CS 394B Introduction

Marco Canini

Cryptography Hash Functions |

* Take message m of arbitrary length and produces fixed-size (short)
number H(m)

* One-way function
 Efficient: Easy to compute H(m)

* Hiding property: Hard to find an m, given H(m)
* Assumes “m” has sufficient entropy, not just {“heads”, “tails”}

 Random: Often assumes for output to “look” random

Cryptography Hash Functions ||

* Collisions exist: | possible inputs | >> | possible outputs |
... but hard to find

e Collision resistance:

e Strong resistance: Findanym !=m’ such that H(m) == H(m’)
* Weak resistance: Given m, find m’ such that H(m)==H(m’)

* For 160-bit hash (SHA-1)
* Finding any collision is birthday paradox: 24{160/2} = 280
* Finding specific collision requires 22160

Hash Pointers

(data)

Hash chains

prev: H(I) prev: H(")

data data

Creates a “tamper-evident” log of data

prev: H(")

data

Hash chains

prev: H(') prev: F}L() prev: F{()

<« d% < data [data [

If data changes, all subsequent hash pointers change
Otherwise, found a hash collision!

Blockchain: Append-only hash chain

I
prev: H(') prev: H() prev: H() (_‘
< txn5 [€ txn 6 [txn 7

* Hash chain creates “tamper-evident” log of txns

 Security based on collision-resistance of hash function

* Given m and h = hash(m), difficult to find m’
such that h =hash(m’) and m !=m’

Merkle tree

Binary tree with hash pointers

H(\) H())
H(,) H()) H(,) H())
v R v Y
H(,) H(,) H(;) H() H(;) H() H(;) H()
(data) (data) (data) (data) (data) (data) (data) (data)

proving membership in a Merkle tree

l show O(log n) items

H() R())

What we want from signatures

Only you can sign, but anyone can verify

Signature is tied to a particular document

can’t be cut-and-pasted to another doc

API for digital signatures

* (sk, pk) := generateKeys(keysize)
sk: secret signing key
pk: public verification key

* sig := sign(sk, message)

e isValid := verify(pk, message, sig)

can be
— randomized
algorithms

Requirements for signatures

“valid signatures verify”
verify(pk, message, sign(sk, message)) == true
“can’t forge signatures”
adversary who:
knows pk
gets to see signatures on messages of his choice

can’t produce a verifiable signature on another message

Useful trick: public key == an identity

if you see sig such that verify(pk, msg, sig)==true,
think of it as

pk says, “[msqg]”.

to “speak for” pk, you must know matching secret key sk

