
1

ENDEAVOUR:
A Scalable SDN Architecture for Real-World IXPs

Pre-print Version

Gianni Antichi∗, Ignacio Castro†, Marco Chiesa‡§, Eder L. Fernandes†, Remy Lapeyrade¶, Daniel Kopp‖,
Jong Hun Han∗, Marc Bruyere‡‡, Christoph Dietzel‖∗∗, Mitchell Gusat††, Andrew W. Moore∗,

Philippe Owezarski¶, Steve Uhlig†, Marco Canini
x

∗University of Cambridge †Queen Mary University of London ‡KTH Royal Institute of Technology §Université
catholique de Louvain ¶LAAS-CNRS ‖DE-CIX ∗∗TU Berlin ††IBM Research ‡‡University of Tokyo

x
KAUST

Abstract—Innovation in interdomain routing has remained
stagnant for over a decade. Recently, IXPs have emerged as
economically-advantageous interconnection points for reducing
path latencies and exchanging ever increasing traffic volumes
among, possibly, hundreds of networks. Given their far-reaching
implications on interdomain routing, IXPs are the ideal place to
foster network innovation and extend the benefits of SDN to the
interdomain level.

In this paper, we present, evaluate, and demonstrate EN-
DEAVOUR, an SDN platform for IXPs. ENDEAVOUR can be
deployed on a multi-hop IXP fabric, supports a large number
of use cases, and is highly-scalable while avoiding broadcast
storms. Our evaluation with real data from one of the largest
IXPs, demonstrates the benefits and scalability of our solution:
ENDEAVOUR requires around 70% fewer rules than alternative
SDN solutions thanks to our rule partitioning mechanism. In
addition, by providing an open source solution, we invite ev-
eryone from the community to experiment (and improve) our
implementation as well as adapt it to new use cases.

Index Terms—Software Defined Networking, Internet eX-
change Points, Inter-domain routing, Peering.

I. INTRODUCTION

Internet eXchange Points (IXPs) have become ubiquitous
elements fueling a surge of peering interconnections and
ultimately leading to a denser and flatter Internet [1]. Nowa-
days, the largest IXPs interconnect hundreds of Autonomous
Systems (ASes) and carry huge traffic volumes (even several
Tbps) [2]. Around 80% of the announced address space is
reachable through the existing IXPs [3] and their presence
extends to the most remote regions [4], [5]. While IXPs have
facilitated greater interconnectivity and affordability, many
fundamental drawbacks in the Internet are rooted in the
protocol enabling interdomain connectivity, i.e., the Border
Gateway Protocol (BGP). BGP only provides a very limited
indirect control for ASes to set their reachability policies:
it is exclusively based on IP destination and its influence
is restricted to neighboring networks. To overcome these
limitations, Software Defined Networking (SDN) has been
recently proposed: SDN supports logically centralized network
control at a fine level of granularity, well beyond the IP
destination-based approach of BGP. Unfortunately, only the
intradomain level has benefited from SDN deployment so
far [6]. Because of their centrality and relevance, IXPs are
the ideal place from where to extend the benefits of SDN to

the Internet at large [7]. However, existing SDN solutions for
IXPs are either non-deployable at real fabrics, because they
cannot handle multi-hop topologies [8], [9], or provide only
very limited SDN capabilities [10], [11].

This paper presents and evaluates ENDEAVOUR, a platform
that enables an SDN-based IXP architecture fully exploiting
SDN capabilities and deployable in virtually, any real-world
IXP topology. Building upon the ideas of Gupta et al. [8],
the scalability techniques of Gupta et al. [9], and the fabric
management approach of Bruyere [10], ENDEAVOUR is
highly scalable, deployable in multi-hop IXP topologies, and
reduces broadcast traffic within the fabric. Enabling full SDN
capabilities in a multi-hop IXP entails significant challenges:
we identify such challenges and their solutions. First, we
study how to distribute the forwarding rules across the IXP
switches to curtail the consumption of their scarce resources.
ENDEAVOUR frees resources from the core switches by
circumscribing their tasks to intra-fabric forwarding: only the
edge switches have routing policies installed and use them
to select the path towards the fabric egress. We also identify
how to reduce the amount of routing policies installed in the
edge switches. By exclusively installing the outbound policies
in the edge switch where the policy owner is connected to,
we limit forwarding state duplication, further helping to save
switch resources. Secondly, we identify multiple mechanisms
for failover recovery and fast BGP route withdrawal. While
single-switch IXPs can simply reroute the affected traffic
according to the next best or new policy, a multi-hop IXP is
challenging. In ENDEAVOUR, we identify three mechanisms
to tackle this issue: duplication of outbound policies, bouncing
packets back to the ingress switch, and injection of recovery
information in the packets. Finally, using real data one of the
largest European IXP, and a realistic multi-hop topology, we
evaluate ENDEAVOUR and show its scalability and advanced
use cases [7] such as internal IXP load-balancing, i.e., across
the core-switches, and blackholing. Our evaluation shows that
ENDEAVOUR requires around 70% rules less than alternative
SDN solutions [9], [10], its internal load balancing approach
achieves similar results to the more complex but typically used
Equal-Cost Multi-Path Routing (ECMP) [12], and provides a
fast fail over recovery mechanism.

In short, the main contributions of this paper are as follows:
• We present the ENDEAVOUR platform, an SDN enabled

2

IXP architecture deployable in real-world (multi-hop)
IXP topologies.

• We evaluate several use cases of ENDEAVOUR using
real data from one of the largest IXP.

• We make publicly available the implementation and doc-
umentation of the platform to the community [13].

The remainder of the paper is organized as follows. Sec-
tion II introduces the relevant background while Section III
presents the ENDEAVOUR architecture. The challenges faced
and how ENDEAVOUR tackles them are discussed in Sec-
tion IV and Section V evaluates the ENDEAVOUR archi-
tecture. Finally, Section VI overviews the related work and
Section VII concludes this paper.

II. BACKGROUND

A. IXPs and Route Servers

IXPs are typically implemented as a simple layer-2 broad-
cast domain where member networks connect through BGP-
speaking routers to exchange traffic. While small IXPs’ fabrics
might be organized with just one switch, larger IXPs fre-
quently have a multi-hop topology composed of edge and
core switches [2]. The edge switches connect to the IXP
member routers whereas the core switches only interconnect
edge switches, ensuring redundancy and scalability. IXPs
operates at the Ethernet level, and are rarely involved in
routing decisions. Originally, IXP members had to establish
BGP peerings using TCP connections with every IXP member.
As IXPs grew in size [14], this solution became impractical
because it involved keeping too many BGP sessions, with
the associated administrative and operational overheads. IXPs
introduced Route Servers (RS) [15] to address this problem:
IXP members can receive all the routing information available
to the IXP through a single BGP session with the RS, which
acts as sophisticated route reflector.

B. iSDX: A Scalable Software-Defined Exchange

The iSDX [9] is a scalable SDN solution for IXPs with a
single switch topology, that builds upon the previous SDX [8]
project. SDX proposes a programmable SDN fabric that allows
members to override default BGP routing behavior with more
fine-grained SDN policies. The SDX approach relies on a
RS through which IXP members exchange reachability infor-
mation via BGP, and the SDX controller, that provides each
member fine-grained control over the incoming and outgoing
traffic flows. The design of the SDX controller ensures that
the forwarded traffic complies with the SDN policies and
the advertised prefixes. Each member runs an SDN control
application either on the central controller or on a local
machine while its border router exchanges BGP information
with the IXP’s RS. The SDN controller collects the SDN
policies from all members, reconciles them with the current
BGP routing state, and computes the forwarding rules that are
installed at the IXP fabric. While a naı̈ve implementation of the
above would result in the explosion of the forwarding state [8],
iSDX devises innovative techniques to reduce the SDN rule
compilation time, number of forwarding table entries, and
forwarding table update rates. The first aspect is tackled by

distributing the control plane computation load across the
members. The second and third aspects are addressed by
decoupling the BGP state from the forwarding state of the
IXP fabric. This solution greatly compresses the forwarding
state and the update rate.

ENDEAVOUR builds upon the iSDX solution to decouple
the BGP and the SDN control plane, but differently from
the iSDX solution it is deployable in any real IXP topology,
whether single or multi-hop.

C. Umbrella: A Scalable Multi-Hop Fabric

To exchange traffic, IXP members typically learn each
other physical address, i.e., MAC address, using the Address
Resolution Protocol (ARP). However, ARP traffic volumes in
large IXP fabrics can be high enough to overwhelm members’
routers with low capabilities [16]. The amount of ARP traffic
is even higher during network outages [17] which occur quite
frequent [18]. When many routers attempt to resolve the IP
addresses of peers that are not available anymore, gener-
ating the so-called “ARP storms”. The network congestion
resulting from such events can impact the BGP connectivity,
thus causing severe disturbances [16], [19]. Umbrella [10]
eliminates the need of location discovery mechanisms based
on packet broadcasting, i.e., ARP request or IPv6 neighbor
discovery, by taking advantage of the static nature of the
exchange. Umbrella features on-the-fly translation of broadcast
packets into unicast ones by exploiting the OpenFlow (OF)
ability to rewrite the destination MAC addresses of frames. In
particular, for any packet entering the fabric, the ingress OF
switch encodes the path towards the egress in the destination
MAC field, i.e., transforming into unicast the ARP broadcast
traffic. Core switches then use the encoded path to forward the
packets accordingly. Finally, the egress edge switch replaces
the encoded MAC address with the original one.

ENDEAVOUR leverages the Umbrella design to obtain
an efficient transport layer over a multi-hop topology, by
removing all the side effects related to broadcast traffic, and
by enabling effective access control over the fabric. Addition-
ally, ENDEAVOUR enables on-the-fly recomputation of the
internal IXP paths, when member’s policies change or when a
major network disruption happens. Finally, Umbrella does not
deal with link failures, a problem that we discuss extensively
in Sect. IV.

III. THE ENDEAVOUR ARCHITECTURE

Figure 1 presents the architecture of ENDEAVOUR. At
the physical level, a set of OF-enabled switches performs the
forwarding functions within the IXP fabric. The switches are
interconnected according to the IXP operator’s most common
network topology, e.g., full-mesh or spine-leaf.

In line with the SDN principle, ENDEAVOUR relies on a
logically centralized Fabric Manager component that acts
as an interface to the low-level physical network. The fabric
manager exposes to the members and IXP operators a logically
coherent view of the network and a set of high-level primi-
tives, greatly simplifying the data plane management tasks.
Through the fabric manager, the IXP operators can easily

3

Self-config
portal

SDX
Policy

interface

Member
applications

IXP
applications

DDoS
mitigation

Load
balancing

Fabric manager

Edge
Forwarding

Handler

OF Driver

Members

Information
Base

AS-B

IXP fabric

Core
Forwarding

Handler
Route Server

AS-A

Member
Controller

Fig. 1. The ENDEAVOUR architecture.

deploy customized applications such as Distributed Denial of
Service (DDoS) mitigation or internal load balancing, while
IXP members can define fine-grained routing policies such as
inbound/outbound traffic engineering or Access-Control-Lists
(ACLs) configuration using the SDX policy interface.
Note that the routing policies defined using the SDX policy
interface are visible to the IXP: members that regard their rout-
ing policies as strictly private information, should not reveal
them through the SDX policy interface. Different techniques
such can be used to enhance privacy [20], [21].

To install the appropriate forwarding states into the
switches, the fabric manager gathers information from sev-
eral ENDEAVOUR components. First, to ensure forwarding
consistency with the BGP state, the fabric manager col-
lects all the BGP routes advertised by the members from
the RS component1. Second, it collects the policies from
the members’ controllers. Finally, the fabric man-
ager also reads the current members’ configurations (e.g.,
port bandwidth, physical MAC addresses) from the Member
Information Base component to compute the intended
forwarding state.

To forward packets throughout the IXP network, the fabric
manager makes use of two crucial elements: (i) the EDGE
FORWARDING HANDLER (EFH), based on iSDX and Um-
brella, and (ii) the CORE FORWARDING HANDLER (CFH),
based on Umbrella. The EFH is responsible for handling
the packets entering the fabric: for each packet, the EFH
selects an egress IXP port and an internal path. The egress
IXP port selection is based on the iSDX module while the
internal path selection process leverages the source-based
routing encoding scheme of Umbrella which is dictated by
the internal load balancing configuration of the IXP operator.
The CFH, instead, is solely responsible of forwarding packets
across the IXP network, leading to very light requirements
for the core switches. Applying a source-routing approach
within the fabric is possible thanks to the inherently static
nature of the IXP environment. Indeed, connecting a new
IXP member device is coordinated between the member and

1The RS also guarantees backward compatibility with traditional IXP
designs, where members can enforce their policies through standard BGP
mechanisms, e.g., BGP communities, AS-Path prepending.

Member
Information

Base

Route Server

Fabric
Manager

5

4

3 6

1

ARP-Proxy

2

AS-BAS-A

Member
Controller

Fig. 2. The ENDEAVOUR route setup phase.

the IXP: first, the member communicates the MAC address
of its device, then the IXP assigns a physical port in the
IXP network to such device. This information is stored in
the Member Information Base. This setup coordination
between the IXP and its members breaks the premises of
traditional neighbor discovery mechanisms, such as ARP or
ND, where new devices can be connected to a network without
any coordination with the network administrator.

A. ENDEAVOUR IXP fabric in action

This section describes the ENDEAVOUR control and data
plane operations. In particular, the paragraph Route Setup
phase describes the steps performed by the fabric manager
to produce the forwarding state required to enable connectiv-
ity among members, while Data exchange phase shows the
sequence of operations performed by the forwarding plane to
route a packet across the fabric.

Route Setup phase: Figure 2 depicts the route setup phase
in ENDEAVOUR. Initially, the fabric manager learns BGP
reachability information from the RS (step 1) as well as the
configuration, e.g., mapping of MACs, IPs, ports, from the
member information base (step 2), and the SDN policies of
the members’ controllers (step 3). To reduce the forwarding
state, the fabric manager then combines the BGP reachability
information and SDN policies to determine which destination
prefixes have the same forwarding behavior within the IXP
network. Such prefixes are aggregated into Forwarding Equiv-
alent Classes (FECs), each of which is assigned to a virtual IP
(vIP) and a virtual MAC (vMAC) address. The fabric manager
then sends the vIP to the RS (step 4) and the associated
vMACs to the ARP-Proxy (step 5). The RS uses the vIP as
the next-hop of those routes announced to its members that
are destined towards a prefix contained in the FEC associated
to such vIP. The vMAC contains the encoded set of members
that announced a route towards a specific prefix. The ARP-
Proxy sends the appropriate vMAC as a gratuitous ARP-
reply for any IP address in the FEC associated to vIP, thus
binding a packet to its designated vMAC. Whenever a member
announces or withdraws a route, the EFH modifies the vMAC
accordingly, leaving the forwarding state unaffected. Finally,
the fabric manager installs the forwarding rules for support

4

source-routing within the fabric in both the edge and core
switches (step 6).

Data exchange phase: In Algorithm 1, we present the
ENDEAVOUR data plane pipeline, i.e., the sequence of op-
erations that are performed by a switch S when it receives a
packet pkt from one of its incoming ports iport. Initially,
S verifies that iport is an IXP ingress port, i.e., whether it
connects to an IXP member’s device (line 1). If so, the fabric
egress port eport for the packet is selected according to (i)
the sender’s outbound policies and the receiver’s inbound ones
as stored in the EFH tables, (ii) the vMAC encoded in the
destination MAC dmac of the packet, and iport (line 2).
Based on the chosen egress port, the sequence of outgoing
ports that has to be traversed by pkt to reach eport is
encoded in dmac as a stack of 8-bit labels (line 3). Since
there are only 48 bits in the destination MAC, this forwarding
approach limits the maximum number of hops within the IXP
to be less than 6. We note this requirement is typically met
by design in current fabrics. In addition, the flexibility of OF
allows us to use less bits in the encoding scheme to increase
the number of supported hops, as suggested in [22]. Regardless
of whether iport is an IXP ingress port, S processes the
packet according to the value on the top of the stack (line 4),
which is popped before forwarding the packet (line 5)2. If this
operation leaves the stack of labels empty (line 6), then the
next hop of the packet is a member’s device, which requires
the switch to rewrite the destination MAC with the address
associated to the member’s physical port (line 7). Finally,
the packet is forwarded through its designated outgoing port
(line 8).

input : A packet pkt received from port iport
output: The updated packet and its outgoing port

1 if iport is an ingress port then
2 IXP eport ← EFH.iSDX(pkt.dmac,iport)
3 pkt.dmac ← EFH.Umbrella-setup(IXP eport)
4 oport ← CFH.Umbrella-peek(pkt.dmac)
5 pkt.dmac ← CFH.Umbrella-update(pkt.dmac)
6 if pkt.dmac is all zeros then
7 pkt.dmac ← member_mac(oport)
8 send pkt out from oport
Algorithm 1: ENDEAVOUR data plane pipeline at
switch S.

IV. FROM SINGLE TO MULTI-HOP IXP FABRICS

Realizing SDX in practice is challenging. From the mem-
bers’ perspective, an IXP acts as a high-performance virtual
switch that provides sub-millisecond interconnectivity latency
among a multitude of different organizations. In practice,
however, IXPs rarely consist of a single switch. In fact,
to cope with the increasing volumes of traffic exchanged
among their members, a number of IXPs (e.g., LINX, AMS-
IX, DE-CIX) have grown from a single switch topology

2To enable such a forwarding scheme, every switch must have two action
tables: forwarding and copy-field. OF 1.5 specifications allow copying and
rewriting part of a header field.

to large infrastructures with distributed switches located in
different data centers, where packets are forwarded through
intermediate core switches before leaving the fabric. As such,
realizing SDXes in practice entails addressing a series of
non-trivial challenges that stem from aligning the need for
high-performance packet forwarding operations with the un-
derlying distributed environment. Specifically, IXP operators
must carefully understand how the forwarding state scales with
the number of configured SDN policies, how to easily load-
balance the forwarded traffic across the high-speed IXP fabric,
and how to quickly reroute traffic in response to network
failures — three crucial operations that we discuss below.

A. Scaling the forwarding state

Today’s approaches lack multi-hop support. Traditional
IXP fabrics provide a layer-2 interconnection network to their
members, thus limiting the amount of state within the network
to a bare minimum, i.e., one entry for each member’s layer-2
address. However, in SDN enabled IXPs, as members’ (legacy)
routers are unable to forward packets according to fine-grained
policies (e.g., layer-4 information), the fabric requires storing
information regarding each member’s policies into the IXP
switches. Unfortunalty, they only have limited forwarding state
resources. While previous work [9] devised techniques for
reducing the amount of forwarding state installed within a
single-switch IXP fabric, the problem of distributing the rules
across the fabric has remained uncharted.

Our approach limits forwarding state duplication. To
improve the scalability of the IXP fabric, we distribute the
routing policies across the switches as follows: member’s
routing policies are installed at the edge switches by the Edge
Forwarding Handler, whereas the core switches are left with
the simpler task of forwarding traffic towards its designated
egress point — a task that is managed by the Core Forwarding
Handler (as explained in the Algorithm 1). A straw man
solution would be to simply replicate the members’ policies
across each of the IXP switches, but this would result in
a waste of the already limited switches’ forwarding table
resources.

To efficient utilize resources, we draw two key observations.
First, for each IXP member, it suffices installing the member’s
outbound policies at the ingress edge switches where the
member connects to. Indeed, packets (potentially) matching
a given member’s policy will enter the IXP network only
from those ingress switches. Second, inbound policies must
be installed in every edge switch because the computation of
a packet’s egress point occurs when the packet first enters
the IXP network. Finally, members’ blackholing [23] policies
are replicated at those IXP ingress switches where the targeted
malicious traffic is expected to enter the fabric. However, given
the current nature of DDoS (Distributed Denial of Service)
attacks where multiple sources target a single destination,
blackholing policies can be aggregated and installed at the
IXP egress switches only, thus trading lower forwarding state
space for higher IXP fabric bandwidth overhead. We show
the benefits of such partitioning of the forwarding rules in
Section V.

5

B. IXP internal load balancing

Today’s load balancing mechanisms are hash-based. Even
though a portion of the overall traffic might remains local at
a certain edge switch, a large fraction of the overall traffic
needs to traverse the IXP fabric. This large quantity forces
network operators to carefully configure their internal routing
paths in order to optimize the load per link within the IXP
network. To this end, large IXPs deploy highly symmetrical
topologies and use ECMP Routing [12] to equally spread
the load among their internal links. In hash-based ECMP, the
hash of the flow identity (i.e., IP addresses and transport port
numbers) is used to deterministically select the outgoing port.
Thus, ECMP guarantees that each packet of the same flow is
forwarded along the same path.

Simpler SDN-based load-balancing. We rely on a simpler,
yet effective, mechanism for load balancing traffic across the
IXP fabric. Instead of employing the “black-box” optional
capabilities of commercial legacy switches, such as hash-based
forwarding, we capitalize on the features available in any OF-
enabled switch. In particular, we compute the outgoing port
according to the least significant bits in the IP source and
destination addresses as also proposed in [24]. This mechanism
provides a main advantage: while a black-box solution cannot
be easily upgraded if not suitable anymore, this simple load
balancing technique can be adapted on-demand. Our evalua-
tion (Sect.V) demonstrates that this approach attains a load
balancing performance comparable to hash-based approaches
in multi-hop topologies. This is a crucial gain in the IXP
context where replacements costs are high.

C. IXP fast failover recovery

Legacy IXPs have limited fast reroute capabilities. To
attain the highest reliability within the IXP fabric, IXPs
currently leverage the fast rerouting capabilities of the legacy
routing protocols (e.g., OSPF, MPLS). Upon any internal link
failure, such mechanisms quickly reroute packets towards their
designated egress ports along a pre-computed alternate path.
The extent to which these approaches improve network robust-
ness is, however, inherently limited by the lack of information
about alternative IXP egress ports through which traffic can be
rerouted. As a result, whenever a link connecting an IXP egress
switch to a member’s BGP router fails, all packets forwarded
through that port are dropped, a highly undesirable behavior
from an operational perspective. For example, any member
with two ports connected to the IXP fabric might desire to
receive traffic through any of these two ports whenever a port
is down or the sending member may want to reroute its traffic
towards a different member in case of failure.

Current single-switch SDN-based fast reroute does not
extend to multi-hop topologies. In a SDX fabric with a
single switch topology, rerouting along a link failure is a
trivial task: as soon as a link between the IXP switch and
a member’s router fails, the former one quickly disables the
forwarding rules affected by the link failure, thus rerouting
the traffic according to the next best SDN policy. In a multi-
hop fabric, performing fast reroute is more challenging as

the failed link may not be located on the same switch that
computes the IXP egress port of a packet. We discuss three
different approaches to tackle this challenge, each achieving a
different trade-off in terms of the size of the forwarding tables,
bandwidth overhead and packet processing overhead. Finally,
we show that such approaches can be re-used to quickly re-
route traffic in response to BGP withdrawal messages.
Approach #1: duplicating outbound policies. The first
approach is to replicate all the member’s inbound/outbound
policies across all the switches and to keep a copy of the
vMAC within the packet header (e.g., in the source/destination
MAC address fields). Whenever a link fails, the Edge Handler
Controller at the affected egress switch recomputes using the
iSDX tables a new egress port according to the member’s
policies and the updated vMAC of the packet, exactly as in
the above single-switch setting. As discussed in Section IV-A,
this approach comes at the price of extensive duplication of
the forwarding state, i.e., each member must store both the
inbound and outbound tables of all members.
Approach #2: bounce packets back to ingress switch. The
second approach consists in bouncing back to the ingress
switch any packet that has to be forwarded through a failed
link. In this way, a new egress port can be recomputed by
the Edge Handler controller using the iSDX tables. While this
approach prevents unnecessary duplication of the forwarding
state, a waste of bandwidth and increased packet latency will
occur with respect to the first approach.
Approach #3: inject recovery information into packets.
Finally, the third approach strikes an interesting trade-off
between all of the above overheads at the cost of additional
information stored into the packet header. Whenever a packet
enters the IXP network, the ingress switch leverages the iSDX
tables to compute a primary and a backup egress ports. This
can be achieved in different ways. One possible way is to
first process a packet through the iSDX tables to compute a
primary egress port, which, in turn, removes the owner of that
egress port from the vMAC of the packet. After performing
this operation, the modified packet is processed again by a
second set of iSDX tables, which, in this case, will then
return the second best egress port. Since OpenFlow does
not allow switches to recirculate packets through the same
forwarding table, duplication of the iSDX tables is necessary
to support this operation. In this case, the switch performs
two operations. It first stores the Umbrella encoding of the
path towards the primary egress port into the destination MAC
field. Then, it stores the backup egress port identifier in the
source MAC address, a field where in iSDX has 38 spare
bits that are currently unused3. This additional information is
used by the egress switches to reroutes packets upon any link
failures between the fabric and the members’ devices. While
this approach guarantees a fast reroute, it requires the switch
to store also the additional iSDX and Umbrella tables for the
fallback path, at the cost of switch memory and processing
delay.
Fast reroute upon BGP route withdrawals. Similar tech-
niques can be also used to reroute packets in response to

310 bits are used to store an identifier of the sending member

6

BGP control plane modifications, i.e., withdrawals of BGP
route towards a certain destination. Namely, edge switches
can match BGP packets and modify their forwarding table
accordingly, i.e., rerouting the packets affected by the BGP
withdrawal.

V. EVALUATION

We assess the scalability and performance of ENDEAVOUR
using real data from one of the largest IXPs in the world. It
has around 1000 provisioned member ports and more than
700 members which announce over 190 thousand distinct
prefixes. The data set includes the RIB table dump of one
of the IXP RSs (i.e., the BGP state) and sampled flow records
of the traffic. We emulate ENDEAVOUR on a topology
of 4 edge switches connected in a full-mesh with 4 core
switches using Mininet (v2.1). This is a realistic IXP topology
similar to current deplayments and reflects the current trend
of adopting core-edge network design in production at large
IXPs (LINX, AMS-IX, DE-CIX). To emulate the BGP process
at the participant’s routers we use Quagga. However, due to
the large overhead of emulating hundreds of participants, the
experiments with a large number of members do not rely on
instantiation of emulated routers. Instead, BGP announcements
are fed directly to the ENDEAVOUR’s control plane.

A. Distribution of flows in the edges

First, we evaluate the number of flow entries required by
ENDEAVOUR to support such a large IXP using the approach
of Hermans et al. [25] but for different performance metrics
and in a multi-hop topology. As input to the ENDEAVOUR
controller we feed the RIB dump from the RSs of our vantage
point. In turn, the controller generates flow rules according
to the member’s policies and distributes them on the IXPs
fabric as explained in Sect. IV. While we extracted announce-
ments for a total of 557 members from our RIB dump, to
fully evaluate the scalability of ENDEAVOUR, we randomly
generate additional members up to a total of 800. Each of the
generated members announces 16 prefixes (the median in our
data dump), and we assign them to the edge switches in a
round robin fashion.

Figure 3 shows the average number of flow rules per
edge switch in ENDEAVOUR for up to 800 members, where
each has a variable number of outbound policies (4, 8 and
16) that alter the forwarding behavior of BGP towards 10%
of the total participants. The graph shows that a balanced
distribution of members’ policies across the edge switches
results in a linear growth of the required flow entries. We
observe that, spreading the outbound rules across the (four)
edges switches is a crucial operation for scaling the IXP fabric,
in this case a gain of a factor of 4. Indeed, the number
of outbound rules installed on each switch is bounded by
the port density of the physical switches. Although [9], [25]
use different datasets, we perform a rough comparison for
similar numbers of participants and policies. ENDEAVOUR
requires around 70% less rules than iSDX and the Hermans
et al. solution. Whereas for 500 participants and a maximum
of 4 policies each, iSDX [9] required 65.250 flows rules,

ENDEAVOUR needs just an average of 22.094 flow rules
per switch. Similarly, for 800 participants and 16 polices
each, the Hermans et al. [25] needs over 500, 000 flow rules
while ENDEAVOUR requires only an average of 137.971
flow rules per switch (73% less). The results confirm that
the distribution of members’ outbound policies across multiple
switches largely enhances the scalability of ENDEAVOUR.

100 200 300 400 500 600 700 800

Number of participants
N

u
m

b
e
r

o
f
fl
o
w

 r
u
le

s

0
2

0
0

0
0

6
0

0
0

0
1

0
0

0
0

0
1

4
0

0
0

0

Number of policies

4 8 16

Fig. 3. Average number of flows in the edge switches of the IXP fabric as a
function of the number of participants.

B. IXP internal load balancing

The ENDEAVOUR intra fabric load balancing mechanism
spreads packets across core switches based on the least signif-
icant bits in the IP source and destination addresses. We eval-
uate this solution with a one-day data set from one of the edge
switches of the large IXP. The maximum (minimum) observed
throughput is 1.2Tbps at 20:57PM (0.2Tbps at 5:03AM).
While IXPs frequently use the more complex hash-based
ECMP to balance the traffic inside the fabric across its edge
switches, we show that ENDEAVOUR succeeds with a simpler
mechanism. Figure 4 depicts the traffic distribution across the
four core switches over time when the ENDEAVOUR load
balancing mechanism is in place, achieving significantly better
performance, where each of the four links constantly receives
less than 27% of traffic. An ideal ECMP scheme would obtain
an almost perfect balancing at the cost of the drawbacks
discussed in Section IV. While between 7AM and 9AM, our
solution provides an almost perfect traffic load balancing,
from 0AM to 6AM we observed a slight misalignment. To
gain further insights, we analyzed the size of the flows and
their total traffic share, as illustrated in Figure 5. The two
measurements t1 and t2 spread over one hour each, with
t1 starting at 1AM and t2 at 7AM. We define a flow as the
traffic exchanged between a pair of source and destination
IPs. Interestingly, a larger fraction of smaller traffic flows
is forwarded during t2. This is consistent with previous
studies on data centers, where static load balancing techniques
gain in performance by increasing the fraction of smaller

7

22

23

24

25

26

27

02:00 06:00 10:00 14:00 18:00 22:00

Time (UTC)

P
e
rc

e
n
ta

g
e
(%

)

Core Switch 0 1 2 3

Fig. 4. Load Balancing real world performance.

flows [26]. The ENDEAVOUR load balancing mechanism is
hence appropriate, as IXP traffic is typically characterized by
smaller flows due to the traffic requested by eyeball and ISP
networks [27].

Time t1
Time t2

C
D

F

Flow size between source and destination IPs (bytes)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1e+06 1e+07 1e+08 1e+09 1e+10

Fig. 5. Distribution of flow sizes within the performance measurement.

C. Blackholing

To evaluate the blackholing capabilities of the ENDEAV-
OUR platform, we record the BGP blackholing updates at a
large European IXP [23] over the course of one day. These
announcements and withdrawals are then replayed by using
the ENDEAVOUR blackholing API. Figure 6 depicts the
installation time of the new updates and reports the total
number of rules installed in the fabric. Updates are performed
in blocks of 50. We measured the time from calling the API
to the application of the last rule on the data plane.

Figure 6 shows how the first block of updates is completed
within 7 and 9 seconds. When issuing 1300 updates in
consecutive blocks, times raise above 10 sec. The number of
rules installed in the fabric scales to 2122 after 2000 replayed
flow rule updates: the time for rules to take effect grows
proportionally.

D. Forwarding State Recovery

We now evaluate the time required by a switch to retrieve
its whole forwarding state from the controller, an operation

Cumulative flow rules for blackholing

D
u

ra
ti
o

n
 (

s
e

c
)

6
8

1
0

1
2

1
4

1
6

1
8

0 1000 2000 3000 4000

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

2
1

0
0

2
2

0
0

N
u

m
b

e
r

o
f

ru
le

s
 i
n

s
ta

lle
d

 i
n

 t
h

e
 f
a

b
ri

c

Time
Rules installed

Fig. 6. Blackholing rule deployment time.

that happens in case of software or hardware failures. We
compare three different solutions: (i) Umbrella, (ii) a Learning
Switch, i.e., a Layer-2 forwarder which relies on the OpenFlow
controller to flood broadcast ARPs, and (iii) ENDEAVOUR.
In this analysis, we connect 250 members in our Core-Edge
multi-hop topology. Figure 7 shows the average completion
time for retrieving the forwarding state of each switch in
the topology. We observe that the rule partitioning technique
described in IV plays a key role in the time reduction: the
lower the number of rules required per switch, the lesser the
time needed to recover the forwarding state.

A
ve

ra
g

e
 r

e
s
o

lu
ti
o

n
 t

im
e

 (
m

s
)

0
5

0
1

0
0

1
5

0
2

0
0

Umbrella Learning switch ENDEAVOUR

Edge switches

Core switches

Fig. 7. Average resolve time on switch failure.

VI. RELATED WORK

IXPs are the ideal place to extend the success of SDN
from the intradomain, e.g., [6], to the interdomain level. IXPs
have grown in number [1] and size [14], carrying huge traffic
volumes [5], and interconnect a multitude of networks [2],
[3]. With about 80% of the address space reachable through
IXPs [3], [15], [28] affect a large share of the Internet. Being
such a central element [2], [4], [28] makes them an ideal place
to deploy the ENDEAVOUR architecture to bring SDN to
the interdomain settings. Introducing OF in IXPs is a recent
and promising idea [8]–[10], [29]. The Cardigan project [29]
implements a hardware based, default deny policy, capable

8

of restricting traffic based on RPKI verification of routes
advertised by devices connected to the fabric. While this
approach offers the required protection for a stable IXP fabric,
it is less suitable for IXPs that wish to remain neutral with
regards to IP forwarding. Gupta et al. developed an SDN-based
eXchange point (SDX) to enable more expressive policies than
conventional hop-by-hop, destination-based forwarding [8].
iSDX shows that it is possible to implement representative
policies for hundreds of participants while achieving sub-
second convergence in response to configuration changes and
routing updates [9]. However, iSDX only considers an IXP
topology with a single switch, but in reality there might be
multiple hops within the switching infrastructure. TouSIX [30]
is the first European SDN-enabled IXP. TouSIX employs
Umbrella [10], a multi-hop SDN fabric manager that tackles
part of the control traffic, the broadcast traffic, directly within
the data plane and can be implemented in most real IXP
topologies. However, Umbrella lacks both on-the-fly recom-
putation of the internal IXP paths and protection mechanisms
for link failures.

The ENDEAVOUR platform builds upon these experiences
to produce an SDN-enabled architecture even more scalable
than iSDX [9] and readily deployable in virtually any existing
IXP topology. The set of use cases that can be enabled have
been introduced in [7] and partially demonstrated in [31].

VII. CONCLUSIONS

In contrast to the rapidly evolving Internet, innovation in
interdomain routing has remained stagnant. Despite the efforts
to change this situation with the clean slate approach of
SDN, its success has rarely gone beyond intradomain level.
IXPs, with their central role in the Internet, present an ideal
opportunity to break this deadlock and extend the benefits
of SDN to the Internet at large. In this paper we presented,
evaluated, and demonstrated ENDEAVOUR, an SDN platform
for IXPs. ENDEAVOUR is a practical solution that can be
deployed on multi-hop IXPs, supports a large number of use
cases, is highly-scalable, and avoids broadcast storms. Our
evaluation with real data from one of the largest IXPs showed
the benefits, use cases, and scalability of our solution. In
addition, by providing an open source solution, we invite
everyone from the community to experiment, improve, and
extend it.

Acknowledgments: We thank Josh Bailey, Yatish Kumar,
David Meyer, and Jennifer Rexford for providing advisory
guidance to the project. This research is (in part) supported
by European Union’s Horizon 2020 research and innovation
programme under the ENDEAVOUR project (grant agreement
644960).

REFERENCES

[1] B. Augustin, B. Krishnamurthy, and W. Willinger, “IXPs: Mapped?” in
SIGCOMM. ACM, 2009.

[2] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger,
“Anatomy of a Large European IXP,” in SIGCOMM. ACM, 2012.

[3] I. Castro, J. C. Cardona, S. Gorinsky, and P. Francois, “Remote Peering:
More Peering without Internet Flattening,” in CoNEXT. ACM, 2014.

[4] D. Weller, B. Woodcock et al., “Internet Traffic Exchange: Market
Developments and Policy Challenges,” OECD Publishing, Tech. Rep.,
2013.

[5] I. Castro, R. Stanojevic, and S. Gorinsky, “Using Tuangou to Reduce
IP Transit Costs,” in Transactions on Networking, Volume: 22, Issue: 5.
IEEE/ACM, 2014.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-deployed Software
Defined Wan,” in SIGCOMM. ACM, 2013.

[7] M. Chiesa, C. Dietzel, G. Antichi, M. Bruyere, I. Castro, M. Gusat,
T. King, A. W. Moore, T. D. Nguyen, P. Owezarski, S. Uhlig, and
M. Canini, “Inter-domain Networking Innovation on Steroids: Empower-
ing IXPs with SDN Capabilities,” in Communication Magazine, Volume:
54, Issue: 10. IEEE, 2016.

[8] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A Software Defined Internet Exchange,” in SIGCOMM, 2014.

[9] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rex-
ford, and L. Vanbever, “An Industrial-scale Software Defined Internet
Exchange Point,” in NSDI. USENIX, 2016.

[10] M. Bruyere, “An Outright Open Source Approach for Simple and
Pragmatic Internet exchange,” https://hal-univ-tlse3.archives-ouvertes.fr/
tel-01393222v1, 2016, [Online; accessed 01-Apr-2017].

[11] H. Kumar, C. R. Russell, V. S. Sivaraman, and S. Banerjee, “A Software-
Defined Flexible Inter-Domain Interconnect using ONOS,” in EWSDN.
IEEE, 2016.

[12] C. Hopps, “RFC 2992: Analysis of an Equal-Cost Multi-Path Algo-
rithm,” 2000.

[13] “ENDEAVOUR project,” https://www.h2020-endeavour.eu/, 2017.
[14] J. C. Cardona and R. Stanojevic, “IXP Traffic: A Macroscopic View,”

in LANC. ACM, 2012.
[15] P. Richter, G. Smaragdakis, A. Feldmann, N. Chatzis, J. Boettger, and

W. Willinger, “Peering at Peerings: On the Role of IXP Route Servers,”
in IMC. ACM, 2014.

[16] M. Wessel and N. Sijm, “Effects of IPv4 and IPv6 address resolution
on AMS-IX and the ARP Sponge,” Master’s thesis, Universiteit van
Amsterdam, the Netherlands, 2009.

[17] “FranceIX outage,” https://www.franceix.net/en/events-and-news/news/
franceix-outage-notification/, [Online; accessed 27-Mar-2017].

[18] V. Giotsas, C. Dietzel, G. Smaragdakis, A. Feldmann, A. Berger, and
E. Aben, “Detecting Peering Infrastructure Outages in the Wild,” 2017.

[19] V. Boteanu and H. Bagheri, “Minimizing ARP traffic in the AMS-IX
switching platform using OpenFlow,” Master’s thesis, Universiteit van
Amsterdam, the Netherlands, 2013.

[20] M. Chiesa, D. Demmler, M. Canini, M. Schapira, and T. Schneider, “To-
wards Securing Internet eXchange Points Against Curious onlooKers,”
in ANRW. ACM, 2016.

[21] M. Chiesa, R. di Lallo, G. Lospoto, H. Mostafaei, M. Rimondini, and
G. Di Battista, “PrIXP: Preserving the Privacy of Routing Policies at
Internet eXchange Points,” in IM. IFIP/IEEE, 2017.

[22] A. Hari, U. Niesen, and G. T. Wilfong, “On the Problem of Optimal
Path Encoding for Software-Defined Networks,” in Transactions on
Networking, Volume: 25, Issue: 1. ACM/IEEE, 2017.

[23] C. Dietzel, A. Feldmann, and T. King, “Blackholing at IXPs: On the
Effectiveness of DDoS Mitigation in the Wild,” in PAM, 2016.

[24] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in CoNEXT. ACM, 2015.

[25] S. Hermans and J. Schutrup, “On the feasibility of converting AMS-IX
to an Industrial-Scale Software Defined Internet Exchange Point,” http:
//ext.delaat.net/rp/2015-2016/p26/report.pdf, 2016, accessed Mar-2017.

[26] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in
NSDI. USENIX, 2010.

[27] N. Chatzis, G. Smaragdakis, J. Böttger, T. Krenc, and A. Feldmann,
“On the Benefits of Using a Large IXP As an Internet Vantage Point,”
in IMC. ACM, 2013.

[28] N. Chatzis, G. Smaragdakis, A. Feldmann, and W. Willinger, “There Is
More to IXPs than Meets the Eye,” in CCR. ACM, 2013.

[29] J. P. Stringer, Q. Fu, C. Lorier, R. Nelson, and C. E. Rothenberg,
“Cardigan: Deploying a Distributed Routing Fabric,” in HotSDN. ACM,
2013.

[30] “TouSIX Official Website,” http://www.touix.net/en/content/
tousix-project, [Online; accessed 13-Feb-2017].

[31] C. Dietzel, G. Antichi, I. Castro, E. L. Fernandes, M. Chiesa, and
D. Kopp, “SDN-enabled Traffic Engineering and Advanced Blackholing
at IXPs,” in SOSR. ACM, 2017.

9

Gianni Antichi is Senior Research Associate in the
System Research Group at the Computer Laboratory,
University of Cambridge, UK. He is also an ONF
(Open Networking Foundation) research associate.
His research spans the area of reconfigurable hard-
ware, high speed network measurements and Soft-
ware Defined Networking.

Ignacio Castro received his Ph.D. degree while
researching at the Institute IMDEA Networks. He is
currently a postdoctoral researcher at Queen Mary
University of London. His research interests focus
on the economics of Internet interconnections.

Marco Chiesa is an Assistant Professor at the KTH
Royal Institute of Technology, Sweden. His research
interests include routing optimization and security.
Chiesa received a Ph.D. in computer science and
engineering from Roma Tre University in 2014. He
is a member of IEEE and ACM.

Eder L. Fernandes received a MSc degree from the
Universidade of Campinas (UNICAMP) in 2014 and
worked for three years doing Research and Develop-
ment on Software Defined Networking (SDN) for the
industry. His current PhD research at Queen Mary
University of London is focused on a new model to
speed up reproduction of SDN experiments.

Remy Lapeyrade received his engineering diploma
in computer networks and telecommunications from
UPSSITECH, France. He is currently pursuing his
Ph.D.in LAAS-CNRS, France. His research is fo-
cused on improving scalability, resiliency and secu-
rity of Internet eXchange Point networks using SDN
technologies.

Daniel Kopp Daniel Kopp is a member of the DE-
CIX Research and Development team since 2015.
He participates in several national and international
research activities, such as EU or federal funded
projects. His research interests are Internet and net-
work measurements, as well as Internet and com-
puter security. He actively contributes to the Internet
and networking community (e.g., RIPE, NANOG,
DENOG), and is also involved in standardization
activities (IETF). Prior to his work at DE-CIX he
collected relevant experience for over 8 years in the

industry and received his M.Sc. in 2015

Jong Hun Han is a Research Associate at the
Networks and Operating Systems group in the Com-
puter Laboratory at the University of Cambridge,
United Kingdom. His research interests include
high-performance software defined networking hard-
ware, rapid prototyp platform for digital communi-
cation systems, and System-on-Chip architecture. He
received a PhD in School of Electronics Engineering
from the University of Edinburgh.

Marc Bruyere started his career in 1996 working for
Club-Internet.fr, and for Cisco, Vivendi Universal,
Credit Suisse First Boston, Airbus/Dimension Data,
Force10 Networks, and Dell. He received is Ph.D
degree from the LAAS CNRS, his thesis is about
Open Source OpenFlow SDN for IXPs. He designed
and deployed the first European OpenFlow IXP
fabric for the TouIX. Now he is a PostDoc at the
University of Tokyo.

Christoph Dietzel is Head of the Research & De-
velopment Department at DE-CIX. Prior to his pro-
motion in February 2017, he was a part of the R&D
team and responsible for several research initiatives,
including numerous projects funded by the public
sector (EU, German Federal Ministries). Chris is a
PhD student in the INET group, advised by Anja
Feldmann at Technische Universitt Berlin, since the
end of 2014. His ongoing research interests focus on
Internet measurements/security, routing, and traffic
classification. Chris is also highly interested in IXP-

related aspects of the Internet ecosystem.
Mitchell Gusat is a researcher at the IBM Zurich
Research Laboratory. His current focus is on dat-
acenter performance, flow and congestion controls,
machine learning and feedback. He has contributed
to the design and standardization of CEE, IBA and
RapidIO - while also advising Master and PhD
students from several European universities. He is
member of ACM, IEEE, and holds a few dozen
patents related to SDN, transports, HPC architec-
tures, switching and scheduling.

Andrew W. Moore the reader in systems at the
University of Cambridge, U.K., where he jointly
leads the Systems Research Group working on issues
of network and computer architecture with a partic-
ular interest in latency-reduction. His research con-
tributions include enabling open network research
and education using the NetFPGA platform; other
research pursuits include low-power energy-aware
networking, and novel network and systems data
center architectures.

Philippe Owezarski is director of research at CNRS
(the French center for scientific research), working
at the Laboratory for Analysis and Architecture of
Systems, Toulouse, France. He received a Ph.D.
in computer science in 1996 from Paul Sabatier
University, Toulouse III, and his habilitation for ad-
vising research in 2006. His main interests deal with
next generation Internet, more specifically taking
advantage of IP networks monitoring and machine
learning for enforcing quality of service and security.

Steve Uhlig received a Ph.D. degree in applied
sciences from the University of Louvain (2004). He
is currently a Professor of Networks at Queen Mary
University of London. His research interests are
focused on the large-scale behaviour of the Internet,
Internet measurements, software-defined network-
ing, and content delivery.

Marco Canini is an assistant professor in computer
science at King Abdullah University of Science
and Technology (KAUST). His research interests
include software-defined networking and large-scale
and distributed cloud computing. He received a
Ph.D. in computer science and engineering from the
University of Genoa. He is a member of IEEE, ACM
and USENIX.

