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ABSTRACT
Updating data plane state to adapt to dynamic conditions is
a fundamental network control operation. Software-Defined
Networking (SDN) offers abstractions for updating network
state while preserving consistency properties. However,
realizing these abstractions in a purely centralized fashion
is inefficient, due to the inherent delays between switches
and the SDN controller, we argue for delegating the
responsibility of coordinated updates to the switches. To
make our case, we propose ez-Segway, a mechanism that
enables decentralized network updates while preventing
forwarding anomalies and avoiding link congestion. In our
architecture, the controller is only responsible for computing
the intended network configuration. This information is
distributed to the switches, which use partial knowledge and
direct message passing to efficiently schedule and implement
the update. This separation of concerns has the key benefit
of improving update performance as the communication and
computation bottlenecks at the controller are removed. Our
extensive simulations show update speedups up to 2x.

CCS Concepts
•Networks → Network dynamics; Network protocol
design; Network manageability;

Keywords
Software-defined networking; decentralized network update

1. INTRODUCTION
Many recent SDN systems have demonstrated the value

of centrally controlling networks [6, 11, 13, 14, 19, 31]. We
observe, like others before us [7, 16, 20, 29], that regardless
of their goals, such systems operate by frequently updating
the network configuration, either periodically or in reaction
to events such as failures, load changes or routing policy
changes. Updating network configuration is inherently
challenging because it involves performing operations across
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different unsynchronized devices in multiple steps, each of
which must be planned to avoid forwarding anomalies (such
as loops and black-holes) or congestion.

Previous works have proposed mechanisms to update
the network while retaining certain consistency properties
during the configuration changes [16, 18, 20, 21, 24, 27, 29].
However, all these approaches have always commonly
assumed that the SDN controller actively drives the update
of network configuration by (i) scheduling each step, (ii)
sending rule updates to the switches, and (iii) pausing when
necessary to await acknowledgments from switches. In other
words, the switches just behave as remote passive nodes that
the controller writes state to and is notified from.

This controller-driven update process has three important
drawbacks: First, because the controller is involved
with the installation of every rule, the update time is
inflated by inherent delays affecting communication between
controller and switches. As a result, even with state-of-art
approaches [16], a network update typically takes seconds
to be completed (recent results [16] shows 99th percentiles
as high as 4 seconds). Second, because scheduling updates
is computationally expensive [16, 24, 27], the update time is
slowed down by a centralized computation. Third, because
the controller can only react to network dynamics (e.g.,
congestion) at control plane timescales, the update process
cannot quickly adapt to current data plane conditions.

Performing network updates in a fast manner is a
fundamental requirement in many critical scenarios. For
example, when network devices fail, network operators
rely on fast-failover techniques to preserve connectivity [8,
28]. These techniques consist in precomputing a backup
forwarding state, which relies on local information at each
switch. Since these backup forwarding states are not
globally optimized, a fast network update towards a global
optimal state reduces the period during which users would
experience a worsened network service. Second, when
network devices detect unusual traffic, there is a desire to
reroute some flows through a set of security devices that
would perform further analysis. By quickly updating the
network state, the mitigation of an attack is more effective
due to the faster adaption to the new network configuration.

In contrast with prior methods, we investigate the
prospect of delegating the responsibility of consistent
updates to the switches with the goal of achieving faster
network updates completion time. We propose a distributed
network update architecture wherein the controller is
only responsible for computing the intended network
configuration and pre-computing information needed by the



switches to schedule network update operations. The actual
update function is realized by the switches, which coordinate
execution of an update for the entire network using the
information received by the controller and direct message
passing among switches. This allows every switch to update
its local forwarding rules as soon as the update dependencies
are met (i.e., when a rule can only be installed after
dependent rules are installed at other switches), without
any need to coordinate with the controller. We posit
this approach leads to faster network updates, reduces the
number of exchanged messages in the network, and has low
complexity for the scheduling computation.

We argue that this approach is practical and supported
by several recent trends that have demonstrated switch
designs [1, 2, 4, 15] far more programmable when compared
to OpenFlow switches (that are limited to a simple
match-action paradigm). Moreover, networking industry
is pursuing new open source operating systems and
custom applications running on network switches [3,10,26].
For example, Facebook is already capable of executing
custom software logic on switches to support their network
management, automation and monitoring platform [9].

We formulate the distributed network update problem
(§2) based on a model that has several distinctions from
previous ones (e.g., [7, 16, 29]). Our model allows us to
solve potential link congestion by carefully splitting traffic
aggregates volumes, and to leverage “flow segmentation”, a
novel approach to speed up the update of a single flow by
parallelizing its update operations.

The paper contributions are summarized as follows:

• We introduce ez-Segway (§3-§4), a consistent update
scheduling mechanism that runs as software on
switches, initially coordinated by a centralized SDN
controller. Our algorithms enable decentralized
network updates that avoid any forwarding anomalies
and avoid link congestion while allowing flexible
scheduling according to dynamic traffic condition.

• We assess our system by running a comprehensive set
of large scale simulations (§5) on various topologies and
standard traffic patterns, which show that ez-Segway
speeds up update time to 2x.

2. NETWORK UPDATE PROBLEM
We start by formalizing the network update problem and

the properties we are interested in. The network consists of
switches S = {si} and directed links L = {`i,j}, in which
`i,j connects si to sj with a certain capacity.

Flow modeling. We use a the standard model for
characterizing flow traffic volumes as in [13, 16]. A flow F
is an aggregate of packets between an ingress switch and an
egress switch. Every flow is associated with a traffic volume
vF . In practice, this volume could be an estimate that
the controller computes by periodically gathering switch
statistics [16] or based on an allocation of bandwidth
resources [14]. The forwarding state of a flow consists of an
exact match rule that matches all packets of the flow. As in
previous work [16], we assume that flows can be split among
paths by means of weighted load balancing schemes such as
WCMP or Openflow-based approaches like Niagara [17].

Network configurations and updates. A network
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Figure 1: A network update with splittable deadlock.

configuration C is the collection of all forwarding states that
determine what and how packets are forwarded between
any pair of switches (e.g., match-action flow table rules
in OpenFlow). Given two network configurations C,C′, a
network update is a process that replaces the current network
configuration C by the target one C′.

Properties. We focus on three properties of network
updates: i) black-hole freedom: For any flow, no packet is
unintendedly dropped in the network; ii) loop-freedom: No
packet should loop in the network; iii) congestion-freedom:
No link should be loaded with a traffic greater than its
capacity. These properties are the same as the ones studied
in [23]. We allow a flow to be routed through a mix of the old
and new path configuration, unless other constraint make it
impossible (e.g. set of middle-boxes must be visited in a
reversed order in two configurations).

Update operations. Due to link capacity limits and
the inherent difficulty in synchronizing the changes at
different switches, the link load during an update could get
significantly higher than that before or after the update and
all flows of a configuration cannot be moved at the same
time. Thus, to minimize disruptions, it is necessary to
decompose a network update into a set of update operations
Π. Intuitively, an update operation π is the operation
necessary to move a flow F from the old to the new
configuration: in the context of a single switch, this refers
to the addition or deletion of F ’s forwarding state for that
switch. In order to prevent a violation of our properties,
update operations are constrained in the order of their
execution. These dependencies can be described with the
help of a dependency graph (defined later). At anytime,
only the update operations whose dependencies are met in
the dependency graph are possibly executed. That leads
the network to transient intermediate configurations. The
update is successful when the network is transformed from
the current configuration C to the target one C′ such that
for all intermediate configurations, the aforementioned three
properties are preserved.

Dealing with deadlocks. We say that a network
configuration is in a deadlock configuration if any further
execution of an update operation will cause a violation of
any desired property.

Unfortunately, similarly to the centralized setting [16],
some network updates are not feasible: that is, even if the
initial and target configuration do not violate any of the
three property, there exists no ordering of update operations
to reach the target. For example, consider an example
based on the network of seven switches s1, · · · , s7 shown
in Figure 1. Assume each link has 10 units of capacity and
there are several traffic aggregates FR,FG,FB ,FN depicted
with red, green, blue, and black colors, respectively, each
of size 4. This means that every link can carry at most 2
flows at the same time, assuming that flows cannot be split.
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Figure 2: Dependency graph of deadlock cases.

We denote a path through a sequence of nodes s1, . . . , sn by
(s1 . . . sn). The network configuration needs to be updated
from C1 to C′

1. If we first move FR, `2,6 becomes congested;
if we first move FB , `2,3 becomes congested.

Even worse, computing a feasible schedule where flows
cannot be fractionally split is a hard problem even in the
centralized setting: it is NP-complete in the presence of
both link capacity and switch memory constraints, and
finding the fastest schedule with link capacity constraints is
NP-complete [16]. To resolve deadlocks, typical approaches
consist of reducing flow rates or pre-emptively reserving
some spare capacity in order to continue an update without
congesting a link; however, this comes at the cost of lower
network throughput. Deadlocks pose an important challenge
for us as a decentralized approach is potentially more likely
to enter deadlocks due to the lack of global information.

The dependency graph. The dependency graph captures
the set of dependencies between network update operations
and available link capacities in the network. Given a pair
of current and target configurations C,C′, any execution of
network operation π (i.e., updating a part of flow to its
new path) requires some link capacity from the links on
the new path and releases some link capacity on the old
path. We formalize these dependencies in the dependency
graph, which is a bipartite graph G(Π, L, Efree, Ereq), where
the two subsets of vertices Π and L represent the update
operation set and the link set, respectively. Each link vertex
`i,j is assigned a value representing its current available
capacity. The two subsets of edges are defined as follows:

• Efree is the set of directed edges from vertices in Π to
vertices in L. A weighted edge with value v from π to
a link `i,j represents the increase of available capacity
of v units at `i,j by performing π.

• Ereq is the set of directed edges from vertices L to
vertices Π. A weighted edge with value v from link
`i,j to π represents the available capacity at `i,j that
is needed to execute π.

In Figure 2a, we show a subgraph of the dependency graph
derived from the initial configuration of Figure 1 in which
we only highlight links `6,3, `2,6, and `2,3 plus the update
operation for moving the blue flow FB and the red flow FR.
Observe that none of the update operations can be fully
performed in single update operations since the required
bandwidth (i.e., 4 units) is higher that the available one
(i.e., 2 units) and partially moving a fraction of a flow is not
allowed. We will show how splitting traffic volume can solve
these types of deadlocks in the next section.

3. EZ-SEGWAY
ez-Segway is a mechanism that allows network operators

to update the forwarding state in a fast, consistent manner:
it improves update completion time while preventing
forwarding anomalies (i.e., black-hole, loops), and avoiding
the risk of link congestion.
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Figure 3: A network update with segment deadlock.

To speed up network updates, we leverage two new ideas.
First, we can complete an update faster by using in-band
messaging between switches instead of coordinating the
update at the controller, which pays the costs of higher
latency. Second it uses flow segmentation, which allows us to
split a single flow update into different independent chunks
that can be updated independently from each other.

To deal with deadlocks, we both use flow segmentation
and volume splitting, which divides a flow’s traffic onto its
old and new paths to resolve a deadlock. We discuss the
aforementioned techniques in the rest of this section.

3.1 Decentralizing Consistent Updates
ez-Segway advocates that a small number of crucial

update operations should be performed within the switches.
The central controller pre-computes information needed by
the switches to schedule network update operations and
transmit it to them. The actual update function is realized
by the switches, which are then able to schedule network
update operations without interacting anymore with the
controller. The set of functions at switches encompasses
simple message exchange among adjacent switches and a
greedy selection of update operations to be executed based
on the scheduling information provided by the controller.
These functions are computationally inexpensive and easy
to implement in currently available programmable switches.

We describe the execution of a decentralized network
update for the example of Fig. 3, where each flow has size 5.
The network configuration needs to be updated from C2 to
C′

2. Note that we cannot simply transition to C2 by updating
all the switches at the same time. Since switches apply
updates at different time, such a strategy can neither ensure
congestion freedom nor loop- and black-hole- freedom. For
example, if s2 forwards FB on link `2,3 before FR is updated,
then that link would become congested. Moreover, if s2 is
updated to forward FR on link `2,6 before the forwarding
state for FR is installed at s6, this results in a blackhole.

In ez-Segway, initially, the controller sends to every switch
a message containing the dependency graph of the network
update from the current configuration C2, and the target
configuration C′

2. This information allows every switch to
compute what forwarding state to update (by knowing which
flows traverse it and their sizes) as well as when each state
update should occur (by obeying operation dependencies
while coordinating with other switches).

In the example, switch s6 infers that link `6,3 has enough
capacity to carry FR and that its next hop switch, s3, is
already capable of forwarding FR (because the flow traverses
it in both old and new configurations). Therefore, s6
reserves 5 units of bandwidth for FR and notifies s2 about
this information. As a consequence, s2 also infers that
link `2,6 has enough capacity to carry FR so it updates
its forwarding state so as to move FR from path (s2s3) to
(s2s6s3). Similarly, s3 updates its forwarding state for FB

to flow on (s3s7s4) instead of (s3s4).
Now, s2 infers that link `2,3 has enough capacity to carry



FB . So, s2 updates its forwarding state so as to move FB

from path (s2s6s3) to (s2s3) and communicate to s6 that it
is now safe to remove its forwarding entry for FB . Similarly,
s3 infers that link `3,4 has enough capacity to carry FR.
Therefore, s3 updates its forwarding state so as to move FR

from path (s3s7s4) to (s3s4) and communicate to s7 that it
is now safe to remove its forwarding entry for FR.

Notice that several update operations can run in parallel
at multiple switches. However, whenever operations have
unsatisfied dependencies, switches must coordinate. In this
example, the longest dependency chain involves the three
operations that must occur in sequence at s2, s6, and s2
again. So, the above strategy accumulates the delay for the
initial message from the controller to arrive at the switches
plus a round-trip delay between s2 and s6. In contrast, if
a centralized approach performed the update following the
same schedule, the update time would be affected by the
sum of three round-trip delays (two to s2 and one to s6).

3.2 Flow Segmentation
Our segmentation technique provides two benefits: it

speeds up the update completion time of a flow to its new
path and it reduces the risk of update deadlocks due to
congested links by allowing a more fine-grained control of
the flow update. Segment identification is performed by the
controller when a network state update is triggered. We
first introduce the idea behind segmentation with simple
examples and then provide formal definitions. The example
discussed in the previous paragraphs already leveraged
the idea of partitioning an update operation into several
different independent “segments”. We first discuss a simple
distributed approach to update a flow and we then show how
segmentation can help in speeding up a flow update.

Update operation in the distributed approach.
Consider the same update problem depicted in Figure 3
where a flow FB needs to be moved from the old path
(s1s2s6s3s4) to the new path (s1s2s3s7s4). A simple
approach would work as follows. A message is sent from s4 to
its predecessor on the new path (i.e., s7) for acknowledging
the beginning of the flow update. Then, every switch that
receives this message forwards it as soon as it installs the
new rule for forwarding packets on the new path. Since the
message traverses in the reverse direction of the new path,
the reception of such message guarantees that each switch
on the downstream path consistently updated its forwarding
table to the new path, thus preventing any risk of black-holes
or forwarding loops. Once the first switch of the new path
(i.e., s1) alters to the new path, a new message is sent from
s1 towards s2 along the old path for acknowledging that no
packets will be forwarded anymore along the old path, which
can be therefore safely removed. Every switch that receives
this new message removes the old forwarding entry of the
old path and afterwards forwards it to its successor on the
old path. We call this migration technique from an old path
to the new one Basic-Update. It is easy to observe that
Basic-Update prevents forwarding loops and black-holes.

Segmentation approach. It can be observed that the
whole flow update operation for FB could be performed
faster. With segmentation the subpath (s2s6s3) of the old
path can be updated with Basic-Update to (s2s3) while
at the same time the subpath (s3s4) of the old path is
updated with Basic-Update to (s3s7s4). In fact s2 does
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Figure 4: Deadlock solvable by segmentation

not have to wait for s3 to update its path since s3 is
guaranteed to have a forwarding path towards s4 both in
the old and new configuration. Moreover, since flow FB

does not change between s1 and s2, we can ignore that part
of the update. This technique allows us to update a flow into
several independent “flow segments”, which can be treated
as if they are independent flows to be updated. Segments
can be created by looking for common vertices in the initial
and target configuration, paying attention to some edge
cases in which forwarding loops may arise1. By splitting
a flow update operation into multiple parallel flow update
operations we can speed up the network update completion
time. Coming back to the example given in Section 3, we
show a subset of its dependency graph in Figure 4a where πR

(πB) represents the update operation of the red (blue) flow
and πB . This dependency graph is in a deadlock state since
neither the red nor the blue flow can be updated. However,
as discusses before, if we allow a packet to be carried in the
mix of the old and the new path of the same flow, this kind
of deadlock is solvable by using segmentation. ez-Segway
decomposes this deadlocked graph into two non-deadlocked
dependency graphs as shown in Figure 4b and 4c, where πR,1

and πB,1 (respectively πR,2 and πB,2) represent the update
operation of the red and blue segments from s2 to s3 (resp.
from s3 to s4). Segmentation can therefore be used to both
speed up an update and resolve deadlocks.

3.3 Splitting Volume
In Figure 1, every flow has size 4. This case presents

a deadlock because we cannot move FR first without
congesting `2,6 or move FB first without congesting `2,3.
We resolve this deadlock by splitting the flows. Switch s2
infers that `2,3 has 2 units of capacity and starts moving the
corresponding fraction of FB onto that link. This movement
gives sufficient capacity to move FR to `2,6. Once FR is
moved, there is sufficient capacity to complete the mode
of FB . Note that, we could even move 2 units of FR

simultaneously to moving two units of FB , before the update
completes as before. This is what our decentralized solution
would actually do. The deadlock would not be splittable if
the capacity of the links were 8, as shown in Figure 4a.

3.4 Scheduling
Before introducing our scheduling algorithm, we first

categorize the space of possible deadlocks. If a deadlock can
be solved by splitting volumes, we say that the deadlock is
splittable. In ez-Segway, if a switch s detects a deadlock, it
looks for a flow Fp that can be split onto the new segment.
This is taken as the minimum of the available capacity on the
s’s outgoing link and the necessary free capacity for the link
in the dependency cycle to enable another update operation
at s. An unsplittable deadlock corresponds to the state in

1Due to space constraints we do not discuss these cases here.



which there is a cycle in the dependency graph where each
link has zero residual capacity and it is not possible to release
any capacity from the links in the cycle. In these cases,
ez-Segway relies of rate limiting to solve the deadlock.

We now introduce our scheduling heuristic, called
ez-Schedule, whose goal is to perform a congestion-free
update as fast as possible. The main goal is to avoid both
unsplittable deadlocks, which can only be solved by violating
congestion-freedom, and splittable deadlocks, which require
more iterations to perform an update since flows are not
moved in one single phase.

ez-Schedule works as follows. It receives as input an
instance of the network update problem where each flow
is already decomposed into segments. Each flow segment
is updated with Basic-Update, which means that each
flow segment is updated directly from its old path to the
new one as long as there is enough spare capacity. Hence,
each segment corresponds to a network update node in
the dependency graph of the input instance. Each switch
assigns to every segment that contains the switch in its new
path a priority level based on the following key structure
in the dependency graph. An update operation π in
the dependency graph is critical at a switch s if (i) s is
the first switch of the segment to be updated, and (ii)
executing π frees some capacity that can directly be used
to execute another update operation that would otherwise
be not executable (i.e., even if every other update operation
could be possibly executed). A critical cycle is a cycle that
contains a critical update operation.

ez-Schedule assigns low priority to all the update
operations that do not belong to any cycle in the dependency
graph. These update operations consume useful resources
that are needed in order to avoid splittable deadlocks and,
even worse, unsplittable deadlocks, which correspond to
the presence of cycles with zero residual capacities in the
dependency graph, as previously described. We assign
medium priority to all the remaining segments that belong
only to non-critical cycles, while we assign higher priority
to all the updates that belong to at least one critical cycles.
This guarantees that updates belonging to a critical cycle
are executed as soon as possible so that the risk of incurring
in a splittable or unsplittable deadlock is reduced. Each
switch schedules its network operations as follows. It only
considers segments that needs to be routed through its
outgoing links. Among them, segment update operations
with lower priority should not be executed before operations
with higher priority unless a switch detects that there
is enough bandwidth for executing a lower level update
operations without undermining the possibility of executing
higher priority updates when they will be executable. We
run a simple Breadth-First-Search (BFS) tree rooted at
each update operation node to determine which update
operations belong to at least one critical cycle.

We can prove that ez-Schedule is correct, i.e., as long
as it there is an executable network update operation there
is no congestion in the network, and that the worst case
complexity for identifying a critical cycle for a given update
operation is O(|Π|+|L|+|Π|×|L|)'O(|Π|×|L|). So, for all
update operations the complexity is O(|Π|2×|L|).

Theorem 1. ez-Schedule is correct for the network
update problem.

4. DISTRIBUTED COORDINATION

This section describes the mechanics of coordination
during network updates.

First phase: the centralized computation. As
described in § 3.2, to avoid black-holes and forwarding loops,
each single segment can be updated using a Basic-Update.
Dependencies among update operations are enforced by
their priorities (i.e., low, medium, high), which are
computed by the controller and transmitted to each switch.

Second phase: the distributed computation. Each
switch s receives from the centralized controller the following
information regarding each single segment S that traverses
s in the new path: its identifier, its priority level, its amount
of traffic volume, the identifier of the switch that precedes
(succeeds) it along the new and old path, and whether the
receiving switch is the initial or final switch in the new path
of S and in the old and new path of the flow that contains S
as a segment. Each switch in addition knows the capacity of
its outgoing links and maintains memory of the amount of
capacity that is used by the flows at each moment in time.

Upon receiving this information, for each segment S,
each switch prepares for performing two actions: installing
the new path of S and removing the old one. The
messages exchanged by the switches for performing these
two operations are described in the next two paragraphs.

Installing the new path of a segment. The
installation of the new path is performed by iteratively
reserving along the reversed new path the bandwidth
required by the new flow. The last switch on the new path
of segment S sends a GoodToMove message to its predecessor
in the new path, which acknowledges the receiver that the
downstream path is ready to carry the traffic volume of S.
Upon receiving a GoodToMove message for S, a switch checks
if there is enough bandwidth on the outgoing link to execute
the update operation. If not, it freeze the update operation
until there is enough spare bandwidth. If there is enough
bandwidth, it checks if there are update operations that
require the outgoing link and have higher priority than S. If
not, the switch executes the update operation. Otherwise, if
the residual capacity of the link minus the traffic volume of
S does not prevent any higher level update operation to be
executed in the future, it executes the update operation.
If the switch performs the update operation, it updates
the residual capacity of the outgoing link and it sends a
GoodToMove message to its predecessor along the new path
of S. If the switch has no predecessor along the new path of
S (i.e., it is the first switch of the new path of S), it sends
a Removing message to its successor in the old path.

Removing the old path of a segment. Upon receiving
a Removing message for a segment S, if the receiving switch
is not a switch in common with the new path, it removes
the entry for the old path and it forwards the message
to its successor in the old path. If the switch removed
the old path, it updates the capacity of its outgoing links
and checks whether there was a dependency between the
segment that was removed and any segment that can be
executed at the receiving switch. In that case, it executes
these update operations according to their priorities and the
residual capacity (as explained above) and propagates the
GoodToMove that were put on hold.
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Dealing with failures. As with a centralized approach,
if a switch or link fails during an update, a new valid target
configuration must be computed. We stress the fact that
the decentralized approach of ez-Segway is responsible for
moving from one initial configuration to the final one but
not for computing them. We believe that controller is the
best place to re-compute a new global desired state and start
a new update. Note that in the presence of a switch or link
failure, our update process stops at some intermediate state.
Once the controller is notified of the failure, it queries the
switches to know which update operations were performed
and uses this information to reconstruct the current network
state and compute the new desired one.

As for the messages between switches, we posit that these
packets are sent with the highest priority so that they are
not dropped due to congestion and that their transmission
is retried if a timeout expires before an acknowledgment is
received. When a message is not delivered for a maximum
number of times, we behave as though the link has failed.

5. LARGE-SCALE SIMULATIONS
Using simulations, we compare ez-Segway versus a

centralized approach that runs the same scheduling
algorithm of ez-Segway but coordination among the switches
is delegated to a central controller. This approach is a
close approximation of Dionysus [16], the only deviation is
segmentation to speed up update time.

We measure the total update time to install updates on
6 real topologies annotated with link delays and weights as
inferred by the RocketFuel engine [22]. We set link capacities
between 1 ∼ 100Gbps, inversely proportional to weights. We
place the controller at the centroid switch. We stresst the
fact that this is the best setting for centralized approach,
which are unlikely to happen in practice.

Following the methods in [12], we generate all flows of
a network configuration by selecting non-adjacent source
and destination switch pairs at random and assigning them
a traffic volume based on the gravity model [30]. For a
given source-destination pair, we compute a path by first
selecting a third transit node at random and then computing
a cycle-free shortest path that contains the three nodes
If it does not exist, we choose a different random transit
node. We guarantee that the latency of the chosen paths
is at most a factor of 1.5 greater than the latency of the
source-destination shortest path and that there is sufficient
capacity to route the flow on the chosen path.

We run simulations for a number of flows varying from
500 to 1500 and report results for 1000 flows as we observed
qualitatively similar behaviors. We generate updates by
simulating link failures such that they cause a certain
percentage p of flows to be rerouted along new shortest
paths. We ran experiments for 10%, 25%, 50%, and 75%;
for brevity, we report results for 25% and 75%. For every

setting of topology, flows, and failure rate, we generate 10
different pairs of old and new network configurations, and
report the average update completion time and its standard
deviation. Fig. 5 shows our results, which demonstrate that
ez-Segway reduces the update completion time by a factor
of 1.5− 2. We want to stress the fact that the main limiting
factor for further reducing the update completion time in
ez-Segway is the latency due to the physical propagation
delay of the messages, which cannot be reduced.

6. RELATED WORK
The network update scheduling problem has been widely

studied in the last years [5,7,16,18,20,24,25,27,29,32]. These
works use centralized approaches based on the SDN control
plane to preserve the logical constraints of network update.
The approaches only consider the case where every flow
can be atomically updated as a whole, which increases the
number of deadlock scenarios. In contrast, ez-Segway tackles
the network update problem in a decentralized manner,
allows flow segmentation, splitting of traffic volumes. To the
best of our knowledge, ez-Segway is the first system solving
the network update problem with a distributed approach.

The works in [5,16] show that without splitting a flow the
general network update problem, and some of its variations,
are NP-hard. A centralized scheduling algorithm, called
Dionysus [16], that updates flows atomically. It computes
a dependency graph that represents the dependencies of the
flow update operations with respect to the link capacity
resource available in the network. This dependency graph is
used by the centralized SDN control plane to perform update
operations with a flexible scheduling based on the actual
finishing time of update operations across switches.

In a very recent work, both segmentation and splitting
volumes techniques have been independently proposed to
solve deadlocks [32]. However, these techniques are used in
a centralized setting, hence missing the importance of using
segmentation for speeding up a distributed network update.

7. CONCLUSION
This paper explored delegating the responsibility of

consistent updates to the switches. We proposed ez-Segway,
a decentralized mechanism where the controller only
computes the desired network configuration and switches
have an active role to realize consistent network updates that
provably satisfy four properties: black-hole freedom, loop
freedom, and congestion freedom. In practice, this approach
leads to improved update times, which we quantified via
simulation on a range of network topologies and traffic
patterns. As part of our ongoing work, we are also deploying
our approach on a real switch to investigate the feasibility
and low computational overhead.
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