
CS	394B	Introduction
Marco	Canini

Cryptography	Hash	Functions	I

• Take	message	m of	arbitrary	length	and	produces	fixed-size	(short)	
number	H(m)

• One-way	function
• Efficient:		Easy	to	compute	H(m)
• Hiding	property:	Hard	to	find	an	m,	given	H(m)		

• Assumes	“m”	has	sufficient	entropy,	not	just	{“heads”,	“tails”}
• Random:		Often	assumes	for	output	to	“look”	random

2

Cryptography	Hash	Functions	II

• Collisions	exist:		|	possible	inputs	|	>>	|	possible	outputs	|														
…	but	hard	to	find

• Collision	resistance:
• Strong	resistance:			 Find	any	m	!=	m’	 such	that				H(m)	==	H(m’)
• Weak	resistance:	 Given	m,		find	m’ such	that				H(m)	==	H(m’)
• For	160-bit	hash	(SHA-1)

• Finding	any	collision	is	birthday	paradox:		2^{160/2}	=	2^80
• Finding	specific	collision	requires	2^160	

3

Hash	Pointers

4

h = H()
(data)

Hash	chains

5

Creates	a	“tamper-evident”	log	of	data

data

prev: H()

data

prev: H()

data

prev: H()

H()

If	data	changes,	all	subsequent	hash	pointers	change
Otherwise,	found	a	hash	collision!	

6

Hash	chains

data

prev: H()

data

prev: H()

data

prev: H()

H()

Blockchain:	Append-only	hash	chain

• Hash	chain	creates	“tamper-evident”	log	of	txns
• Security	based	on	collision-resistance	of	hash	function

• Given	m	and	h	=	hash(m),	difficult	to	find	m’
such	that		h	=	hash(m’)	and	m	!=	m’

7

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

Merkle tree

H() H()

H() H() H() H()

H() H() H() H() H() H() H() H()

(data) (data) (data) (data) (data) (data) (data) (data)

Binary	tree	with	hash	pointers

proving	membership	in	a	Merkle tree

H() H()

H() H()

H() H()

(data)

show	O(log	n)	items

What	we	want	from	signatures

Only	you	can	sign,	but	anyone	can	verify

Signature	is	tied	to	a	particular	document
can’t	be	cut-and-pasted	to	another	doc

API	for	digital	signatures

• (sk,	pk)	:=	generateKeys(keysize)
sk:	secret	signing	key

pk:	public	verification	key

• sig	:=	sign(sk,	message)

• isValid :=	verify(pk,	message,	sig)

can be
randomized
algorithms

Requirements	for	signatures

“valid	signatures	verify”
verify(pk,	message,	sign(sk,	message))	==	true

“can’t	forge	signatures”
adversary	who:

knows	pk
gets	to	see	signatures	on	messages	of	his	choice

can’t	produce	a	verifiable	signature	on	another	message

Useful	trick:	public	key	==	an	identity

if	you	see	sig such	that	verify(pk,	msg,	sig)==true,
think	of	it	as

pk says,	“[msg]”.

to	“speak	for”	pk,	you	must	know	matching	secret	key	sk

