of using OmniReduce with block-based gra-
dient sparsification techniques when gradients are not
sparse. While many element-wise sparsification tech-
niques exist in the literature, e.g., Random-k [52f], Top-k
(3L 136]], and threshold [15} I53]], no block-based sparsifi-
cation technique exists.

Hence, as a natural extension to the existing element-
wise sparsification techniques, we devise and experiment
with the following block-based sparsification schemes:
® Block Random-k: Randomly sample k blocks.
® Block Top-k: Select Top-k blocks according to mean
absolute gradient value.

e Block Top-k Ratio: Select Top-k blocks according to
mean absolute update ratio, where update ratio for an el-
ement is the ratio of gradient to parameter value.

® Block threshold: Select blocks with mean absolute gra-
dient value higher than a given threshold.

While a new theoretical analysis for block-based spar-
sification is out of scope, we show that Block Random-k
and Block Top-k are §-compressors [26]], and hence con-
verge according to the Error-Feedback theory [52,159].

Lemma. Let b denote the total number of blocks. Both
Block Random-k and Block Top-k are &-compressors

with § = %, and 6 = J%, respectively.
Proof. The proof is in Appendix [A] O

Using this lemma, Theorem 1 in [59] gives the conver-
gence result for compressed distributed SGD with error-
feedback for any §-compressor. Our results show that
block-based gradient compression converges (§6.2).

5 Implementation

We implement OmniReduce using the Intel DPDK ker-
nel bypass framework. The worker component is writ-
ten in ~ 1,500 lines of codes (LoC), while the aggrega-
tor is ~ 600 LoCs in C++. We integrate OmniReduce
with PyTorch’s DistributedDataParallel (DDP) package
(torch.distributed), which transparently performs dis-
tributed data-parallel training. To make full use of band-
width, we use DPDK flow director to scale packet pro-
cessing to 4 CPU cores on both workers and aggregators.

10Gbps

=150 e
S S _
m 100 1 —
E . —
£ 50 - = NCCL
S — — OmniReduce(s=0%)
2 a4 8 mm OmniReduce(s=60%)
E OmniReduce(s=90%)
100 25Gbps [— e(s=99%)
_ Time at line rate
g - =~ (ring all-reduce)
g S0f —— L — e
g 777777777777 e — —
= = - —
0 2 4 8

Workers

Figure 3: Time to AllReduce as workers and sparsity vary.

The number of packets processed by each worker is set
to 256 (4 cores times 64 packets per core).

To determine non-zero blocks, we use the GPU to cal-
culate a bitmap (one bit per block). This function runs
whenever a part of the gradient is ready for aggregation,
and we observed a minimal overhead (typically less than
1%; at most 3%). Because during back-propagation DDP
partially overlaps communication and computation (i.e.,
communication starts as soon as the earliest partial re-
sults of back-propagation are available), the bitmap cal-
culation overheads are negligible.

Currently, our OmniReduce prototype does not make
use of RDMA. As a result, its performance is limited to
~25 Gbps of line-rate bandwidth due to the limited num-
ber of CPU cores in our setup. This limitation is, how-
ever, not fundamental. To see this, we conducted prelimi-
nary experiments with RDMA, using block-sized RDMA
messages and observed that the point-to-point communi-
cation performance is close to the ideal goodput at 100
Gbps. We supply to this deficit by including experimen-
tal results (§6.2) where we emulate the level of perfor-
mance that, as we observed, RDMA affords us.

6 Evaluation

We evaluate OmniReduce’s performance and compare
it to both dense and sparse state-of-the-art collective li-
braries. We analyze the influence of different factors like
block size, sparsity, and packet loss rates. Our exper-
iments rely on several microbenchmarks as well as six
end-to-end training workloads.

Testbed. Our testbed consists of 16 machines. Eight
of them are equipped with 1 NVIDIA P100 GPU, dual
10-core CPU Intel Xeon E5-2630 v4 at 2.20 GHz, and
128 GB of RAM, acting as workers. The other eight ma-
chines are equipped with dual 8-core Intel Xeon Silver
4108 CPU at 1.80 GHz and have no GPUs; these serve as
aggregators. All machines have a Mellanox ConnectX-5
NIC, and CPU frequency scaling is disabled. The ma-
chines run Ubuntu 18.04 (Linux 4.15.0), CUDA 10.1
(where applicable), PyTorch 1.5.0a0 and NCCL 2.4.8.

Microbenchmark setup. For microbenchmarks, we use
AllReduce time as the performance metric. We collect
measurements at each worker for 200 iterations with 10
warm-ups. Sparse tensors are generated randomly at
each iteration. As the baseline, we use the ring AllRe-
duce algorithm implemented in NCCL and run it with
RDMA for maximum performance.

Training workloads. We use six real-world models for
the end-to-end experiments, including two image classi-
fication models, two NLP models, and two recommen-
dation models. The detailed information of the models,
datasets, and batch sizes we use are shown in Table [T}
We measure training throughput (the number of training
samples processed per unit of time) for 200 iterations.
We observed that throughput stabilizes after the first 100
iterations. Thus, we exclude them and consider through-
put from the later iterations.

6.1 Microbenchmarks

Comparison with dense AllReduce. We first com-
pare OmniReduce with NCCL on the most commonly
used collective operation for DDL: dense AllReduce.
We devise this micro-benchmark atop PyTorch by gen-
erating input tensors on the GPU and invoking Py-
Torch’s all_reduce API from the torch.distributed pack-
age, switching the backend to OmniReduce or NCCL.

We use tensor sizes from 100 MB to 1,000 MB, and
observe that tensor size has a low impact on the through-
put. Therefore, we only report results for 100 MB ten-
sors for these experiments. Moreover, to analyze tensor
sparsity’s influence on performance, we generate tensors
with different sparsity s from 0% to 99%. Sparsity is
the proportion of zero values in input tensors. All ten-
sors are generated randomly, and so the non-zero blocks
randomly overlap among workers.

Figure [3| shows the results as we vary the number of
workers from 2 to 8. In addition to performance, we
plot as a dashed line the theoretically-lowest ring AllRe-
duce time [41] based on the maximum goodput, given
the line-rate bandwidth. The results show that OmniRe-
duce achieves up to 6.4x speedup than NCCL at 99%
sparsity. With 60% sparsity or more, OmniReduce al-
ways outperforms NCCL. When data is dense, OmniRe-
duce with two workers is slower than NCCL. Note that in
this case, the aggregation is not necessary because full-
duplex communication is the ideal strategy. However,
we attribute this to two factors: (1) OmniReduce, unlike
NCCL, does not use RDMA to accelerate point-to-point
communication; (2) OmniReduce adds meta-data (e.g.,
next) within each packet, which is pure overhead when
data is dense. Overall these performance gains confirm
the previous theoretical insights (§3.4) and the observa-
tion that non-zero block overlap influences performance

10

6 @ OmniReduce —#— AGsparse(Gloo)

—- SSAR_Split_allgather(SparCML) -©— Parallax o
—@— DSAR_Split_allgather(SparCML) --- Dense(NCCL)
41 —#— AGsparse(NCCL)

80 90
Sparsity [%]

92 96 98 99

Figure 4: Comparison of OmniReduce and other sparse
AllReduce methods as sparsity varies.

s=0% 5=60%

Speedup

Speedup

Workers

Workers

Figure 5: Scalability of OmniReduce and other sparse
AllReduce methods as workers and sparsity vary. Refer to
Figure E(] for legends.

(sensitivity analysis in §6.3).

As expected, OmniReduce exhibits higher scalability
than NCCL. As the number of workers increases, Om-
niReduce with dense data (s = 0%) maintains a constant
AllReduce time of ~110 ms whereas that of NCCL in-
creases from ~100 ms to ~170 ms. However, when
s > 0%, OmniReduce’s performance is affected by the
number of workers, especially while s < 90%. Our per-
formance model did not capture this behavior and we
discuss this apparent gap: The model assumed a uni-
form block sparsity across workers; however, the input
tensors are generated randomly within each worker in
this experiment. Thus, workers are likely to hold non-
zero blocks distributed at different parts of the tensor. As
long as one or more workers hold a non-zero block at
a certain index, one round-trip time is needed, meaning
that non-zero block overlap condition can influence Om-
niReduce’s performance. In particular, the block sparsity
decreases with a higher worker count. Nevertheless, the
results show that even for dense input tensors, OmniRe-
duce improves performance over NCCL by 1.3x and
1.5x respectively for 4 and 8 workers. Notably, perfor-
mance improvement increases with a higher number of
workers.

Comparison with other sparse AllReduce methods.
We focus on three sparse AllReduce approaches.

1) AGsparse, which PyTorch implemented for sparse for-
mat (key-value pairs) tensors atop Gloo’s AllGather op-
eration. We also implement AGsparse atop NCCL since
Gloo doesn’t use RDMA in our setting.

2) Two SparCML [45] methods — SSAR _Split_allgather

OmniReduce
SSAR_Split_allgather(SparCML)
AGsparse(NCCL)

Parallax

Dense(NCCL)

EEm Dense to Sparse AllReduce

B Sparse to Dense

20 40 60 80 100

Timeline [ms]

120 140 160

Figure 6: AllReduce execution breakdown with s = 99%.

and DSAR _Split_allgather — that dominate performance
for all SparCML methods in our experiments.

3) Parallax [30], which uses parameter server (PS) to ag-
gregate sparse format tensors and AllReduce operations
to aggregate dense format tensors.

We compare the performance of OmniReduce with all
these sparse AllReduce methods using a 100MB tensor,
with the sparsity varying from 0% to 99%. We exclude
the format conversion overheads (for now), i.e., we use
dense format for Omnireduce and the baseline (dense
AllReduce using NCCL) while using sparse format (key-
value pairs) for AGsparse and SparCML. We mimic Par-
allax runtime profiler by an ideal oracle: For each tensor,
we separately measure the sparse format performance
with PS and the dense format performance with AllRe-
duce, then cherry-pick the better one as Parallax’s per-
formance.

To fairly compare with SparCML, we use the bench-
mark provided in the SparCML release [51] and limit
bandwidth to 10 Gbps since SparCML was prototyped
and evaluated with 1 GbE (at 25 Gbps it doesn’t give
sensible speedup even at high sparsity).

Figure [] presents the performance of OmniReduce,
AGsparse, SparCML and Parallax normalized to the
baseline in an 8-worker setting. OmniReduce outper-
forms all competitors at any sparsity. Compared to the
baseline, OmniReduce achieves at least 1.5x and up to
6.3 x speedups at s = 99%, whereas SparCML, AGsparse
(NCCL), and Parallax are only beneficial when the tensor
sparsity is higher than 90%, 98%, and 99%, respectively.

Figure [5 further shows the speedup for four sparsit
levels as we vary the number of workers from 2 to 8
Following our theoretical insights (§3.4), we expect Om-
niReduce to have the best scalability and AGsparse to
have the worst scalability. OmniReduce is only affected
by the number of workers N to the extent that N influ-
ences global sparsity, whereas AGsparse scales poorly
with the number of workers (the speedup actually de-
creases). For dense tensors (s = 0%), the speedup of
OmniReduce increases with more workers. When the
sparsity is higher, the speedup of OmniReduce tends to
diminish as workers increase. This is because the non-
zero blocks in every worker do not completely overlap,
which overall results in lower global sparsity. We study
this effect in §6.3]

3Parallax is the same as NCCL; PS is only effective at 99% sparsity.

11

,_.
o
o
'
109

== NCCL
OmniReduce

© !
®

0.639

0.362 0.382

Scaling factor

e o © 9

.17
0.121 e
0.044

DeeplLight

o N » O

LST™M NCF ResNet152

Figure 7: Scaling factor comparison of OmniReduce and
NCCL. Results for 8 workers; 2 and 4 workers are similar.
See Figure |I|f0r the definition of scaling factor.

10Gbps
a 82 mmm AGsparse(NCCL) with 1% compression
=] 53 OmniReduce
S5 3
@
g 2.2
2.0 19 1.9 o
wo| 13 ﬁm 0610 |
DeeplLight LST™M NCF BERT VGG19 ResNet152
25Gbps
4 3.5
S 2.4
‘% [10 09 . 1.1 0.8 1.1 % 10
; —r
DeeplLight LSTM NCF BERT VGG19 ResNet152
100Gbps
3 2.6
Ey
32
g 1.3 1.3 10 1
L9 X 08 1.0 o- 0
0 0.4 0.5 0.5
0 . [
DeeplLight LSTM NCF BERT VGG19 ResNet152

Figure 8: Training performance speedup for 6 DNNs nor-
malized to dense AllReduce.

Amongst other sparse methods, SparCML has bet-

ter scalability than AGsparse, especially the DSAR-
_Split_allgather method, whose speedup always increases
along with workers. This method’s benefit comes from
automatically switching between sparse representation
and dense representation. According to the results
in [45]], this scalability trend saturates at 16 workers,
and the speedup then decreases for higher worker counts.
Nevertheless, OmniReduce outperforms all SparCML
methods at any sparsity with 2 to 8 workers.
Format conversion cost. The experiments above use
either a dense or sparse format input matching each
method’s assumption. In practice, our DNNs use dense
tensors, and format conversion is required for AGsparse
and SparCML. Figure[6|bestows the total AllReduce time
when including format conversion costs. These over-
heads increase with lower sparsity. In this scenario, Om-
niReduce’s advantages are even more apparent.

6.2 End-to-end training

We demonstrate that OmniReduce increases scalability
and accelerates training for real-world DNNs (Table|T).

Scalability. As discussed, inefficient collective commu-
nication in DDL results in poor scalability. Figure
shows that OmniReduce improves the scalability in ev-
ery DNN benchmark, whereas the scaling factors for

Overlap | DeepLight | LSTM | NCF BERT | VGG19 | ResNetl152 | sBERT
None 59.49% | 18.10% | 27.48% | 0.60% 0.03% 0.01% | 83.15%
2 11.94% | 4.58% | 17.718% | 0.11% 0.02% 0.01% | 12.81%
3 5.61% | 1.98% | 13.10% | 0.04% 0.01% 0.00% | 2.63%
4 340% | 1.11% | 10.29% | 0.02% 0.01% 0.00% | 0.78%
5 236% | 0.71% | 8.52% | 0.01% 0.02% 0.00% | 0.31%
6 1.85% | 0.50% | 7.60% | 0.01% 0.06% 0.01% | 0.14%
7 1.73% | 0.40% | 7.39% | 0.01% 1.05% 0.01% | 0.07%
All 13.62% | 72.61% 7.85% | 99.20% | 98.79% 99.96% 0.11%
Sparse % 86.38% | 27.39% | 92.15% | 0.80% 1.21% 0.04% | 99.89%

Table 2: Breakdown of OmniReduce communication by the
number of workers that overlap blocks (from none to all).
SBERT denotes BERT with block-based compression.

NCCL decreases with more workers. OmniReduce out-
performs NCCL in these workloads and achieves a sub-
stantial scalability improvement, especially with large
DNNSs: 8.2x /5.3 x for DeepLight / LSTM, respectively.

Training speedup. Figure [8|shows the training speedup
of OmniReduce and AGsparse (NCCL) relative to dense
AllReduce in an 8-worker setup. OmniReduce accel-
erates training by up to 8.2x and 3.5x compared to
NCCL at 10 Gbps and 25 Gbps, respectively. For cer-
tain DNNs, e.g., ResNet152, there is no speedup. This is
expected because not every DNN is network-bound [38]].
However, OmniReduce does not hurt performance in this
case. Moreover, the speedup is understandably greater
for DNNs with high gradient sparsity. OmniReduce also
outperforms AGsparse (NCCL) and would provide bene-
fits even at 100 Gbps. We now elaborate on these results.

Since AGsparse methods are beneficial only at high
sparsity (§6.1), we assume element-wise gradient com-
pression at 1% (s = 99%) before invoking AGsparse
AllReduce. To focus on collective communication per-
formance, we do not consider compression overheads
(even though they may be prohibitive in practice [34}
S7]). SparCML and Parallax do not integrate with Py-
Torch, and we could not use it in these experiments. We
avoid comparing them using other ML toolkits because
it is not clear how to get a fair comparison as models and
system components (e.g., Horovod vs DDP) differ sub-
stantially.

Table [2| breaks down the proportion of communica-
tion by the extent of block overlap among workers. The
last row highlights how much the sparse optimizations of
OmniReduce contribute to the training speedup.

As mentioned (§5), armed with positive preliminary
results for block-based aggregation using RDMA, we ob-
tain results at 100 Gbps by emulating the expected aggre-
gation latency of OmniReduce. For fairness, OmniRe-
duce results are normalized by the ideal AllReduce per-
formance (§3.4). OmniReduce provides benefits in the
range 1.2x to 2.6x for half of the workloads and pre-
cisely the DNNs with a large proportion of embedding
weights that yield gradients with more than 84% sparsity
(Table [T). BERT also has large embedding weights, but

12

6 —— Block RandomK
\\ Block TopK
@ 4 —— Block TopK Ratio
S —— Block Threshold
2 —— None
0 1000 2000 3000 4000 5000

Iter
Figure 9: Training loss change with iteration (BERT).

92.0

1.8
,——r—| 1.6
0915 | —_— o
g o hed
40
§ 91.0 W — 2
-_— Flscore 1.2
SpeedUp
e n K Qv 10 K Lo
0! - \Q- a0 =
o ComP" * ok R B\Ocuhresh" Block ok R glock TP

Figure 10: Training accuracy and speedup with OmniRe-
duce after using different compression methods (BERT).

they only account for a minor part (~20%) of the model.
We next show how OmniReduce with block-based gra-
dient compression accelerates the BERT workload.
OmniReduce speedup with block-based compression.
We apply all 4 block-based compression methods intro-
duced in §4]to speedup the BERT workload, which con-
sists of a large model (1.2 GB), but its gradient sparsity
is only ~9%. We use 0.01 as threshold and otherwise ap-
ply k = 1% compression ratio. While evaluating the per-
formance speedup relative to NCCL, we also track the
model accuracy (F1 score). We repeat the experiments
ten times, and plot ranges with quartiles. We fine-tune
BERT for the question answering task on the Stanford
Question Answering Dataset [44].

Figure [T0] shows these results for an 8-worker setup
at 10 Gbps. OmniReduce now accelerates training by
~1.7x. The training loss change shown in Figure [
reveals that block-based compression methods can pre-
serve convergence for BERT. Compression affects accu-
racy slightly (at most a 1-point drop in F1 score), high-
lighting the trade-off between speedup and accuracy de-
pending on the compression level.

6.3 Sensitivity analysis

Block size. Figure [11] (left) shows how block sparsity
influences OmniReduce performance for various choices
of the block size. Larger block size is better at amor-
tizing the per-packet meta-data overheads. As the block
sparsity increases, the performance gap diminishes. Fig-
ure [TT] (right) shows the effective sparsity as a function
of block size for various DNNs. A block size of one
identifies the real gradient sparsity. Models with large
embedding layers can maintain large block sparsity at

—— Deeplight— NCF —— VGG19
LSTM ~ —— BERT— ResNet152

10077 100

—
1%
=)

SN e

99 1 64 128 256 352
Block size

—
o
=)

50 50

Time [ms]
Block sparsity [%]

[
o

Density within block [%]

0O 60 80 90 96 0

Block sparsity [%]

Figure 11: Influence of block size (bs) and sparsity.
Legends right figure: the solid lines represent the block sparsity and the dashed

lines represent the density within block.

5s=0%
51 mmm All overlap === None overlap
Random overlap--~ NCCL

Workers

Workers

Figure 12: Effect of non-zero element overlap among work-
ers on the OmniReduce performance.

packet-size blocks. Notably, the density of non-zero val-
ues within each block does not decrease too drastically in
many cases. Given these characteristics of block sparsity
in relation to performance and density within a block, we
choose block size 256 as the default for our setting.
Overlap of non-zero blocks. Two extremes exist: (1)
all non-zero blocks overlap at every worker, and (2) not
a single non-zero block overlaps among N workers. Re-
spectively dense AllReduce (of just the non-zero blocks)
and AGsparse ideally address these extremes whereas
OmniReduce — while capable of handling the entire spec-
trum — is best suited for when data is sparse and block
overlap somewhat. Figure[I2]shows the speedup of Om-
niReduce relative to NCCL for the extremes as well as
with an amount of overlap generated at random. It is
noteworthy that at both no sparsity (s = 0%) or very high
sparsity (s > 95%), the impact of overlap is small or
none. This is because when the tensor is dense, the total
number of elements is equal to S in all cases, while when
the tensor is very sparse, NDS is close to DS. Recall we
denote with D the average data density and S the tensor
size. However, when s € [60%,90%)], the “all overlap”
performance is significantly better than the other cases.
Loss recovery. Finally, we show how different packet
loss rates (between 0.01% and 1%) affect OmniReduce.
Since no packet loss actually occurs in our experiments,
we emulate packet loss assuming uniform probability at
a given loss rate. Figure[I3]shows the difference between
AllReduce time with no loss minus AllReduce time with
a given loss rate. We compare against Gloo and NCCL
while using TCP as transport protocol in order to see a
reaction to packet drops. In our setup, RDMA assumes

13

OmniReduce (s=0%)
OmniReduce (s=90%)
OmniReduce (s=99%)
Gloo

NCCL-TCP

w

il
S

Difference [ms]

—_

0.1%
Loss rate

o

0.01% 1%

Figure 13: Performance drop of AllReduce time due to
packet loss and recovery. No packet loss is the baseline.

6- W P4 aggregator(34) |
[P4 aggregator(256)
mmm Server aggregator

4+ --- Dense(NCCL)

Speedup

80

90
Sparsity [%]

92

Figure 14: OmniReduce in-network P4 aggregator com-
pared to server-based aggregator for two block sizes.

a lossless fabric. The results show that OmniReduce’s
packet retransmission is effective in every sparsity level
and loss rate. However, with a high loss rate (1%), the
performance of Gloo and NCCL-TCP drops sharply. We
attribute this to TCP congestion control.

7 Extensions

In-network aggregation. Mellanox SHARP [49] and
SwitchML [48] demonstrated the feasibility of stream-
ing collective aggregation protocols where the aggrega-
tion takes place within network switches. OmniReduce
lends itself to these advancements. In particular, because
the time and space complexity of the OmniReduce ag-
gregator is low and the aggregation function is the arith-
metic sum, we set off to demonstrate that the aggregator
can run on suitable network switches. We implement Al-
gorithm 2] in P4 [3] and offload it to a Barefoot Tofino
switch. Figure |E| shows that with this offload, OmniRe-
duce is slightly faster than with the server-based aggrega-
tor. This implementation inherits some of the limitations
described by Sapio et al. [48] in terms of numeric repre-
sentation and slot size. However, SHARPv2 [49] demon-
strated that 100 Gbps line-rate aggregation of floating-
point values is within reach for current technology.

Generalized collective operations. We observe that
our algorithms generalize to three collective operations:
AllReduce, AllGather, and Broadcast. In fact, AllGather
can be viewed as a sparse AllReduce with no block over-
lap. Broadcast is a simpler case in which there is no
block overlap, and the tensor size of N — 1 workers is
0. In these cases, the aggregator realizes both a multicast
function and flow control mechanism to coordinate col-

lective communication. By not sending zero blocks, Om-
niReduce improves the efficiency for these collectives.

Numeric reproducibility and non commutative ops.
Due to the numeric representation of floating-point val-
ues, sum is not generally a commutative operator. Om-
niReduce can support numeric reproducibility and non-
commutative operators by enforcing a serial order of slot
updates. At the cost of a larger pool of slots, one can
modify our algorithms so that every slot is writable by
one worker at a time, in a pre-defined sequence, while
pipelining slot updates for efficiency. For example, in
an N worker group, worker 1 is N — 1 blocks ahead of
worker N, worker 2 is N — 2 blocks ahead, and so on.
The overhead for doing so is that slot aggregation latency
increases with O(log, N); throughput, however, is unaf-
fected. Signaling information to synchronize progress
can be piggybacked by data packets to lower overheads.

8 Other related work

Efficient communication in DDL. Several efforts op-
timize DDL communication ranging from designing
high-performance PS software [37] and transfer sched-
uler [42], to improving collective communication in het-
erogeneous network fabrics [[L0] and within multi-GPU
servers [55], to developing in-network reduction sys-
tems [31} 13311491 48] 147], through customizing network
congestion protocols and architecture [[17]. OmniReduce
leverages data sparsity to optimize communication and is
complementary to these efforts.

Accelerating DDL. Orthogonal to our work, various
works propose efficient distributed optimization algo-
rithms [35) 14} 32, |60]. Besides data parallelism, other
parallelization strategies include model parallelism [12}
9], and hybrids of model and data parallelism [23} 24].
Going one step further, pipeline parallelism [38]] pro-
cesses multiple batches simultaneously, with individual
layers either having model or data parallelism. OmniRe-
duce speeds up the data parallel aspect of these works.

9 Conclusion

We leverage sparsity in distributed deep learning to
accelerate training for six real-world DNNs by up to
8.2x. OmniReduce is a generic collective communica-
tion primitive aiming especially at efficiently aggregat-
ing sparse data. We proposed streaming aggregation al-
gorithms that outperform previous approaches, surpass-
ing them by 2-6.4x. Our approach runs efficiently on a
server, yet its modest computational complexity affords
it to run on programmable switch ASICs.

14

References

[1] A. F. Aji and K. Heafield. Sparse Communica-
tion for Distributed Gradient Descent. In EMNLP-
IJCNLP, 2017.

[2] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and

M. Vojnovic. QSGD: Communication-Efficient

SGD via Gradient Quantization and Encoding. In

NeurlPS, 2017.

[3] D. Alistarh, T. Hoefler, M. Johansson, N. Kon-

stantinov, S. Khirirat, and C. Renggli. The conver-

gence of sparsified gradient methods. In NeurIPS,

2018.

[4] D. Basu, D. Data, C. Karakus, and S. Diggavi.

Qsparse-local-SGD: Distributed SGD with quanti-

zation, sparsification and local computations. In

NeurIPS, 2019.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-

eown, J. Rexford, C. Schlesinger, D. Talayco,

A. Vahdat, G. Varghese, and D. Walker. P4:

Programming Protocol-independent Packet Proces-

sors. SIGCOMM Comput. Commun. Rev., 2014.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah,

J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,

G. Krueger, T. Henighan, R. Child, A. Ramesh,

D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,

E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,

C. Berner, S. McCandlish, A. Radford, I. Sutskever,

and D. Amodei. Language Models are Few-Shot

Learners. arXiv 2005.14165, 2020.

[7] BytePS: A High Performance and Generic Frame-

work for Distributed DNN Training. https://

github.com/bytedance/byteps.

[8] C. Chelba, T. Mikolov, M. Schuster, Q. Ge,

T. Brants, P. Koehn, and T. Robinson. One billion

word benchmark for measuring progress in statisti-

cal language modeling. arXiv 1312.3005, 2013.

T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalya-
naraman. Project adam: Building an efficient and
scalable deep learning training system. In OSDI,
2014.

[10] M. Cho, U. Finkler, D. S. Kung, and H. C. Hunter.
BlueConnect: Decomposing All-Reduce for Deep
Learning on Heterogeneous Network Hierarchy. In
MLSys, 2019.

https://github.com/bytedance/byteps
https://github.com/bytedance/byteps

[11] Criteo’s 1TB Click Prediction
https://docs.microsoft.com/en-
us/archive/blogs/machinelearning/now-
available-on-azure-ml-criteos-1tb-
click-prediction-dataset!.

Dataset.

[12] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
M. Mao, M. Ranzato, A. Senior, P. Tucker, and €. a.
Yang, Ke. Large scale distributed deep networks.
In NeurIPS, 2012.

[13] W. Deng, J. Pan, T. Zhou, D. Kong, A. Flores, and
G. Lin. DeepLight: Deep Lightweight Feature In-
teractions for Accelerating CTR Predictions in Ad
Serving. arXiv 2002.06987, 2020.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv 1810.04805,
2018.

[15] A. Dutta, E. Bergou, A. M. Abdelmoniem, C. Y.
Ho, A. N. Sahu, M. Canini, and P. Kalnis. On the
Discrepancy between the Theoretical Analysis and
Practical Implementations of Compressed Commu-
nication for Distributed Deep Learning. In AAAL,
2020.

[16] M. P. I. Forum. MPI: A Message-Passing Inter-
face Standard. Technical report, University of Ten-
nessee, 1994.

[17] N. Gebara, T. Ukyab, P. Costa, and M. Ghobadi.
PANAMA: Network Architecture for Machine
Learning Workloads in the Cloud. Technical re-
port, 2020. https://people.csail.mit.edu/
ghobadi/papers/panama.pdf.

[18] Gloo. https://github.com/
facebookincubator/gloo.

[19] F. M. Harper and J. A. Konstan. The movielens
datasets: History and context. 7iiS, 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, 2016.

[21] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-
S. Chua. Neural Collaborative Filtering. In WWW,
2017.

[22] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen,
M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, and
z. Chen. GPipe: Efficient Training of Giant Neural
Networks using Pipeline Parallelism. In NeurIPS,
2019.

15

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

Z. Jia, S. Lin, C. R. Qi, and A. Aiken. Exploring
Hidden Dimensions in Parallelizing Convolutional
Neural Networks. In ICML, 2018.

Z. Jia, M. Zaharia, and A. Aiken. Beyond Data and
Model Parallelism for Deep Neural Networks. In
MLSys, 2019.

R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer,
and Y. Wu. Exploring the limits of language mod-
eling. arXiv 1602.02410, 2016.

S. P. Karimireddy, Q. Rebjock, S. Stich, and
M. Jaggi. Error Feedback Fixes SignSGD and other
Gradient Compression Schemes. In ICML, 2019.

N. S. Keskar, D. Mudigere, J. Nocedal,
M. Smelyanskiy, and P. T. P. Tang. On Large-Batch
Training for Deep Learning: Generalization Gap
and Sharp Minima. In /ICLR, 2017.

J. Keuper (Fehr) and F.-J. Pfreundt. Distributed
Training of Deep Neural Networks: Theoretical
and Practical Limits of Parallel Scalability. In
MLHPC, 2016.

J. Kiefer and J. Wolfowitz. Stochastic Estimation
of the Maximum of a Regression Function. The
Annals of Mathematical Statistics, 1952.

S. Kim, G. Yu, H. Park, S. Cho, E. Jeong, H. Ha,
S.Lee, J. S. Jeong, and B. Chun. Parallax: Sparsity-
aware Data Parallel Training of Deep Neural Net-
works. In EuroSys, 2019.

B. Klenk, N. Jiang, G. Thorson, and L. Denni-
son. An In-Network Architecture for Accelerat-
ing Shared-Memory Multiprocessor Collectives. In
ISCA, 2020.

A. Koloskova, S. U. Stich, and M. Jaggi. De-
centralized Stochastic Optimization and Gossip Al-
gorithms with Compressed Communication. In
ICML, 2019.

Y. Li, L.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and
J. Huang. Accelerating Distributed Reinforcement

Learning with In-Switch Computing. In ISCA,
2019.
Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu,

P. Pan, R. Wang, A. Gerhard Schwing, H. Es-
maeilzadeh, and N. Sung Kim. A Network-Centric
Hardware/Algorithm Co-Design to Accelerate Dis-
tributed Training of Deep Neural Networks. In Mi-
cro, 2018.

https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://docs.microsoft.com/en-us/archive/blogs/machinelearning/now-available-on-azure-ml-criteos-1tb-click-prediction-dataset
https://people.csail.mit.edu/ghobadi/papers/panama.pdf
https://people.csail.mit.edu/ghobadi/papers/panama.pdf
https://github.com/facebookincubator/gloo
https://github.com/facebookincubator/gloo

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t
Use Large Mini-batches, Use Local SGD. In ICLR,
2019.

Y. Lin, S. Han, H. Mao, Y. Wang, and W. Dally.
Deep Gradient Compression: Reducing the Com-
munication Bandwidth for Distributed Training. In
ICLR, 2018.

L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and
A. Krishnamurthy. PHub: Rack-Scale Parameter
Server for Distributed Deep Neural Network Train-
ing. In SoCC, 2018.

D. Narayanan, A. Harlap, A. Phanishayee, V. Se-
shadri, N. R. Devanur, G. R. Ganger, P. B. Gibbons,
and M. Zaharia. PipeDream: Generalized Pipeline
Parallelism for DNN Training. In SOSP, 2019.

NVIDIA Collective Communication Library
(NCCL). https://developer.nvidia.com/
nccll

NVIDIA Ampere Architecture In-Depth.
https://devblogs.nvidia.com/nvidia-
ampere-architecture-in-depth/|

P. Patarasuk and X. Yuan. Bandwidth optimal all-
reduce algorithms for clusters of workstations. J
Parallel Distrib Comput, 2009.

Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan,
C. Wu, and C. Guo. A Generic Communication
Scheduler for Distributed DNN Training Accelera-
tion. In SOSP, 2019.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer. Deep contex-
tualized word representations. arXiv 1802.05365,
2018.

P. Rajpurkar, R. Jia, and P. Liang. Know what you
don’t know: Unanswerable questions for SQuAD.
arXiv 1806.03822, 2018.

C. Renggli, S. Ashkboos, M. Aghagolzadeh,
D. Alistarh, and T. Hoefler. SparCML: High-
Performance Sparse Communication for Machine
Learning. In SC, 2019.

O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale
visual recognition challenge. Int. J. Comput. Vis.,
2015.

A. Sapio, 1. Abdelaziz, A. Aldilaijan, M. Canini,
and P. Kalnis. In-Network Computation is a Dumb
Idea Whose Time Has Come. In HotNets, 2017.

16

(48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis,
C. Kim, A. Krishnamurthy, M. Moshref, D. Ports,
and P. Richtdrik. Scaling Distributed Machine
Learning with In-network Aggregation. arXiv
1903.06701, 2019.

Mellanox Scalable Hierarchical Aggregation and
Reduction Protocol (SHARP). https://www.
mellanox.com/products/sharpl

K. Simonyan and A. Zisserman. Very Deep Convo-
lutional Networks for Large-Scale Image Recogni-
tion. In ICLR, 2015.

SparCML.
SparCML!|

https://gitlab.com/rengglic/

S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Spar-
sified SGD with Memory. In NeurIPS, 2018.

N. Strom. Scalable distributed DNN training using
commodity GPU cloud computing. In ISCA, 2015.

R. Thakur, R. Rabenseifner, and W. Gropp. Opti-
mization of collective communication operations in
MPICH. IHPCFL, 2005.

G. Wang, S. Venkataraman, A. Phanishayee,
J. Thelin, N. Devanur, and I. Stoica. Blink: Fast and
Generic Collectives for Distributed ML. In MLSys,
2020.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen,
and H. Li. TernGrad: Ternary Gradients to Reduce
Communication in Distributed Deep Learning. In
NeurlPS, 2017.

H. Xu, C.-Y. Ho, A. M. Abdelmoniem, A. Dutta,
E. H. Bergou, K. Karatsenidis, M. Canini, and
P. Kalnis. Compressed Communication for Dis-
tributed Deep Learning: Survey and Quantitative
Evaluation. Technical report, KAUST, Apr 2020.
http://hdl.handle.net/10754/662495.

Z.Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and
X. Jin. Is Network the Bottleneck of Distributed
Training? In NetAl, 2020.

S. Zheng, Z. Huang, and J. Kwok. Communication-
efficient distributed blockwise momentum SGD
with error-feedback. In NeurIPS, 2019.

S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu,
Z.-M. Ma, and T.-Y. Liu. Asynchronous stochas-
tic gradient descent with delay compensation. In
ICML, 2017.

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://www.mellanox.com/products/sharp
https://www.mellanox.com/products/sharp
https://gitlab.com/rengglic/SparCML
https://gitlab.com/rengglic/SparCML
http://hdl.handle.net/10754/662495

A Proof of convergence

We first start with the definition of a §-compressor, then
prove that Block Random-k, and Block Top-k are 6-
compressors, and then finally relate it to the convergence
result for §-compressors.

Definition. (8-compressor) [26] A probabilistic opera-
tor € : RY — R? is called a §-approximate compressor

foré €(0,1]if
Elx—¢ @[3 <(1-8)|x|3 vxeR"

Lemma. Let b denote the total number of blocks. Both
block-randy (Block Random-k) and block-topy (Block
Top-k) are 6-compressors with § = %, and 6 = % re-
spectively

Proof. Without loss of generality, we assume the dimen-
sion d to be a multiple of the number of blocks b. Let
for any x € R?, x; € R4/ denote the i block. Then,
x=pl ol ,xZ]T. Also, let ; = ([i]) denote the set
of all k element subsets of [b].

Block Random-k: We have,

1 b .
E||x—block—mndk(x)||% =00 Z Z H)C,‘H%‘H{l ¢}
|| 0eQi=1
b .
i ¢ o}
=Y Iul3 Y, —5—
i=1 0eQy Qk
k
= (1-)l
which implies that block-randy is a §-compressor with
==k
b

Block Top-k: Let Spjock-op, (x) denote the set of Top-k
blocks corresponding to a given x. Then,

|block-topi(x)||1 = Z [l xi 1
iesblock—topk (x)
= Yl

iESbluck-topk (X>
/b

Y dZ|xi-‘|

iesblw,‘k-topk (x) k=1

> K1
= b 1

> / || ||
X
2,

where x¥ denotes the k" element of i’ block, and the last
inequality follows from the fact that ||z||; > ||z||» for any

17

z € RY. Finally, we have

|lx — block-topi(x) 3 = ||xII3 + [[block-topi (x)]13
—2(x,block-topi(x))
= |lx[13 — [|block-topi(x) 3

1
< Jlxl3 - h [block-topy (x)]IT

Ko
< Hxllz—ﬁllxllz
k2
=(1 —W)HXH%’

where the first inequality follows from the fact that
Izl > % for any z € R, The above result implies

k2

that block-topy is a §-compressor with § = 5.

O

Using the above lemma, Theorem 1 in [S9] gives us
the convergence result for compressed distributed SGD
with error-feedback for an arbitrary §-compressor.

	Introduction
	Background
	Related work

	OmniReduce Design
	Basic solution
	Packet loss recovery
	Extension to sparse block format
	Performance analysis

	Block-based gradient sparsification
	Implementation
	Evaluation
	Microbenchmarks
	End-to-end training
	Sensitivity analysis

	Extensions
	Other related work
	Conclusion
	Proof of convergence

