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ABSTRACT
Optimizing the performance of big-data streaming applications has
become a daunting and time-consuming task: parameters may be
tuned from a space of hundreds or even thousands of possible con-
figurations. In this paper, we present a framework for automating
parameter tuning for stream-processing systems. Our framework
supports standard black-box optimization algorithms as well as a
novel gray-box optimization algorithm. We demonstrate the mul-
tiple benefits of automated parameter tuning in optimizing three
benchmark applications in Apache Storm. Our results show that
a hill-climbing algorithm that uses a new heuristic sampling ap-
proach based on Latin Hypercube provides the best results. Our
gray-box algorithm provides comparable results while being two
to five times faster.
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1 INTRODUCTION
The use of stream processing is rapidly increasing in industry be-
cause real-time streaming analytics allows companies to react to
changes in data quickly [8]. For example, an e-commerce company
can use streaming analytics to create targeted ads and real-time
promotional offers for its customers. A study showed that more
than 90% of surveyed organizations plan to increase investment
in stream processing [8]. Dozens of companies are already using
Apache Storm [5] and several others are likely using other stream-
processing frameworks.

Popular stream-processing systems such as Apache Storm [3],
Heron [32], Apache Flink [1] and Spark Streaming [2] have dozens
of available configuration parameters. The performance of big-data
applications that utilize these frameworks for real-time processing
crucially depends on parameter tuning. For example, Apache Storm
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has about 201 parameters that can be set by the user. Among these,
there are 49 parameters that can be controlled on a per-application
basis. Not all configurable parameters affect performance; however,
several of these parameters should be tuned to achieve performance
goals, such as meeting Service Level Objectives (SLOs) for (tail)
latency and throughput in production deployments. Moreover, suit-
able parameter configurations vary depending upon the available
resources, workloads and applications.

Currently, these parameters are manually tuned, possibly re-
quiring several hours of investigation and testing by performance
engineers [4, 6, 10, 12, 18]. In addition, performance engineers may
require detailed knowledge of the stream-processing system itself
to find a configuration that meets the performance requirements
of an application because a best-practices approach is not always
sufficient—a case that we make later in our evaluation. This makes
configuration optimization a daunting and time-consuming task;
we believe that automating configuration optimization is a viable
alternative to manual tuning.

The configuration parameters in big-data frameworks can be
broadly classified into two categories: (i ) resource allocation param-
eters and (ii ) application- or system-specific parameters. Resource
allocation has been the subject of prior work, especially in conjunc-
tion with MapReduce jobs [29, 42]. On the other hand, there have
been fewer studies on determining the optimal application-specific
parameters for big-data frameworks. Most existing works present
solutions specific to MapReduce jobs [20, 28, 31]. Only a few re-
cent studies have considered performance optimization for stream-
processing systems like Storm [30, 44]. Although BO4CO [30] deals
directly with parameter tuning, the focus in this work is on latency
optimization and not on throughput. To the best of our knowledge,
a broader consideration of complete performance optimization in
stream-processing systems has yet not been attempted.

Stream-processing systems are unique and present different chal-
lenges than those related to tuning databases and batch-processing
systems. First, stream-processing applications are long-running
(potentially infinite) programs. Tuning such applications requires
determining an experiment’s duration such that it is long enough
to provide accurate performance measurements of a configuration
yet short enough to quickly converge. Second, there are generally
two metrics of interest that are jointly optimized: throughput and
latency (typically at a high latency distribution percentile ). Tuning
is thus a case of multi-objective optimization. Most previous works
considered single metrics [20, 24, 28, 30, 31] rather than multiple
metrics. Third, measuring latency with no overhead is challeng-
ing when throughput is high, such as at hundreds of thousands of
processed data items per second. Without sacrificing accuracy to
measure latency, we turn to a probabilistic data structure called
T-Digest (§5), which is able to handle millions of latency numbers
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per second. Fourth, unlike MapReduce-based frameworks, stream-
processing applications are generally multi-stage data processing
pipelines. Thus, we need to configure the parameters and the level
of parallelism of each stage, yet each stage is also dependent on its
interconnected stages and only a suitable balance in the levels of
parallelism leads to the best achievable performance.

In this paper, we introduce a framework for automated off-line
parameter tuning of stream-processing systems.We use iterative op-
timization algorithms on measurements from actual runs of stream-
ing applications, from which the framework collects feedback. We
focus on Apache Storm as a stream-processing system for our exper-
iments. However, several of the concepts can be directly translated
to other stream-processing systems because component-level par-
allelism is common across all stream-processing systems and the
black-box approaches presented here are not bound to specific
parameters or systems.

In summary, we make the following main contributions:
• A framework for automated parameter tuning of stream-
processing systems along with an implementation of five
optimization algorithms. Our framework is released as open-
source code [11].
• A novel gray-box optimization algorithm based on a rule-
based heuristic approach.
• A new sampling method for the hill-climbing algorithm
that accounts for desirable initial configurations of stream-
processing applications.
• An evaluation of the performance of different algorithms
using three benchmark applications for Apache Storm.

2 PRELIMINARIES
2.1 Stream-Processing Systems
Stream-processing systems are software systems that are designed
to analyze and act on (potentially unbounded) streaming data, gen-
erally in real time or in near real time (considered as having latencies
in the range of sub-second up to a few minutes). Stream-processing
systems have the ability to perform streaming analytics, i.e., to
continuously calculate mathematical or statistical analytics on the
data stream. Modern stream-processing systems are constructed
on distributed, scalable, and fault-tolerant architectures that handle
high volumes of data in real time.

There are several open-source stream-processing systems cur-
rently available and the number of systems is growing steadily.
Apache Storm [3], Heron [32], Apache Flink [1] and Spark Stream-
ing [2] are a few examples of production-grade stream-processing
systems. In this paper, we use Apache Storm as a case study; how-
ever, our concepts and approach are not specific to Storm and can
be generalized to other systems.

Apache Storm is a distributed, real-time stream-processing sys-
tem written in Java. An application in Storm is called a topology.
A Storm topology is a Directed Acyclic Graph (DAG) composed of
nodes that perform computation and edges that represent the flow
of data being passed between nodes. The nodes send data between
one another in the form of tuples. A tuple is an ordered list of val-
ues. The data stream originates at the source(s) node of the DAG,
which is called a “spout”. A spout generates a stream of tuples that
are consumed and processed by “bolt” components according to

a user-defined logic that defines the processing performed on the
tuples at the node.

Apache Storm provides an application programming interface
(API) to access metrics on the cluster, topology and component
levels. The metrics that are provided include: average latency, num-
ber of tuples processed and per-component capacity. Capacity
provided by Storm’s metrics API is the utilization of each com-
ponent/executor. We use the number of tuples processed by the
topology as well as the per-component capacity for our framework.

2.2 Problem Formulation
Consider a system for which we want to perform parameter tuning
for a set ofN parameters. The goal of the configuration optimization
process is to find the configuration, X , i.e., the vector of assigned
parameter values, X = x1, . . . ,xN , that provides the desired per-
formance according to a specific metric of interest (e.g., throughput
or latency). The possible values of these parameters come from
range Rxi ∀ x ∈ X . DOM =

∏N
i=1 Rxi represents the space of all

possible configurations that the system can have. More concretely,
let y denote the performance metric of interest as a function of the
configuration, i.e., y = G (X ). Then, the configuration optimization
problem can be defined as finding the parameter values, X ∗, such
that:

X ∗ = argmin
X ∈DOM

G (X ) (1)

In our case, since we consider throughput in addition to the min-
imization of latency, we define G (X ) as a discontinuous objective
function consisting of two underlying black-box functions, T (X )
and L(X ), representing throughput and latency, respectively, such
that:

G (X ) =



L(X ) T (X ) ≥ t

∞ T (X ) < t
(2)

where t is the throughput objective. Thus, a configuration needs to
attain a certain minimum throughput objective to be considered a
candidate solution. In practice, T (X ) and L(X ) are often unknown
or do not have a closed form.

A possible approach to solving this optimization problem would
be to resort to analytical modeling to predict the throughput and
latency of a given stream-processing application. Although per-
formance models are useful because they provide insight into the
system’s behavior, can be solved quickly, and allow for large param-
eter space explorations, such models are unfortunately time- and
labor-intensive to obtain, typically rely on simplifying assumptions
that hinder accuracy, and need to be recalibrated and revalidated
as the conditions change.

Instead, we seek to automate parameter tuning to achieve specific
performance goals with minimal human effort. Thus, we run the
actual system in a simpler and more accurate way to determine its
performance.

2.3 Our Approach
We use actual experiments that run the real system in a profiling
environment using a small number of machines to evaluate the
throughput and latency functions and taking measurements of
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Figure 1: Configuration optimization framework.

these metrics. Such an experimental approach has been shown to
produce system configurations that are as good as those resulting
from idealized, perfectly accurate models [24, 52, 55].

Figure 1 presents an overview of our optimization framework.
The user provides the application, a sampleworkload, SLO/performance
goals and the possible ranges of parameters. The initial configu-
ration is generated by the optimization algorithm and is used to
submit the application/topology to the Storm cluster. After a spe-
cific duration, the application is terminated and the metrics exposed
via Storm API (i.e., throughput, utilization, processing latency) as
well as custom metrics (tail latency in our case) are collected to
evaluate the current configuration. Subsequently, a new configura-
tion is generated according to the optimization algorithm and the
same application is submitted with this new configuration. This
process continues until the optimization algorithm terminates the
search based on some allocated resource budget (e.g., the amount of
time we allow for configuration optimization) and provides the user
with the best configuration according to the performance goals.

Our framework supports multiple optimization algorithms (§4).
To demonstrate this generality, we later implement and evaluate
several algorithms.

2.4 Background on Latin Hypercube Sampling
Exploring the complete space of all configurations is intractable
when the number of parameters is large.We rely on an experimental
design approach to obtain an initial sample from the configuration
space using the Latin Hypercube Sampling (LHS) method. Here, we
provide a short description of this method and refer the reader to
McKay et al. [38] for a detailed introduction to LHS.

LHS is a stratified sampling formulation that is used to generate a
near-random sample of parameter values from a multidimensional
distribution. Since it is a stratified sampling approach, LHS can
provide better coverage of the sample space than random sampling
can. The LHS algorithm for generating K random configurations of
dimension N (the number of parameters) can be briefly described
as follows:

(1) Generate N random permutations, P1, . . . , PN , of set S =
1, . . . ,K , where P i = (P i1, . . . , P

i
K ).

(2) For the i-th dimension with i = 1, . . . ,N , divide the param-
eter range, Ri , into K non-overlapping intervals of equal
probabilities.

(3) The k-th sampled point is an N -dimensional vector, with
the value for dimension i uniformly drawn from the P ik -th
interval of Ri

Unfortunately, LHS by itself does not rule out bad spreads. For
example, all samples can be spread along the diagonal. This problem
can be addressed by generating multiple sets of LHS samples and
choosing the one that maximizes the minimum distance between
any pair of samples. That is, suppose l different sets of LHS samples,
L1, . . . ,Ll , were generated. Then, the approach selects the set L∗
such that:

L∗ = argmax
1≤i≤l

min
X (j ),X (k ) ∈Li , j,k

dist(X (j ) ,X (k ) ), (3)

where dist is a distance metric like Euclidean distance. This
method is called Maximin Latin Hypercube Sampling [39].

However, we cannot directly use LHS for our case because dif-
ferent parameters have different numbers of values. For example,
the number of workers might only four discrete values while the
number of bolt executors might have 15 different values. If we were
to use LHS, then we would not generate more than four samples
because a specific value of a parameter cannot appear more than
once in an LHS design. Thus, we use a modified version of LHS
that we call mLHS. mLHS generates samples using LHS in a [0-1]
N -dimensional design space. These samples are then mapped to
the discrete bounded ranges in the N -dimensional space, which
means that the end design is not a Latin Hypercube since an input
parameter can have the same discrete value in two or more config-
urations, depending on the number of samples generated.

3 IMPACT OF PARAMETER TUNING
Actual applications of stream processing on the industrial scale
typically adhere to strict SLOs . The most common performance
metrics used to specify SLOs for stream processing consist of (i )
latency: how much time the system should take to process each
input so that outputs reflect the latest inputs, and (ii ) throughput:
how much data the system should process within a time interval.
An SLO specifies a desired level for throughput and/or latency
that the stream-processing system must attain so that data will not
be queued and eventually dropped or so that data will not cause
cascading errors.

Performance tuning is therefore a crucial task that occurs when
an application is deployed or when the application or workload
changes. Changing the configuration of the parameters is one of
the main ways to address performance tuning and to ensure that
an SLO is met. Although improper tuning of parameters can have
dire consequences on system performance, making sure that an
application is running as efficiently as possible is a daunting task
given the very large space of possible configurations. To understand
the variation in performance achievable through parameter tuning,
we conducted experiments on a multi-node Apache Storm cluster.

The setup included three worker nodes and a master node, each
with a dual CPU with eight cores with enabled hyper-threading.
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(a) Rolling Count Topology
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(b) Rolling Top Words Topology

Book Random Tweets
Dataset

0

1000

2000

3000

4000

5000

6000

9
0

th
 p

e
rc

e
n
ti

le
 L

a
te

n
cy

 (
m

s)

(c) Sentiment Topology

Figure 2: Variation of the 90th -ile latency for different configurations and workloads in three benchmark topologies.

Parameter Range Step Size
Number of workers 3–12 3
Number of Acker executors 3–12 3
Number of Spout executors 3–12 3
Number of Bolt executors 3–45 3
Max Spout pending 2000–10000 2000

Table 1: Selected parameters and their value ranges.

This meant that a total of 32 threads could simultaneously run
on each node. We configured Storm to use the Netty transport
layer, as it achieves better performance than the default transport
layer, ZeroMQ [9]. We left Acking, which is the process by which
bolts inform Storm when they have finished processing an input
tuple, enabled to access performance metrics from Storm UI for
our measurements. We used three topologies as benchmarks [7,
13, 14]: (i ) rolling word count (RC), (ii ) rolling top words (RTW)
and (iii ) sentiment analysis (SA). Details about these topologies are
presented in Sec. 5.1 below.

Table 1 shows the parameters that we selected to tune and the
ranges and increment step sizes considered in our experiments,
unless otherwise noted. We empirically chose this subset of pa-
rameters from all possible parameters of Apache Storm based on
their importance according to documented parameter-tuning best
practices [4, 6, 10, 12, 18]. The number of workers indicates the
number of worker Java VMs that Storm generates for the topol-
ogy. “Number of Spout executors” and “Acker executors” defines
the number of threads that generates tuples for the topology to
process and the number of threads responsible for handling tuple
acknowledgments, respectively. Similarly, users can also specify
the “Number of Bolt executors” for each bolt in the topology. Lastly,
“Max Spout pending” specifies the maximum number of tuples (per
spout) that can be simultaneously on-the-fly in the topology, i.e., the
max number of tuples per spout that have not been acknowledged
yet.

The step size used for all parameters except “Max Spout pending”
is a direct result of the number of worker nodes that we use. We
selected the step size to be equal to the number of nodes to avoid
any kind of imbalance in the DAG placement, which is chosen by
the default Storm scheduler. This strategy might be unnecessary if
a different scheduling algorithm is used.

Note that the “Number of Bolt executors” parameter is a per-bolt
parameter. Thus, the number of parameters to be tuned depends on
the topology size, which is between 2 to 5 bolts in our topologies.

The total number of parameters that we use for tuning purposes
therefore ranges from 6 to 9 parameters.
Parameters significantly affect latency. We used mLHS to gen-
erate 30 different configurations for each topology. The purpose
of this sample set was to illustrate the variation in performance
metrics that can occur due to different configurations. For each
configuration, the topologies were executed for 200 s while samples
from the 90th percentile of latencies and throughput were recorded
for the last 100 s of the run to exclude noisy measurements, which
are typical in the initial phase during execution. We execute each
configuration with three different data streams based on a text
corpus from a book, a random process and a dataset of real Twitter
tweets.

Figure 2 shows a boxplot of the variation in the 90th percentile
of latency for the 30 configurations tested for different workloads.
We observe that latency depends on all three factors, configuration,
workload and application. Importantly, the configuration of param-
eters has a significant impact on latency, influencing the measured
90thpercentile of latency by even two orders of magnitude in some
cases (e.g., the sentiment topology with the book dataset).
Parameters have complex second-order (or higher) effects.
The relationship between different configuration parameters can
be complex and can include second-order or higher effects. Thus,
simply increasing the value of one parameter does not correspond
to a monotonic increase or decrease in the performance metric. To
illustrate the second-order effects, we generate 50 configurations
of the number of executors using mLHS.

The results for the RC topology are presented in Figure 3. There
are two separate experiments shown there. Each experiment varies
the number of executors for split bolt (x-axis) and rolling count
bolt (y-axis) while keeping the remaining parameters fixed. Fig-
ure 3a and 3b show the different values of latency and throughput
obtained when varying the number of executors while keeping the
number of spouts, workers and ackers set at 12 (Setting 1). Figure 3c
and 3d show similar results with the fixed parameters set at 6 in-
stead (Setting 2). Each figure also highlights the top three candidate
configurations according to its respective metric. While using more
executors for the bolts can be a good strategy when the throughput
objective is high, it does not necessarily yield the best configuration.
These figures show that often comparable performance is achiev-
able by multiple different configurations in the configuration space.
For example, in Figure 3a, the best configurations in terms of the
90th percentile of latency are with x = 42 and y = 39 as well as
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(a) Latency with Setting 1

0 10 20 30 40 50
No. of Split bolt executors

0

10

20

30

40

50

N
o
. 
o
f 

R
o
lli

n
g
 c

o
u
n
t 

b
o
lt

 e
x
e
cu

to
rs

146
146145

70
80

90

100

110

120

130

140

T
h
ro

u
g
h
p
u
t 

(t
h
o
u
sa

n
d
 t

u
p
le

s/
s)

(b) Throughput with Setting 1
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(c) Latency with Setting 2
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(d) Throughput with Setting 2

Figure 3: Latency and throughput for different values of executors for Rolling Count and Split bolt for the RC topology.

x = 33 and y = 36. In Figure 3c, the best 90th -ile latency achieved
is when x = 18, y = 21; or x = 15, y = 45; or x = 33, y = 21. In the
case of Setting 2, since the throughput is limited by the number of
spout executors and the number of workers, increasing the number
of executors to either bolt beyond 18 does not significantly impact
the 90th percentile in latency. Depending on the throughput objec-
tive, the suitable configuration for minimizing latency varies. The
value selected for one parameter dictates the value that needs to be
selected for another parameter to achieve the desired performance.
Summary. Based on a sample of 30 configurations, we observed 8
to 25 times variation in 90th percentile of latency (excluding the
outliers). The same configurations provide different performance
metrics for different workloads. In addition, we found that there is
an inter-dependence between parameters. The desired throughput
objectives and values set for other parameters dictates the best
achievable latency and the values that need to be set in terms of
the number of executors to achieve that latency.

4 OPTIMIZATION ALGORITHMS
In this section, we describe the algorithms that we have used to auto-
matically tune the parameters for Apache Storm. These algorithms
constitute the “Optimization Algorithm” block of our framework
shown in Figure 1. We implemented the optimization algorithms
listed in Table 2. Two of these five algorithms are introduced in this
work. The remaining algorithms were previously documented in
the literature to achieve good results, though they were not pre-
viously considered for parameter tuning in the stream-processing
context.

Algorithm Abbr. Introduced in Target setting
Hill-climbing algorithm HC [52] Application server
Modified hill-climbing algorithm mHC This work Stream processing
Rule-based approach RB This work Stream processing
Genetic algorithm GA [35] Batch processing
Random recursive search algorithm RRS [54] Network protocols

Table 2: Algorithms used in our framework for parameter tuning.

The random recursive search and genetic algorithms did not
achieve as good results as the other three approaches in most of
our experiments that adhered to our optimization duration budget
(which we set at 50 experiments or equivalently 250 minutes). We
therefore do not discuss them in this paper due to space limitations.

4.1 Hill-Climbing Algorithm (HC)
Our implementation is based on a hill-climbing algorithm previ-
ously introduced in the literature [52]. However, unlike the previous
approach, our version of the algorithm does not use weighted LHS
since this assumes that a priori information is available regarding
the correlation between parameters, whereas this might not be the
case for us in general. The rest of the algorithm is implemented as
it is described by Xi et al. [52].

The hill-climbing algorithm used in this work consists of the
following phases:

(1) Initial Sampling: In this phase,n initial samples are generated
using mLHS from the design space and the application is
executed using these configurations.

(2) Local Search: In this phase, the algorithm uses mLHS sam-
pling to generatem samples from the neighborhood of the
best configuration found in the Initial sampling phase. It also
checks whether a configuration in thesem samples is better
than the best configuration previously found.

(3) Potential Best Configurations: After the local search, the
algorithm uses a polynomial fitting on the parameter values
to create a configuration that might provide better perfor-
mance. If a better configuration is found, it goes back to the
local search phase. If not, it proceeds with including this new
result and performing polynomial fitting again. If a better
configuration is still not found, it proceeds to the shrink
phase; otherwise, it goes back to local search.

(4) Shrink: The shrink phase decreases the size of the neighbor-
hood and restarts the local search phase. If the neighborhood
size is below a threshold, then the algorithm enters a restart
phase.

(5) Restart: The restart phase generates l samples from the de-
sign space using mLHS and checks if the best configuration
found in these l samples is better than the k-th percent of
the configurations tested until now; if so, then it enters the
local search phase again. Otherwise, it initiates the restart
phase again.

The hill-climbing algorithm terminates after a fixed optimization
budget is reached. Note that we avoid repeating experiments of
configurations already explored during the local search phase. Thus,
unique samples from the neighborhood are tested every time. If
no new samples are generated by mLHS, then we enter the restart
phase.
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In all our tests, we set n = 12, m = 5 and l = 5 to achieve a
balance between local search and global search. The neighborhood
threshold value, t , is set to 0.4 times the size of the design space and
k is set to 80%. The values for these settings are chosen according
to the recommendations provided in [54] and through empirical
testing to obtain the best performance in our settings; however, we
did not perform an exhaustive analysis and these settings might
need to be reconfigured according to need.

4.2 Modified Hill-Climbing Algorithm (mHC)
The difference between the hill-climbing algorithm (HC) and the
modified hill-climbing algorithm (mHC) is the way in which the
initial sample set is generated. In HC, we use mLHS to generate
the initial sample set. In the case of mHC, we resort to a custom
heuristic. In particular, the values of the number of workers and
“Max Spout pending” are generated through mLHS, while the num-
bers of spout and acker executors are set equal to the number of
workers. The number of executors for different bolts are generated
randomly using a Dirichlet distribution to distribute the remaining
number of cores among different bolts, according to Equation 4.
The Dirichlet distribution is a family of continuous multivariate
probability distributions parameterized by a vector, α , of positive
real numbers. It can be used to generate random numbers such that
their sum is equal to 1.

tbolts = tcores − tspout − tackers (4)

where tcores is the total number of cores in the cluster, tspout and
tackers is the number of spout and acker executors, respectively,
and tbolts is the number of executors that will be divided equally
among the bolts in a topology.

4.3 The Rule-Based Approach (RB)
The rule-based approach (RB) is a gray-box heuristic approach. It
takes hints from the user who provides a ranking of parameters ac-
cording to a priority level and specifies for each parameter whether
an increase in parameter value has an overall positive or negative
impact on latency and throughput. This is a greedy approach. It
favors finding a suitable configuration quickly at the expense of
optimality. Also, it attempts to minimize the number of resources
(executors) that are required to achieve the required throughput
objective.

Algorithm 1 shows the rule-based approach. The algorithm has
three distinct phases: (i ) throughput objective satisfaction phase,
(ii ) latency minimization phase, and (iii ) executor adjustment
phase.

(i ) The throughput objective satisfaction phase changes the value
of the parameters to achieve the throughput objective specified by
the user. To make this phase aggressive, we update all the param-
eters at the same time according to their expected effect on the
throughput (i.e., if increasing the parameter values increases the
throughput, then the parameter values are increased or vice versa).

(ii ) Once the throughput objective is satisfied, RB enters the
latency minimization phase during which it does one-at-a-time
tuning of parameters to minimize the latency. This phase iteratively
goes through each parameter according to its user-provided ranking
and tunes the value of the parameter to achieve a better performance

Data: Ranked parameters, Parameter ranges, application and tputObjective
Result: Best configuration
Divide executors equally among all bolts;
Set values for all other configurations to their minimum;
while throughput objective unmet do

change values of all parameters simultaneously to increase throughput;
if throughput objective met then

bestConfig = currentConfig;
bestLatency = currentLatency;
break;

else
continue;

end
end
foreach parameter by ranked priority do

while true do
change value of the parameter by one step;
get throughput and latency ;
if throughput ≥ tputObjective and latency <bestLatency then

bestConfig = currentConfig;
bestLatency = latency;

else if throughput < tputObjective or latency ≥ bestLatency then
break ;

end
end
Decrease the number of executors per bolt depending on the capacity;
if latency ≤ BestLatency then

bestLatency = latency;
bestConfig = currentConfig;

while throughput ≥ tputObjective do
Reallocate executors from bolts with low capacity to bolt with max
capacity;
if latency ≤ BestLatency then

bestLatency = latency;
bestConfig = currentConfig;

end
Algorithm 1: Rule-based approach.

than previous performances. If change in a parameter’s value does
not improve performance, the change is reverted and the algorithm
moves to the next parameter. Once this iterative phase has taken
all the parameters into account, it selects the best configuration it
has found and enters the executor adjustment phase.

(iii ) The executor adjustment phase involves two sub-phases.
The first sub-phase reduces the number of executors assigned to
each of the bolts as long as their capacity reported by Storm metrics
is less than 80%. The second sub-phase reassigns the executors from
other bolts to the bolt that is running at the highest capacity. Both
of the phases are executed repeatedly for as long as the throughput
objective is met. This last phase might also lead us to a configuration
that can satisfy the throughput objective but with higher latency,
while using a smaller number of executors.

The basic parameter ranking that we use for all topologies ranks
bolt executors at the top (based on their utilization; a higher utiliza-
tion gets higher priority) followed by executors for spouts, ackers,
max spout pending and number of workers.
Discussion. We note that all algorithms described in this section
are not specific to Apache Storm and could be used with other
stream-processing systems. For instance, both mHC and RB algo-
rithms mainly provide heuristics for selecting the parallelism levels
for the number of executors for bolt stages. These heuristics are
directly applicable to systems like Apache Flink and Twitter Heron,
which also have parallelism-level configuration parameters.
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5 EVALUATION
We now demonstrate that automated parameter tuning is both prac-
tical and beneficial for stream-processing systems by conducting an
evaluation of the algorithms on a range of topologies and workloads
to answer the following questions.
• How well do the considered optimization algorithms per-
form?
• What impact does the ranking of parameters have on the
performance of the rule-based approach?
• Is it possible to scale via extrapolation a small cluster’s best
configuration to a larger cluster?
• Given a resource budget, are the benefits of using automated
parameter tuning greater than employing such resources to
scale the cluster?

Results Highlights. Based on our evaluation described below, we
observe that:
• Our results demonstrate the feasibility and benefits of automated
parameter tuning across multiple benchmark Storm applications
and workloads, suggesting that our framework is a viable solution
to the problem.
• Overall, mHC and RB perform comparably while outperforming
HC in most cases. However, HC performs better when we are deal-
ing with low throughput objective cases because of the uniformly
sampled design space.
• RB is two to five times faster than the hill-climbing algorithms in
terms of convergence time, thanks to the initial sample and through-
put objective satisfaction phases.

5.1 Applications
We selected three topologies from publicly available Storm bench-
marks [7, 13, 14]. The topologies are: Rolling count (RC), Rolling
top words (RTW) and Sentiment analysis (SA). These topologies
consist of three, five and six stages, respectively. These topologies
can be found at [11] In our experiments, we use HDFS as the source
of input data to the topologies. The data is streamed from HDFS
to bolts using Storm spouts. To provide the impression of infinite
data stream, since the data in HDFS is limited, the spouts simply
restart from the beginning of the data file once they reach the end
of the file.

5.2 Experimental Setup
Our main setup consists of a four-node testbed, with each node
having 16 physical cores and 32 virtual cores. Three of the nodes
are used as workers for Apache Storm and one node is used as the
master.

Latency measurements are done on a per-tuple basis. Latency is
measured based on the time it takes for the tuple to progress from
a spout to the last bolt. Spouts tag each tuple with a timestamp and
the total latency is calculated by subtracting the time at the last
bolt from the timestamp tagged by the spout. To make sure that the
timestamps are consistent across multiple nodes, we use Network
Time Protocol (NTP) to synchronize the time.

The Storm Metrics API provides only average latency numbers,
which are not sufficient for our case. Measuring per-tuple latencies
is essential to measure tail latencies. Since throughput levels can
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Figure 4: Latency results for different duration of experiments

reach hundreds of thousands of tuples per second, we cannot use a
conventional method to measure tail latencies based on per-tuple
latencies. To handle this challenge, we use a probabilistic data
structure called T-Digest [15]. We have implemented a client-server
application based on T-Digest that is able to handle several millions
of tuple latencies/s [16].

Since we have a stream processing system with long-running
applications, we needed to limit the duration of a single experiment.
We tested different time durations for our experiments and selected
200 s as the duration of a single run. This time limit provides a good
trade-off between the stability of the results and the time it takes
for a single experiment to run. The results are stable because the
tail latency does not change significantly if the experiments are
executed for longer durations, as shown in Figure 4.

The latency measurements were collected for the specified time
interval, in each experiment, for a total of 10 runs. We observed
that the median 90th and 99th percentiles of latency across all runs
differed by less than 2%. Therefore, we executed each experiment
for 200 s. To allow for the setup phase to finish, we measured the
latency only after the first 100 s. All subsequent latency readings
were of the last 100 s of each experiment.

5.3 Performance of Parameter Tuning
We evaluated each optimization algorithm based on two criteria: (i )
Convergence: how quickly the algorithm is able to search through
the configuration space and find the best configuration, and (ii )
Best latency achieved: what performance is attained by the best
configuration that the algorithm finds within a certain amount of
time.

In our evaluation, we focused on the minimization of latency
(particularly at its tail) while sustaining a certain average through-
put objective as the primary goal of the parameter tuning. This is a
typical scenario envisioned for parameter tuning.

We present results obtained after five repetitions of each algo-
rithm for each scenario. Due to space limitations, we present only
a representative subset of the results.

The convergence graphs (Figures 5a, 5c, 6a, 7a) show the progress
of the algorithms in terms of the best latency found at each point
during execution of the experiments. The y-axis reports the median
best latency found at each point across five repetitions of the algo-
rithm. Note that the convergence graph for RB shows the runtime
with the longest execution.
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The best latency graphs (Figures 5b, 5d, 6b, 7b) show a box-
plot of the best latencies found by each algorithm across multiple
repetitions.

Overall, mHC performed the best in our experiments although
RB outperformed it in some cases.

Figure 5b shows the best 90th percentile of latency achieved by
the three algorithms on the RC topology with a throughput objec-
tive of 150k tuples/s. We observe that RB has the least variance
across multiple runs but the best configuration it finds can have
higher latency as compared to the other two algorithms. This is
because at a relatively low throughput objective, at 150k tuples/s,
the configurations that provide the best latency are the ones with
a low number of executors. Since RB starts from a configuration
that utilizes all resources to begin with, it never arrives at these
configurations. The mHC algorithm can suffer from a similar issue.
While RB is able to find a good configuration within 10 iterations,
it might miss some of the configurations that could improve the
performance even further. On the other hand, HC generates a more
uniformly distributed initial sample set, which leads it to config-
urations that provide on average 30% and 20% better latency as
compared to RB and mHC, respectively.

Figure 5d illustrates the best 90th percentile of latency when we
increase the throughput objective to 300k tuples/s. The importance
of the initial sampling technique for hill-climbing algorithms be-
comes clear at this throughput objective. HC uses LHS to sample
the configuration space in a stratified manner, which means that it
includes plenty of samples from the configuration space that are not
suitable in high-throughput objective scenarios. On the other hand,
mHC uses a sampling strategy that includes only configurations
that have the total number of executors equal to the total number
of cores, which enables it to find configurations that are easily able
to achieve the throughput objective. In this case, on average only 2
out of 12 initial samples for HC were able to achieve 300k tuples/s
throughput as compared to 9 out 12 initial samples for mHC. In
terms of best latency achieved, RB and mHC perform comparably
while HC provides 40% higher latency, on average.

The results for the RTW topology with the 150k tuples/s through-
put objective are shown in Figure 6. HC and mHC perform com-
parably on average, while RB outperforms both. This is the case
primarily because the initial configuration used by RB is very close
to the configuration that provides the best latency. Thus, after a few
iterations, RB can reach a configuration with the 90th percentile of
latency that is 25% lower compared with results from both HC and
mHC.

For the sentiment analysis topology, several bolts have similar
per-tuple execution latencies, which means that having a config-
uration where the number of executors is equally divided among
multiple bolts is actually one of the best configurations. The Log-
ging bolt is the bottleneck bolt in this case; however, within our
cluster setup, we could not increase the parallelism level to that bolt
enough to improve the performance further. The latency provided
by mHC, on average, is only 5% and 10% lower than that provided
by RB and HC, respectively.

While not shown in the figures, best practices suggested in vari-
ous blog posts [4, 6, 10, 12, 18] and one-shot configurations were not
able to satisfy the throughput objectives that we used in our tests.

Their results are therefore not comparable. The best-practice ap-
proach that we adopted suggested that there should be one worker
per node and the number of executors should be equal to the num-
ber of cores. We set the “Max Spout pending” configuration to 2000,
with one spout and acker thread per worker. These approaches
were able to achieve 70k tuples/s throughput for the sentiment
analysis topology and 100k tuples/s for the RC and RTW topolo-
gies. Following the best practices did not therefore provide us with
even the throughput objective that we wished to satisfy . The main
reason for this behavior is the fact that our setup required more
than one worker per node to achieve higher throughput.

5.4 Impact of Parameter Ranking on RB
We now turn to an evaluation of the impact of parameter ranking
on the performance of RB. Since RB does not backtrack on the
configurations in most of its steps, the role of parameter ranking
might be important to the achievable performance. To evaluate
this aspect, we took four random parameter rankings for three
test cases along with the ranking that we used for our previous
experiments. Note that our previous ranking was based on our
intuition and it might not always be the best ranking. Thus, we
compare five parameter rankings to observe their influence on the
best achievable performance. We execute RB three times using each
ranking.

The results are shown in Figure 8. Surprisingly, we observe that
parameter ranking does not significantly impact the best latency
achieved. Even with different rankings, RB is able to achieve com-
parable performance. This observation can be explained based on
the fact that since there are multiple configurations that are able
to perform comparably, RB is able to arrive at one of those con-
figurations from different starting points. More importantly, we
observe that the throughput objective satisfaction phase in our test
cases gets us very close to one of the best configurations in terms
of latency. Because the changes in parameter ranking only affect
the latency minimization phase, the affect of parameter ranking on
best latency achieved is limited. While this may be the case for our
tests, we believe that there will be other scenarios in which param-
eter ranking might be important and an approach to determine the
ranking might be necessary, especially since RB does not backtrack
to previous parameters.

5.5 Comparison with Other Approaches
To the best of our knowledge, the state of the art in parameter opti-
mization for stream-processing systems is the work by Jamshidi et
al. [30]. Their work follows a similar approach to iTuned [24] and
uses Gaussian processes to do Bayesian optimization. The method-
ology and techniques presented in their paper are suitable when
latency is the only metric under consideration. We argue that only
optimizing for latency can limit the applicability of such a technique
because often a throughput requirement is present as well. We ran
their system on our RC topology and observed that because the sys-
tem only optimizes for latency, it misses configurations for which
latency values with up to 30% higher throughput were achievable.
In addition, such a method does not allow for any trade-off between
throughput or latency. For example, there were cases in which up
to 45% better throughput was achievable while sacrificing 1 ms
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(b) Best latency achieved
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(d) Best latency achieved

Figure 5: Performance of the three algorithms on the RC topology with book workload and throughput objective of 150k (a,b) and 300k (c,d)
tuple/s.
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(b) Best latency achieved

Figure 6: Performance of the three algorithms on RTW topology
with book workload and 150k throughput/s objective.
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(b) Best latency achieved

Figure 7: Performance of the three algorithms on SA topology with
book workload and 100k throughput/s objective.

of latency (increasing the 90th percentile of latency from 5 ms to
6 ms). Their techniques are clearly unable to navigate the trade-off
between latency and throughput.

Bayesian optimization, as it has been discussed in [24, 30], is a
single objective optimization technique. We have transformed our
multi-objective optimization problem into a single objective one, us-
ing Equation 2. The function produced as a result has discontinuities,
violating the smoothness assumptions of the generic covariance
functions used in Gaussian processes [21]. Hence, Bayesian opti-
mization with Gaussian processes used in these prior works is not
applicable here. We leave as future work a study of multi-objective
Bayesian optimization or Bayesian optimization with inequality
constraints.

5.6 Extrapolation to Large Clusters
We now explore the following question: is it possible to use the
results obtained on a small cluster of machines to tune the parame-
ters of larger production clusters? This would be useful in several
scenarios where it would be impractical or too costly to run the
algorithms on the production cluster; however, parameter tuning
over a few machines is possible if the best configuration found can
inform the best configuration on the larger cluster. To evaluate
the applicability of configurations found on smaller test clusters to
larger production clusters, we use a simple extrapolation process.

We find that a combined throughput and latency objective is
difficult to predict because the throughput does not scale linearly.
However, we observe that in terms of best latency, the configura-
tions found using a small cluster can be scaled to larger clusters
while preserving the small cluster’s latency optimization character-
istic.

To confirm these observations, we ran the RB algorithm to find
the configuration that provides the lowest 90th percentile of la-
tency in a four-node cluster (1 master and 3 worker nodes) and,
afterwards, we ran the configuration with executors/number of
workers scaled by five on a 16-node cluster (1 master and 15 work-
ers). We compared the results of this scaled configuration with the
best configuration provided by a run of all three algorithms on the
16-node cluster. We found that the scaled configuration provides
22 ms latency at the 90th percentile while the best configurations
provided by the runs of mHC, HC and RB algorithm were 27 ms, 33
ms and 21 ms, respectively. Hence, the scaled configuration is able
to perform comparably to the best configurations found by running
the optimization algorithm with the optimization budget of 50 runs.
This intuitively makes sense because all the configurations except
for “Max Spout pending” are scaled by five times. Thus, with five
times greater load and five times more executors to handle that load,
the configuration should perform just as well. The major condition
here is that other resources, such as the network, do not become
the bottleneck.

5.7 Cost-Benefit Analysis
To understand whether automated parameter tuning is viable in
practice, we performed a cost-benefit analysis. We considered a
cloud environment where machines could be used for configuration
optimization or could simply be added to the cluster to scale out the
stream-processing systems configured according to documented
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(a) SA topology (100k tuple/s)
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(b) RTW topology (150k tuple/s)
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(c) RC topology (300k tuple/s)

Figure 8: Performance variation due to different parameter rankings for mentioned throughput limit.

Throughput
(k tuples/s) W/o opt. With opt. Break-even

point

Nodes Cost(in $) Nodes Cost(in $)
200 4 0.75/h 3 0.6 + 0.6/h 6h
250 5 0.90/h 3 0.6 + 0.6/h 3h
300 6 1.05/h 3 0.6 + 0.6/h 2h

Table 3: Cost-benefit analysis contrasting the cost of running pa-
rameter tuning versus the cost of scaling out the stream processing
cluster. The benefits of automated parameter tuning always occur
within a few hours.

best practices. We calculate the break-even point where the cost of
running the cluster with configuration optimization is better than
simply putting in more resources and using the best practices. For
this experiment, we used three-worker nodes in AWS EC2 and a
throughput objective of 200k, 250k and 300k tuples/s.

The total cost is the sum of the costs for the configuration opti-
mization (fixed cost) and per hour based on the number of instances
and their types. We used m4.4xlarge instances at a price of $0.15 per
instance per hour. In our experiments, we observed that RB takes
an hour to find a configuration that satisfies each of the throughput
objectives. When using the best-practices approaches, we had to
add more worker nodes to be able to achieve the desired throughput
objective. Thus, the additional cost of parameter tuning is amortized
over time.

Table 3 shows the break-even point, i.e., the duration of the appli-
cation run after which the cost of using the automatic configuration
is amortized. In the worst case, the break-even point is after six
hours. If the application is supposed to be executed for periods
longer than this point, then using automated parameter tuning
provides cost savings.

6 RELATEDWORK
Parameter Tuning. There exists a large body of work on au-
tomatic parameter tuning, primarily in the fields of application
servers, batch-processing systems and databases. We briefly discuss
works closely related to ours.

iTuned [24] is a system for online parameter tuning of databases.
It uses Bayesian optimization with Gaussian processes to find the
best values for a set of parameters. One limitation with Gaussian

processes is that they require a large amount of training data to
be able to accurately model a complex multi-dimensional black-
box function. iTuned’s goal is to optimize for completion time,
which makes it a single objective Bayesian optimization problem.
On the other hand, our goals are to improve latency while achiev-
ing a certain average throughput objective, making our problem a
multi-objective Bayesian optimization. Moreover, as the workload
changes, themodel will need to be trained again. OtterTune [49] also
uses Gaussian processes with workload characterization to tune
DBMS configurations. Similarly, BO4CO [30] uses Gaussian pro-
cesses for parameter tuning but in the context of stream-processing
systems. As detailed in 5.5, their work focuses on a single per-
formance metric and the techniques presented are not directly
applicable to multi-objective optimization. Dhalion [25] proposes a
policy-based self-regulation system for Twitter Heron. Users can
define policies comprising a set of symptom, diagnosis and res-
olution actions. Symptoms provide information about observed
anomalies in the behavior of the stream-processing system, which
leads to the generation of a single diagnosis. As a result, a cor-
responding resolution action is carried out by the framework to
bring the stream-processing system back to the normal state. Thus,
policies are essentially a flexible form of rule-based automation.
Their work is not limited to parameter tuning and can be used for
parameter tuning. When the correct policies are written for each
parameter and performance metric under consideration, their work
can be used as an online tuning framework complementing the
initial parameters selected using offline tuning by our approach.

For optimizing batch processing jobs, MROnline [34] uses a
hill-climbing algorithm along with custom rules to tune certain
MapReduce parameters to optimize the average execution time of
MapReduce jobs. Xi et al. [52] also used a hill-climbing algorithm to
find appropriate configurations for application servers. However, as
we show in our evaluation, LHS is not necessarily the best sampling
strategy for finding the best configuration in stream-processing
systems. Tao et al. [54] and Heinze et al. [27] used recursive random
search algorithm for parameter tuning in network protocols and an
elastic scaling algorithm, respectively. However, in our experience,
recursive random search is out-performed by the hill-climbing
algorithm in the context of stream-processing systems.

Gunther [35] is a search method based on genetic algorithms
to optimize parameters for MapReduce. However, their primary
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goal is to decrease the execution time of the job. They focus on
optimizing only for one metric.

Venkataraman et al. [51] train an analytical model for Apache
Spark using experimental design techniques to create an efficient
performance predictor to select the number of instances and their
types for running jobs in Amazon EC2. CherryPick [17], on the
other hand, uses Bayesian optimization with Gaussian priors to
find best VM types and the number of VMs to minimze the deploy-
ment cost given a maximum tolerable time. Our approach instead
considers the tuning of parameters assuming that the deployment
scale and resources are known. Lin et el. [36] determined the de-
gree of parallelism for each stage of the processing DAG based
on input data and the computational cost. Thus, they were able
to adjust the parallelism level to accommodate required through-
put but they did not consider latency requirements. Zhu et al. [57]
proposed online tuning of parameters for perception applications
by learning a cost-based model using a parameter dependency
graph. Cost-based models have also been used in parameter tuning
for database systems as in [33]. However, cost-based models can
have difficulty in accurately predicting performance across different
types of hardware and application versions. For example, changes
to the architecture of a database might render its cost-based model
inapplicable.

Several works have proposed sophisticated approaches for de-
signing experiments to run when benchmarking servers [46] or
optimizing their configuration parameters [48, 56], though they
do not directly apply to the stream-processing context. In addi-
tion to search-based algorithms, there have been several efforts
to use machine learning for the purpose of automatic parameter
tuning [26, 47]. However, approaches using machine learning gen-
erally require a large amount of training data to be able to build
a classifier with good accuracy because they can only learn about
scenarios and configurations that have been seen in the past.
Online Adaptation in Stream Processing. Several works pro-
posed adaptive scaling and load balancing of stream-processing
systems [22, 40, 41, 45, 53]. Lohrmann et al. [37] adaptively adjusted
the buffer sizes and performs task chaining according to the QoS
constraints. Das et al. [23] used dynamic batch sizing for stream
processing in Apache Spark to avoid queuing delays as the input
data rate changes. Venkataraman et al. [50] dynamically adjusted
the number of batches that were grouped together for scheduling.
We view these works as complementary to ours because we first
need to find an efficient configuration to have an efficient scaling
strategy.

7 CONCLUSION
We have presented a framework to automate parameter tuning in
stream-processing frameworks and we have applied it to Apache
Storm as a case in point. The concepts and approaches presented
in the paper are not specific to Storm and could be extended to
other stream-processing systems. We have shown that our modified
hill-climbing algorithm and rule-based approach outperform the
basic hill-climbing algorithm in three of the four test scenarios. The
rule-based approach might provide up to 40% higher latency as
compared to hill-climbing algorithms, in the worst case. However,
RB can converge two to five times faster to that point as compared

with the other two approaches and thus might be suitable for online
parameter tuning.
Discussion A limitation of the rule-based approach is that it moves
in a unidirectional fashion to change the parameters and improve
performance. It does not backtrack to change the value of a previous
parameter once a change leads to desired performance improve-
ment. This means that there can be configurations that might lead to
improved performance but that are never explored by the rule-based
approach. This is a trade-off between the speed of the optimization
algorithm and its effectiveness.

According to our initial experiments, the throughput of our
Storm topologies does not scale linearly with the cluster size. Thus,
we are unable to predict the throughput of the topology as the
cluster is scaled out. In addition, the optimization algorithms need
to be run again in case of a significant workload change as well as
a change in the cluster hardware.

The framework introduced in this paper is for offline parameter
tuning. Online parameter tuning requires the stream-processing
system to be dynamically configurable without incurring long re-
configuration times. An online parameter-tuning system is also
limited by the constraint that it should not use configurations that
can possibly degrade the performance of the production system.
Developing online parameter tuning to work alongside the offline
framework is part of our future work.

Our framework assumes that the scheduling is static. Dynamic
scheduling can change placements of different executors of Storm
(e.g., [19, 43]), which can impact performance and might make the
same configuration behave differently from one run to another.

Lastly, interesting challenges arise in a multi-tenant Storm clus-
ter. In a shared environment, the parameters of a topology can be
tuned automatically using the approaches discussed in this paper
as long as enough resources are available to avoid overloading and
other topologies running with a fixed configuration. On the other
hand, if multiple topologies need to be tuned simultaneously, we
see two possible avenues, which we leave for future work. One
possible approach would be to optimize the topologies separately,
while measuring and taking into account the interference from
other topologies. A second approach would be to optimize the pa-
rameters of multiple topologies jointly so that each achieves its
respective performance goal, in essence achieving Pareto optimality
where each topology has its performance constraints met.
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