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Abstract—Powerful computer clusters are used nowadays to
train complex deep neural networks (DNN) on large datasets.
Distributed training increasingly becomes communication bound.
For this reason, many lossy compression techniques have been
proposed to reduce the volume of transferred data. Unfortunately,
it is difficult to argue about the behavior of compression methods,
because existing work relies on inconsistent evaluation testbeds
and largely ignores the performance impact of practical system
configurations. In this paper, we present a comprehensive survey
of the most influential compressed communication methods for
DNN training, together with an intuitive classification (i.e., quan-
tization, sparsification, hybrid and low-rank). Next, we propose
GRACE, a unified framework and API that allows for con-
sistent and easy implementation of compressed communication
on popular machine learning toolkits. We instantiate GRACE
on TensorFlow and PyTorch, and implement 16 such methods.
Finally, we present a thorough quantitative evaluation with a va-
riety of DNNs (convolutional and recurrent), datasets and system
configurations. We show that the DNN architecture affects the
relative performance among methods. Interestingly, depending on
the underlying communication library and computational cost of
compression / decompression, we demonstrate that some methods
may be impractical. GRACE and the entire benchmarking suite
are available as open-source.

Index Terms—Survey, Distributed Machine Learning, Deep
Learning, Gradient Compression, Benchmark.

I. INTRODUCTION

Deep Neural Networks (DNNs) are becoming more complex.
For example, ResNet-152 has 152 layers and 60.2M parameters
[1], VGG-19 has 19 layers and 143M parameters [2], while
BERT-Large has 24 layers and 340M parameters [3]. Combined
with the large sizes of the training sets, parallelism during
training becomes a necessity. Consequently, popular deep
learning toolkits, including TensorFlow, PyTorch and MXNet,
support data parallelism1: The DNN model under training is
replicated in several compute nodes, a.k.a. workers, typically
equipped with powerful GPUs. Each worker independently
processes a partition of the data called mini-batch. Then,
local intermediate results (typically, the local gradients) are
exchanged through the network, and the aggregated values are
sent back to the workers; the process is repeated over many
epochs (i.e., full iterations of the training data).

Since the above-mentioned communication involves large
amounts of data, the network becomes the bottleneck [5]–
[7]. Luo et al. [5] argue that computation speed improves

1Model and pipeline parallelism [4], which partition one replica of the model
to multiple compute nodes, is orthogonal to data parallelism, but outside the
scope of this paper.
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Fig. 1: Top-1 accuracy for VGG16 on CIFAR-10 with TensorFlow on 8
workers via 25 Gbps network links. In (b) Randk converges in 450s, but
8-bit quantization needs 1200s.

faster than network bandwidth; therefore, modern GPUs (e.g.,
NVIDIA V100) experience long idle times while waiting
for communication. This causes inefficient utilization of the
computational resources, longer training times and/or higher
financial cost for cloud-based operations.

To alleviate this problem, many works propose lossy compres-
sion during communication, to reduce the volume of transferred
data. Typically, the so-called back-propagation phase of DNN
training employs variants of the Stochastic Gradient Descent
(SGD) [8] optimizer. Since training is stochastic in nature,
intuitively, it should manage to converge despite the small errors
introduced by the lossy compression. We identify four main
classes of compressors in the literature: (i) Quantization [9]–
[14], which reduces the number of bits of each element in the
gradient tensor (e.g., cast float32 to float8); (ii) Sparsification
[15]–[19], which transmits only a few elements per tensor (e.g.,
only the top-k largest elements); (iii) Hybrid methods [20]–
[24], which combine quantization with sparsification; and (iv)
Low-rank methods [25]–[28], which decompose the gradient
into low-rank matrices.

Despite the abundance of compressed communication meth-
ods, it is unclear which one is more suitable and under what
circumstances, or what the relative trade-offs are. Figure 1
demonstrates the problem on a standard TensorFlow benchmark
(see §V for details) running on 8 workers with NVIDIA
V100 GPUs and 25 Gbps network. Two common compres-
sion methods, Random-k [17] and 8-bit quantization [11],
are compared against a baseline without compression. Most
existing papers present an accuracy versus training epochs
analysis, similar to Figure 1a, which shows almost equivalent
effectiveness for all methods. However, in practice, users
care about the actual elapsed time of the training process,
shown in Figure 1b. Random-k converges in roughly 450 s



TABLE I: Classification of surveyed gradient compression methods. Note that ‖g̃‖0 and ‖g‖0 are the number of elements in the compressed and
uncompressed gradient, respectively; nature of operator Q is random or deterministic; EF-On indicates if error feedback is used in our experiments.
We implement 16 methods on TensorFlow and PyTorch.

Compression Ref. Similar Methods ‖g̃‖0 Nature of Q EF-On Implementation
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8-bit quantization [11] ‖g‖0 Det TFlow
1-bit SGD [13] [10], [21], [24] ‖g‖0 Det TFlow, PyTorch
SignSGD [10] [13], [29] ‖g‖0 Det 5 TFlow, PyTorch
SIGNUM [30] [10], [29] ‖g‖0 Det 5 TFlow, PyTorch

QSGD [9] [14], [27], [31]
[32]–[34] ‖g‖0 Rand 5 TFlow, PyTorch

LPC-SVRG [33] [9], [31], [34] ‖g‖0 Rand
Natural [31] [9], [33], [34] ‖g‖0 Rand TFlow, PyTorch
TernGrad [14] [9], [27], [33] ‖g‖0 Rand 5 TFlow, PyTorch
EFsignSGD [12] [29] ‖g‖0 –NA– TFlow, PyTorch
INCEPTIONN [35] ‖g‖0 Det 5 TFlow
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n

Random-k [17] k Rand TFlow, PyTorch
Top-k [15] [17] k Det TFlow, PyTorch
Threshold-v [36] [15] Adaptive Det TFlow, PyTorch
Deep Gradient (DGC) [16] Adaptive Det TFlow, PyTorch
Adaptive sparsification [19] [27] Adaptive Rand
Variance-based sparsification [18] Adaptive Det
Sketched-SGD [37] [15], [17] k Det

H
yb

ri
d

Adaptive threshold SGD [21] [10], [13], [24] Adaptive Det TFlow
SketchML [22] [21], [24] Adaptive Rand TFlow
3LC [23] [14] Adaptive Det
Qsparse-local-SGD [20] Adaptive Rand

L
ow

R
an

k ATOMO [27] [19] sparsity budget Rand
GradiVeQ [28] [27] (m+ L)r Det
PowerSGD [26] [25] (m+ L)r Det TFlow, PyTorch
GradZip [25] [26] (m+ L)r Det

and is obviously preferable than the baseline that requires
850 s. Interestingly, 8-bit quantization converges after 1200 s,
rendering it worse than using no compression at all.

In general, the majority of the existing work exhibits one or
more of the following shortcomings: (i) Theoretical analysis
is based on unrealistic assumptions, such as convexity; (ii)
Implementation is stand-alone and does not reflect real-world
scenarios that utilize one of the popular deep learning toolkits;
(iii) Experimental evaluation ignores the computational cost of
compression/decompression, which, in some cases, is larger
than the savings by the reduced communication; (iv) Only
convergence versus the number of epochs is reported, whereas
actual execution time is ignored; (v) Experimental evaluation
is performed on non-standard benchmarks; or, for a restricted
set of models (e.g., only convolutional neural networks); or,
even without considering DNNs at all.

Motivated by these shortcomings, in this paper, we follow
a systematic approach to survey, categorize and evaluate
quantitatively the existing work on compressed communication
for Deep Learning under an extensive range of real-world
models, datasets, and system configurations. We also propose
the GRACE framework that allows (i) researchers to easily
implement novel methods using our API and evaluate them
on a standard testbed, and (ii) practitioners to investigate the
trade-offs and select the method that suits the characteristics
of their particular model and dataset. Our contributions are:

Survey. In §III, we present a comprehensive survey of the
most influential works in compressed gradient communication;
refer to Table I for a summary.

Framework and API. In §IV, we propose GRACE, a
unified framework and programming API that exposes the
necessary functions (e.g., compress, decompress, and
memory_compensate) for implementing a variety of com-
pressed communication methods. We embed GRACE in
TensorFlow and PyTorch and implement 16 representative
methods (see Table I). We release our code, execution scripts,
evaluation metrics, and raw data; and provide the models and
datasets.2 Essentially, we develop a self-contained testbed that
can be the standard of evaluating future compression methods.

Quantitative evaluation. In §V, we use a variety of models
that include convolutional (CNN) as well as recurrent neural
networks (RNN); and datasets from diverse domains that
include image classification and segmentation, recommendation
systems, and language modeling. We vary the number of
workers as well as the network bandwidth; and report a rich
set of metrics including throughput, data volume, accuracy,
and computation overhead. While it is not possible to be
exhaustive, we believe our results spanning a comprehensive
set of 5 benchmarks, 7 model architectures and 4 ML tasks
offer insights and draw lessons that are broadly applicable.

2Public release at https://github.com/sands-lab/grace.

https://github.com/sands-lab/grace


Our results reveal that the speed and accuracy of each
compression method depend on the particular DNN under
training. Performance is also influenced by the underlying
network communication libraries (e.g., OpenMPI [38] or
NCCL [39]) and network bandwidth. Interestingly, many
methods fail to match the no-compression baseline in terms
of accuracy, as well as in terms of execution time, due to
the computation overhead of compression/decompression; this
issue is more pronounced for faster networks.

II. BACKGROUND

We focus on data-parallel distributed training [9], [10], [40]–
[43], where each worker possesses a local copy of the entire
model; computes local updates; and communicates regularly
with all other workers to synchronize with the aggregated global
state. Global aggregation is commonly implemented through
a collective communication library (e.g., Horovod [44]) in a
peer-to-peer topology.3

Distributed data-parallel learning. A distributed optimization
problem minimizes a function f :

minx∈Rd f(x)
def
= 1

n

∑n
i=1 fi(x), (1)

where n is the number of workers. Each worker has a local
copy of the model and a partition of the training data. The
workers jointly update the model parameters x ∈ Rd, where d
is the number of parameters.

Consider a deep neural network (DNN), and let x def
= {W, b}

be the space that contains the model parameters (also known
as weights W and biases b). Given a set of input data D with
their corresponding true labels, the training phase learns x for
each layer of the network. Let

f(x)
def
= 1

n

∑n
i=1

 m∑
j=1

Lj (ŷj (x, x̂i,j) , yj)


︸ ︷︷ ︸

:=fi(x)

+R(x) (2)

be the loss function such that, at each worker i, x̂i,j is the
input from its data partition Di, yj is the true label, Lj is
the loss function (e.g., squared loss, cross-entropy loss, etc.)
that calculates the discrepancy between the true label yj and
the predicted value ŷj , and R is a regularizer. Calculating
the loss function for each training sample is called forward
pass. During training, the parameter space x is updated by
minimizing Equation (2) via a stochastic optimization algorithm
that calculates the gradients of the loss function with respect to
each layer of the DNN; a process known as back-propagation.
In practice, each data partition Di is further split into mini-
batches, each with m data points. Each worker i performs the
forward pass for all input data in a mini-batch; then performs
back-propagation to calculate the stochastic gradients over the
entire mini-batch; communicates with all other workers to
aggregate all local gradients; and finally, uses the aggregated
global state to update its parameters x.

3Our work is also applicable to master-worker architectures, where aggre-
gation is performed in a central parameter server.
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Fig. 2: (a) DNN architecture at node i. (b) Gradient compression
mechanism for the Lth layer of a DNN.

Stochastic gradient descent (SGD). SGD [8] is a first-order
iterative optimization algorithm. At iteration k+1, SGD updates
the model parameters as:

xk+1 = xk − ηkgk (3)

where ηk > 0 is the learning rate and gk is the stochastic
gradient at iteration k (i.e., an unbiased estimator of the gradient
of f ). To converge faster, SGD is often equipped with a short-
term memory z, called momentum. For instance, Nesterov
[45] computes the gradient g at a look-ahead point xk + γzk
as: zk+1 = γzk − ηkg(xk + γzk), where 0 ≤ γ ≤ 1. Then,
Equation (3) of SGD becomes: xk+1 = xk + zk+1. In addition
to SGD, several accelerated versions, such as ADAM [46], or
ADAGrad [47], are used for DNN training.

III. GRADIENT COMPRESSION

We focus on gradient compression.4 Let gi,Lk be the local
gradient5 in worker i at layer L of the DNN during training
iteration k. Instead of transmitting gi,Lk , the worker sends
Q(gi,Lk ), where Q is a compression operator (see Figure 2). The
receiver has a decompression operator Q−1 that reconstructs
the gradient. Typically, this process is lossy; for this reason,
several methods incorporate a memory (or error feedback)
mechanism to compensate for the accumulated errors.

Formally, a Compressor is a random operator
Q(·) : Rd → Rd, that satisfies EQ‖x−Q(x)‖2 ≤ Ω‖x‖2,
where Ω > 0 is the compression factor and the expectation is
taken over the randomness of Q. If Ω = 1− δ and δ ∈ (0, 1],
then Q is a δ-compressor; many sparsifiers belong to this
category. If E(Q(x)) = x, then Q is unbiased, otherwise it
is biased. We classify gradient compression techniques into
four categories, shown in Table I: quantization, sparsification,
hybrid and low-rank. The most influential methods are
presented below. For more details, refer to our companion
technical report [48].

A. Quantization

Quantization reduces the number of bits of each element of
the gradient, either by truncation or by mapping to a predefined
set of code-words.

4For the orthogonal topic of parameter compression, see §VI.
5For simplicity, we will omit i, L from gi,Lk when possible.
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8-bit quantization. Dettmers [11] maps each float32 element
of the gradient to 8 bits: 1 sign, 3 exponent and 4 mantissa bits.
To minimize precision loss, Dettmers also proposed a dynamic
scheme, where exponent bits range from 0 to 6.
1-bit SGD. Seide et al. [13] propose an extreme form of
quantization: all gradient elements that are less than a user-
defined threshold τ (0 by default) are quantized to ‘0’; all
other elements are quantized to ‘1’. Q−1 decodes ‘0’s and
‘1’ to the mean of the negative and non-negative values of
the local gradient, respectively. This work also introduces a
memory mechanism, mk = gk −Q−1(g̃k) to compensate for
the accumulated error. Let g̃k be the compressed gradient at
iteration k; then g̃k = Q(gk +mk).
SignSGD, SIGNUM and EFsignSGD. SignSGD [10] trans-
mits the sign of gradient elements by quantizing the negative
components to −1 and the others to 1. SIGNUM [30] is a
momentum version (see §II) of SignSGD. EFsignSGD [12]
improves SignSGD’s convergence via a memory mechanism.
Zheng et al. [29] extended the error feedback approach to a
bidirectional blockwise scheme with Nesterov momentum.
Ternary gradient. TernGrad [14] uses three values {−1, 0, 1}
scaled by the infinity norm of the stochastic gradient g. First,
the elements of a bit-mask b are selected with probability
P (bi = 1|g[i]) = g[i]/‖g‖∞. Then, g is quantized to
g̃ = ‖g‖∞sign(g)� b, where � denotes element-wise product.
TernGrad tends to achieve better convergence rate if the gradient
components are evenly distributed.
Quantized SGD. QSGD is a codebook-based scheme by Alis-
tarh et al. [9]. Wu et al. [32] extend QSGD with error feedback.
QSGD quantizes each component g[i] of the stochastic gradient
via randomized rounding to a discrete set of values (i.e., code-
words):

g̃[i] =

{
‖g‖2sign(g[i]).( ls ) with probability pi = s|g[i]|

‖g‖2 − l
‖g‖2sign(g[i]).( l+1

s ) with probability 1− pi

where ‖ · ‖2 is the Euclidean norm, s ≥ 1 and l ∈ N are
user-defined parameters, such that 0 ≤ l < s and |g[i]|

‖g‖2 ∈
[l/s, (l + 1)/s]. An example is shown in Figure 3; there are
5 code-words, therefore, each element g[i] of the original
stochastic gradient is quantized to 3 bits.
LPC-SVRG and Natural Compression. LPC-SVRG [33] is
a codebook-based approach that combines gradient clipping
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Fig. 4: Example Top-k compression: 20% of the gradient components
and corresponding indices are sent.

with quantization. For bit-width w and scaling factor δ > 0,
gradient component g[i] ∈ [ε, ε + δ] is quantized to ε with
probability pi = ε+δ−g[i]

δ ; or to ε + δ, otherwise, where
ε ∈

{
−2w−1δ, . . . ,−δ, 0, δ, . . . , (2w−1 − 1)δ

}
. Quantized-

SVRG [9] is a related method with a variance reduction
mechanism. Horvath et al. [31] proposed a similar scheme,
called natural compression, that rounds the input to one of the
two closest integer powers of 2.
INCEPTIONN [35] quantizes each 32-bit floating-point gradi-
ent element into four different levels (i.e., 32, 16, 8 and 0-bit)
and a 2-bit tag indicating the compression level. This work is
implemented on FPGA-based network cards (NICs) to reduce
the computational overhead of compression / decompression.

B. Sparsification

Sparsification methods select only a subset of the elements
of the original stochastic gradient g, resulting in a sparse
vector. Let b be a bitmask vector with the same number of
elements as g. An ‘1’ bit in b[i] indicates that the corresponding
gradient element g[i] is selected. The element-wise product g�b
generates a sparse vector of the original stochastic gradient. The
sparse vector can be represented as two vectors: one contains
the values of the selected elements of g, whereas the other
contains the indices of the corresponding ‘1’ in b.
Random-k [17]. Let d be the size of the bitmap b. A set of k
indices are randomly selected out of d possible ones, and the
k corresponding bits of b are set to ‘1’. By design, Random-k
is biased, but can be made unbiased by multiplying g with a
factor d

k . There is also a version with error feedback.
Top-k, Sketched-SGD and Threshold-v. Top-k [15] selects
bitmask b such that b[i] = 1 if |g[i]| belongs to the k largest
values of g (in absolute value); otherwise, b[i] = 0; Figure 4
shows an example. Stich et al. [17] propose a similar scheme
with memory. Ivkin et al. [37] propose Sketched-SGD, which
uses count-sketch to select the “heavy hitters” that approximate
the Top-k components of the gradient. In contrast to Top-k,
Threshold-v [36] selects the elements whose absolute values are
larger than a fixed threshold. However, an appropriate threshold
is hard to determine as it depends on the model.
Deep gradient compression (DGC) [16]. Each worker i calcu-
lates the local gradient gik and updates it as: uik = βuik−1 + gik.
One can think of the above step as momentum added to the
local gradient, a form of error feedback. Then, the gradient
is accumulated via: vik = vik−1 + uik. Only gradient elements
g[i] < −τ and g[i] > τ are transmitted, where τ is a user-
defined threshold. To identify the threshold while incurring



M ≈ P

R

m

L

m

Lr
r

Rank 𝑟
factorization, 
where  𝑟 ≪
min 𝑚, 𝐿

Fig. 5: Low-rank compression: Matrix M is decomposed into two
low-rank matrices P,R each of rank r.

low overhead, Abdelmoniem et al. [49] propose an estimation
technique based on modeling the gradient according to sparsity-
inducing distributions.
Variance-based sparsification. Wangni et al. [19] observe that
the variance of the gradient affects the convergence rate; they
propose an unbiased sparse coding to maximize sparsity and
control the variance. They assign a probability pi and generate
bitmask vector b such that P{b[i] = 1} = pi, to obtain the
compressed gradient element g̃[i] = Zi

g[i]
pi

. A similar method
is proposed by Tsuzuku et al. [18].

C. Hybrid compressors

Hybrid methods combine quantization with sparsification.
Qsparse local SGD. Basu et al. [20] combine quantization
with Top-k or Random-k sparsification. They implement
synchronous and asynchronous versions with error feedback.
Hard and adaptive threshold SGD. Strom et al. [24] employ
a user-defined threshold τ . Gradient elements g[i] ∈ [−τ, τ ] are
omitted; therefore, the gradient is sparsified. For the remaining
gradient elements, if g[i] < −τ , it is quantized to ‘0’; else, if
g[i] > τ , it is quantized to ‘1’. Those elements are then packed
into 32-bit words with one bit for the quantized value (‘0’ or
‘1’) and 31 bits for the element index. During decompression,
‘0’s and ‘1’s are decoded to −τ and τ , respectively. Note
that the appropriate value of τ is model-specific and hard to
determine in practice. Instead of a fixed τ , Adaptive [21] uses
a ratio α < 1 of the proportion of negative and non-negative
gradient elements. Adaptive samples the gradient to determine
dynamically for each mini-batch two thresholds τ− and τ+

that satisfy the α-ratio.
SketchML. Jiang et al. [22] propose sketch-based compression.
The algorithm selects only the non-zero elements of the
gradient (i.e., sparsification) and builds a non-uniform quantile
sketch [50]. Gradient values of each bucket are encoded with
the bucket’s index (i.e., quantization). The algorithm further
compresses the bucket indices through hashing.
3LC [23] first calculates M = s‖g‖∞, the highest magnitude
gradient element scaled by a sparsity-multiplier parameter s ∈
[1, 2). Then the quantized gradient is obtained by rounding
the scaled gradient (1/M)g. The output is further compressed
by aggressive lossless encoding. 3LC also implements error
compensation.

D. Low-rank decomposition

DNNs are over-parameterized and exhibit low-rank structure
[51], [52]. Based on this observation [53], [54], low-rank
methods represent the gradient as a matrix M ∈ Rm×L

and factorize it into two low-rank matrices P ∈ Rm×r and
R ∈ Rr×L that are smaller than M (see Figure 5). Typically,
the factorization is approximate.

ATOMO and GradiVeQ. ATOMO [27] factorizes the gradient
matrix M in a way that minimizes the variance of the quantized
stochastic gradient. Let g̃ be an unbiased estimator of stochastic
gradient g that has atomic decomposition g =

∑
i λiai, where

A = {ai} ⊂ V are atoms in an inner product space V with
‖ai‖ = 1. If for each i and 0 ≤ pi ≤ 1, ti ∼ Bernoulli(pi),
then ATOMO uses the estimator g̃ =

∑
i
λiti
pi
ai and by using a

sparsity budget ‖p‖1 = s solves a meta-optimization problem.
This controls the gradient variance and represents g with a set
of fewer basis elements that yield a low-rank approximation of
g. The same authors proposed spectral-ATOMO, based on the
singular value decomposition (SVD) of the gradient. GradiVeQ
(gradient vector quantizer) [28] is also based on SVD.

Remark 1. With respect to the standard basis (atom), set q =
2 and ∞, respectively, in s = ‖g‖1/‖g‖q and probability
pi = |g[i]|/‖g‖q . Then one can recover QSGD and TernGrad,
respectively, from ATOMO.

PowerSGD and GradZIP. PowerSGD [26] uses power it-
eration to decompose the original gradient matrix M into
two r-rank matrices P and R. The scheme is biased and the
authors proposed to use a post-compression momentum. A
similar method, GradZIP [25], employs an extra regularizer
‖P‖2F + ‖R‖2F and uses an alternating direction method to
obtain factors P and R.

E. General comment on convergence

While some compressed distributed SGD algorithms are
analyzed in the non-convex setup, some papers only provide
the convergence guarantee when f is convex, under standard
assumptions such as L-smoothness of f (e.g., see [17],
[32]). Under these assumptions, for convex f , the convergence
of compressed distributed SGD is O(1/K), the same as the no-
compression vanilla SGD, where K is the iteration count. For
a non-convex function f (as it is the case with DNNs), it is
typical to show that the quantity min

k∈[K]
E(‖∇fk‖2) → 0 as

K →∞. With compressed and distributed SGD, the majority
of the work shows the classical convergence rate O(1/

√
K) for

non-convex functions. We refer to [36] for a general non-convex
convergence analysis of distributed SGD without error feedback
for both biased and unbiased compressors. However, with error
feedback, the convergence analyses of compressed distributed
SGD algorithms are more mathematically involved. Stich et
al. [17] show, with an error feedback, sparsified SGD maintains
the same convergence rate as no-compression vanilla SGD
for the single node case and strongly convex f . Additionally,
for the single node case, Karimireddy et al. [12] show that
error feedback can alleviate the convergence issues of any
arbitrary compression operator. Many works generalize the
aforementioned scenarios to the distributed setting [55].



IV. GRACE - A UNIFIED FRAMEWORK

We develop GRACE, a unified framework for compressed
communication for distributed deep learning. We instantiate
GRACE within two popular ML toolkits, TensorFlow and
PyTorch. GRACE encompasses a wide range of compression
methods, capturing all the methods discussed in §III, and
yet it exposes a simple programming API with which one can
implement compression methods succinctly. GRACE provides a
reference for fair quantitative evaluation across diverse methods
and serves as a platform for rapid prototyping of new ones.

A. Distributed training loop
Our framework builds upon the distributed training loop

with compressed communication depicted as pseudo-code in
Algorithm 1. Each node executes the training loop in parallel
and periodically synchronizes with other nodes.
Customizable components. Algorithm 1 references the follow-
ing components that are customized for different compressors:
• Q(·) and Q−1(·): denote the compression and decompres-

sion operators, respectively.
• φ(·): is the memory compensation function, which com-

pensates at each iteration the node-local gradient with the
previous iteration’s error feedback.

• ψ(·): is the memory update function that combines at
each iteration the memory with the node-local gradient
and error feedback.

• communication strategy: two types of collective commu-
nication strategies are explicitly supported, with support
for custom gradient aggregation functions (Agg).

Training loop process. Each node locally computes a stochas-
tic gradient gik based on a mini-batch of training samples (Line
4). Then, it combines gik with its memory mi

k via φ(·).6 Next,
the node applies compression operator Q on φ(gik,m

i
k) to

produce g̃ik (Line 5). Memory mi
k is updated using ψ(·) (Line

6). Now, each node communicates its g̃ik using a collective
communication primitive (Lines 8 and 11). Subsequently,
every node obtains an aggregate of decompressed gradient gk,
typically gk = 1

n

∑
iQ
−1(g̃ik). At this point, we distinguish

the case of Allreduce and Broadcast or Allgather
because the former results in the aggregate of the compressed
gradients, whereas the latter involves a one-to-all or all-to-
all communication, followed by a local aggregation step (the
Agg function), which is customized for different methods.
Finally, with gk, each node updates its model parameters x by
Equation (3) (Line 15). The loop repeats until convergence.
Layer-wise gradient as tensors. We denote the stochastic
gradient gik of a model as a single vector (at node i). This
is merely for ease of presentation. Our framework equally
applies to modern ML toolkits, where it is common during
back-propagation to compute gik incrementally for each DNN
layer as some sequence ĝi,jk for decreasing j.
Different optimizers. Although we cast our training loop as
a distributed SGD process, we note that the customizable

6The case with no memory compensation (hence, no memory) is a special
case, where φ(gik,m

i
k) = gik and ψ(mi

k, g
i
k, g̃

i
k) = 0.

Algorithm 1 Distributed Training Loop
Input: Number of nodes n, learning rate ηk , compressor Q, decompressor
Q−1, memory compensation function φ(·), and memory update function ψ(·)
Output: Trained model x
1: On each node i:
2: Initialize: mi

0 = 0 {vector of zeros}
3: for k = 0, 1, . . . , do
4: Calculate stochastic gradient gik
5: g̃ik = Q(φ(mi

k, g
i
k))

6: mi
k+1 = ψ(mi

k, g
i
k, g̃

i
k)

7: if compressor uses Allreduce then
8: g̃k = Allreduce(g̃ik)
9: gk = Q−1(g̃k) / n

10: else if compressor uses Broadcast|Allgather then
11: [g̃1k, g̃

2
k, · · · , g̃

n
k ] = Broadcast(g̃ik) | Allgather(g̃

i
k)

12: [g1k, g
2
k, · · · , g

n
k ] = Q−1([g̃1k, g̃

2
k, · · · , g̃

n
k ])

13: gk = Agg([g1k, g
2
k, · · · , g

n
k ])

14: end if
15: xik+1 = xik − ηkgk
16: end for
17: return x {each node has the same view of the model}

components (Q, Q−1, φ, ψ) are optimizer independent. Instead
of SGD, any stochastic algorithm, such as AdaGrad [47],
ADAM [46], can be used as optimizer in Algorithm 1. Our
experiments use different optimizers, including SGD, RMSProp
and SGD with momentum.
Memory compensation functions. We use the following form
of functions φ(·) and ψ(·) in this paper:

φ(mi
k, g

i
k) = βmi

k + γgik

ψ(mi
k, g

i
k, g̃

i
k) = φ(mi

k, g
i
k)− g̃ik (4)

where β > 0 is the memory decay factor and γ > 0 weighs the
relevance of the latest stochastic gradient. We use β = γ = 1
unless otherwise noted. Users may customize these functions.
Communication with parameter server. Our framework is
compatible with parameter server-based communication. Con-
ceptually, a parameter server provides a gradient aggregation
function equivalent to Allreduce. However, the Horovod
toolkit we base our implementation on, exclusively supports
collective communication libraries.

B. Programming interface

We provide an API for compress Q, decompress
Q−1, memory_compensate φ, memory_update ψ and
aggregate Agg functions that are mentioned in the pseudo-
code. The framework considers context ctx as an opaque
object that carries any necessary metadata to allow for decom-
pression, which should return a tensor with same data type
and shape as the original tensor. For instance, in sparsification
methods, ctx contains the shape and size of the original tensor.
Below is an example function definition that takes a tensor
with unique name and returns a list of compressed objects with
the context needed to decompress them:
compress : tensor, name → [comp], ctx

Our framework provides defaults for aggregate, as well as
memory_compensate and memory_update (Equation 4).
The user needs to implement compress and decompress
for each compression method, and indicate to the framework
the communication strategy to use.



Compression typically produces tensors of different di-
mensions or data types than the original ones. For instance,
sparsification results in smaller tensors while quantization
results in either different data types or bit-packed elements. As
these manipulations are common across several methods, our
API implements the following helper functions:

API Description

quantize Quantizes tensor values and returns values in lower bits
dequantize Dequantizes a tensor and restores original bits
sparsify Sparsifies a tensor in a certain selection algorithm
desparsify De-sparsifies and restores original shape by filling zeros
pack Encodes several lower-bit values into one higher-bit value
unpack Unpacks and restores the original decoded form

We support both TensorFlow and PyTorch; however, they
have different APIs. Following Horovod’s strategy, we create
two similar yet distinct implementations.
Tensor manipulation operations. Both TensorFlow and Py-
Torch provide high-level tensor-manipulation APIs in Python
as well as a C++ library to define custom tensor operations.
We adopt the Python API since it is typically used by model
creators and is backed by efficient low-level kernels for GPUs
or other hardware accelerators; however, this does not prevent
the user from integrating custom C++ operators.
Communication primitives. We leverage Horovod [44] for
communication that exposes three collective communication
primitives: Allreduce, Allgather, and Broadcast. On
the backend, these are implemented by several alternate
libraries: OpenMPI, NVIDIA NCCL and Facebook Gloo [56].
Communication strategies. We support two types of com-
munication strategies: (i) Allreduce is the most efficient
operation. However, it is not readily suitable for several scenar-
ios. The main limitations in the underlying implementation are
that it does not support sparse tensors and requires that input
tensors be of the same data type and dimension. Moreover,
it can only aggregate tensors by summing. In contrast, (ii)
Allgather and Broadcast do not perform any aggregation
and support input tensors of different forms. This is well suited
for quantization when aggregation needs to be performed on
dequantized values as well as for sparsification when different
nodes select gradient elements at non-overlapping indices.

C. Implemented compressors

We implement within GRACE 16 representative compressors
(see Table I). Where available, we draw from publicly available
implementations; however, in many cases these are not released,
although we reached out to the original authors to acquire them.
We follow faithfully the algorithm descriptions presented in
their corresponding papers, and we try to reproduce the original
accuracy results. Our implementation is a best-effort approach
that reflects the intention of the respective methods, although it
may not be as efficient as the original ones. We avoid creating
custom C++ tensor operations because the Python API is
functionally sufficient and because it would have required an
excessive effort given the large number of methods. Below, we
highlight noteworthy implementation details.

Quantization. quantize converts the original 32-bit floating-
point values into a lower-bit representation. ctx stores addi-
tional information (such as mean and different norms) needed
to dequantize. In some scenarios, pack can further compress
the data by encoding several lower-bit values into a single
32-bit value. dequantize transforms quantized values to an
approximation of the original values. unpack decodes the
packed data into their original representation.
Sparsification. sparsify flattens the original gradient into
a rank-1 tensor. Then, it selects m out of d elements, and
creates two 1 × m rank-1 tensors to represent the selected
values and indices. ctx stores the shape of the original tensor.
desparsify restores the values into a rank-1 tensor of size
d, fills missing values with zeros, and reshapes the tensor to
the original gradient..
Adaptive [21]. Adaptive splits the gradient into a positive- and
a negative-value part. We apply quantize to encode values
in a ternary format and separate the +1 and -1 values. We use
sparsify to select elements according to a sparsification
ratio α. As the values are all ones, we only send the mean and
the selected indices of each part.
DGC [16]. The momentum correction used in DGC is similar
to memory compensation. We implement it by customizing the
memory functions. memory_compensate adjusts the values
by both memory and momentum. memory_update uses the
minimum absolute value in the compressed gradient as the
threshold to get the mask and to update the memory.

V. EXPERIMENTAL EVALUATION

We perform a comprehensive quantitative evaluation of the
16 implemented compressors mentioned in Table I. Our results
cover 5 benchmarks, 7 model architectures and 4 deep learning
tasks (i.e., image classification, segmentation, recommendation,
and language modeling). Due to space limit, below, we present
the most representative results; for the complete set, refer to
our technical report [48].

We break down the efficiency gains of compression along
two metrics: (i) the data volume that each worker generates,
and (ii) the training throughput (in terms of training samples
per second). Measuring data volumes characterizes the intrin-
sic communication-level algorithmic efficiency of a method;
whereas throughput offers the extrinsic measure of performance
gains while other practical system artifacts are at play (e.g.,
computational overheads of compression).

A. Experimental setup and methodology

Environment. We run most of the experiments on 8 dedicated
machines with Ubuntu 18.04.2 LTS and Linux v.4.15.0-74, 16-
Core Intel Xeon Silver 4112 at 2.6 GHz, 512 GB RAM and one
NVIDIA Tesla V100 GPU card with 16 GB on-board memory.
They are interconnected via network links at 1, 10 and 25 Gbps.
For time-insensitive metrics (e.g., accuracy, data volume) we
also use a shared cluster with a heterogeneous group of nodes
each equipped with at least one NVIDIA Tesla V100 GPU
card. We deploy CUDA 10.1, PyTorch 1.3, TensorFlow 1.14,
Horovod 0.18.2, OpenMPI 4.0 and NCCL 2.4.8.



TABLE II: Summary of the benchmarks and quality metrics used in this work.

Task Model Dataset Training
parameters

Gradient
vectors Epochs Quality

metric
Baseline
quality

Image
Classification

ResNet-20 [1] CIFAR-10 [57] 269,467 51 328

Top-1 Accuracy

90.86%
DenseNet40-K12 [58] CIFAR-10 [57] 357,491 158 328 92.07%
Custom ResNet-9 [59] CIFAR-10 [57] 6,573,120 25 24 91.67%
VGG16 [2] CIFAR-10 [57] 14,982,987 30 328 86.32%
ResNet-50 [1] ImageNet [60] 25,559,081 161 90 75.37%
VGG19 [2] ImageNet [60] 143,671,337 38 90 68.90%

Recommendation NCF [61] Movielens-20M [62] 31,832,577 10 30 Best Hit Rate 95.98%

Language
Modeling LSTM [63] PTB [64] 19,775,200 7 25 Test Perplexity 100.168

Image
Segmentation U-Net [65] DAGM2007 [66] 1,850,305 46 2,500 Intersection

over Union (IoU) 96.4%

Benchmarks. We use industry-standard benchmarks from
TensorFlow [67], [68] and NVIDIA [69]. These benchmarks
span 4 common deep learning tasks from different domains and
involve a mix of convolutional and recurrent neural networks,
and ones with large embedding layers. The trainable parameters
span 3 orders of magnitude. The number of communicated
gradient vectors range from 7 to 161. The quality of the model is
reported under diverse nomenclatures according to benchmark-
specific metrics as shown in Table II.
Methodology. We run each experiment for a fixed number
of training epochs (complete iterations over the training set)
according to every benchmark’s specification. The reported
quality of the model (e.g., accuracy), which is based on a
held-out test set, is the best one witnessed throughout training.

We use no compression as the baseline for comparison.
We ensure our baselines converge to state-of-the-art results
(Table II). The default optimizers are: SGD with momentum for
image classification, RMSProp for segmentation, ADAM for
recommendation and SGD for language modeling. Compressors
use the same optimizer as the baseline, except for image
classification whereby PowerSGD, Random-k, DGC, SignSGD
and SIGNUM use vanilla SGD as it achieves better quality.

When reporting relative results, they are normalized to the
relevant metrics measured for the baseline case. We took care
to make repetitions to validate statistically the model quality,
except when it is too time-consuming to do so (as in training
with ImageNet for instance). We focus mainly on TensorFlow
results and comment on the differences with PyTorch where
relevant; refer to our technical report [48] for PyTorch results.

Unless otherwise noted, we use the default configuration
with each benchmark. We keep all hyperparameters the same
as the baseline, except for the cases where specific settings
are stated in a compressor’s original paper. Specifically, for
EFsignSGD, we set β = 1 and γ equal to the initial learning
rate. The performance of compressors is sensitive to a range of
factors such as the optimizer (e.g., SGD or ADAM), standard
hyperparameters (e.g, learning rate) and varying degree of
compression. Where practical, we experiment with multiple
values of these factors and report on their effects; however, a
complete sensitivity analysis is out of scope.

We report throughput as the average measured at steady
state at the last 100 iterations during training. We measure the
transmitted data volume in bytes based on the input size and a
standard representation of data types (e.g., 4 bytes for float32,
or 1 byte for 256-level quantized data).

The results shown in this section refer to experiments with
10 Gbps network links and OpenMPI over TCP as collective
library.7 We also run experiments with 25 Gbps links and
observe mild improvements in throughput (on average, 1.3%).

B. Model quality vs. training throughput

Figure 6 shows the effects of compression on model quality
as a function of throughput, normalized to the baseline
(highlighted with a vertical line in red). We present results
across different benchmarks. Compressors that achieve poor
quality (below the y-axis cut-off), are omitted. In general, we
observe that training converges to solutions with quality metrics
comparable to the respective baselines in most cases. In some
cases, the model quality is slightly higher than the baseline.
This can be attributed to the stochastic nature of the process,
allowing compression to cancel out bad gradient directions;
[16] also reported this phenomenon.

With respect to throughput, several compressors perform
worse than the baseline. This happens for any benchmark
where the trained model is primarily computation-bound (e.g.,
ResNet, DenseNet, U-Net). In contrast, for communication-
bound models (e.g., NCF, VGG), there are several combinations
of compressors that mark a significant throughput improve-
ment. Note that, computation-bound models can also become
communication-bound due to lower speed network (e.g., in the
case of federated learning).

The recommendation benchmark (Figure 6d) is particularly
interesting. First, this is a previously unexplored benchmark in
the literature on compressed communication (which primarily
has focused on convolutional NNs). Second, it highlights that
there exists, in this particular case, a definite trade-off between
model quality and throughput: while many compressors achieve
1.5× to 4.5× speedup, quality lowers by up to 10%. Third,

7NCCL is faster than OpenMPI, but it constrains input sizes, preventing a
fair comparison.
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Fig. 6: Performance of compressors in terms of model quality vs training throughput.
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Fig. 7: Performance of compressors in terms of model quality vs data volume.

it illustrates that for compressors with tunable degree of
compression, quality lowers as compression is more aggressive.
Interestingly, these observations are not common in other
benchmarks. For instance, QSGD and Top-k in CIFAR-10
experiments score a ballpark model quality across varying
degree of compression.

Table I indicates with a where error feedback (EF, a.k.a.
memory) is applied; we find that EF improves accuracy for
those compressors, in particular with sparsification. However,
our results empirically establish that EF harms the convergence
of several quantization methods (SignSGD, SIGNUM, QSGD
and Terngrad). In the case of SignSGD and SIGNUM, the issue
is known and is fixed by design by EFsignSGD. Interestingly,

and exclusively for the recommendation task, applying EF with
Top-k, 8-bit, and Natural Compression leads to worsened model
quality. We highlight the difference for Top-k in Figure 6d.
Takeaways. No method consistently performs well across
all benchmarks and there is no strong correlation between
throughput and model quality.

C. Model quality vs. transmitted data volume

We now consider the model quality versus the transmitted
data volume8 trade-off. Figure 7 shows for each compressor

8Because we do not implement packing, the data volumes are inflated for
quantization methods. However, in a relative sense our results still hold.



its best model quality and the average communicated data
volume per iteration to achieve that quality (refer to [48]
for the full set of results). In general, we observe that a
compressor that sends more data leads to higher model quality.
This is true in most cases especially in the language modeling,
image classification for ImageNet, and recommendation tasks
as shown in Figures 7a, 7b, 7c, respectively. However, we
observe that for some compressors (e.g., Adaptive), a higher
data volume results in lower model quality. This is consistent
with previously published results [16], [21], [26].
Takeaways. The quality vs. data volume trade-off is non trivial;
therefore, compression should be tuned carefully to deliver the
best benefits for a given scenario.

D. Computational overheads of compression

We run a micro-benchmark experiment that measures the
combined latency of compress and decompress in iso-
lation; Figure 8 shows the results as a violin plot for 30
repetitions; the operators run on the GPU. Results show that
compressors induce non-negligible overheads. We profile the
code and observe the following: (i) Both Adaptive and DGC
involve a loop to adjust the threshold to best match the target
ratio. This is expensive; throughput improved by ≈ 2× by
executing only one iteration. (ii) As shown in Figure 8, Random-
k shows high overhead as the tf.random.shuffle op-
eration executes on the CPU due to lack of a GPU kernel.
However, during real training, TensorFlow can schedule device-
host data transfer so that it overlaps with GPU computation,
so this overhead is at times mitigated. (iii) In Random-k,
tf.random.shuffle takes excessively long time on CPU
for both the large embedding and fully-connected layers in
recommendation and language modeling. The execution time
far exceeds the execution of the forward pass and hence
communication phase stalls by waiting for this operation. (iv)
8-bit invokes a find_bins operation for each quantized
value which, due to lack of a GPU implementation, is
executed on the CPU. (v) We also observe that some methods
rely on expensive operations (i.e., tf.where). These are
sparsification methods that rely on a threshold (e.g., Threshold-
v, DGC) and quantization methods that choose target elements
meeting a criteria (e.g., 1-bit SGD, Terngrad, 8-bit, Natural
Compression). Sketch-ML also imposes high overhead due to
sketch operations.
Takeaways. Implementing compressors requires careful engi-
neering, with custom GPU or well-optimized CPU code, to
account for their intrinsic computational overheads.

E. Machine learning toolkit, transport and links

Figure 9 shows the throughput of different compressors
in CIFAR-10 image classification task using PyTorch with
different communication protocols: TCP and remote direct
memory access (RDMA). Throughput is mostly consistent yet
higher than what we observe for most compressors in the
TensorFlow image classification tasks. The RDMA transport
protocol is consistently better than TCP.

Figure 10 shows the relative throughput for the same
experimental setup as Figure 6c, except it uses 1 Gbps network
links. As this setup emphasizes the network bottleneck, there
is now a large number of compressors that obtain a throughput
speedup over the baseline.
Takeaways. The machine learning toolkit as well as the trans-
port protocol and network speed, affect compressor throughput.

F. Summary of observations

• No particular compression method outperforms every other
across all experimental scenarios.

• The computational overheads of compression are not
negligible. At higher communication bandwidths (10 Gbps
or more), avoiding compression typically results in faster
training, which agrees with the results of [35], [70].

• With some exceptions, error feedback (EF) is widely appli-
cable to sparsification and improves accuracy significantly.
However, its side-effect is memory overhead, which may
lead to smaller mini-batch sizes.

• Higher data volume does not imply higher accuracy;
however, we observe that when compression is heavy,
a low data volume tends to decrease accuracy.

• The hosting ML framework influences performance only
to a minor extent; the major performance variations are
due to the underlying collective communication libraries.

VI. RELATED WORK

Yang [71] was one of the first to study the trade-off between
computation and communication for distributed stochastic
optimization. Since then, numerous approaches have been
proposed; refer to the survey by Ben-Nun and Hoefler [72] for
details. Below we cite those that are relevant to our work.
Compression for ad-hoc P2P overlays. Unlike our work,
which assumes all-to-all aggregation semantics (e.g., Allreduce),
others [43], [73] consider an ad-hoc peer-to-peer network
overlay, where nodes communicate only with neighbours.
Althought some of these methods use familiar techniques,
like sparsification and quantization, their main characteristic
is that they redefine the aggregation semantics to involve only
a subset of workers at a time. We leave it as future work to
integrate in our framework’s communication primitives that
accommodate the P2P overlay setting.
Fewer communication rounds. Some methods reduce the
volume of transmitted data by communicating less often.
CoCoA [74] is dual coordinate ascent algorithm that performs
several local steps before communicating with other workers.
Wang and Joshi [75] propose periodic averaging SGD, to update
the local model at each worker node and then use periodic
average to update the final parameters.
Asynchronous communication. Hogwild! [76] propose asyn-
chronous parallel SGD, where the computing nodes access
shared memory and can modify the parameters at any time
without locking. De Sa et al. [77] develop a low-precision
asynchronous SGD method and provide an FPGA implemen-
tation. Asynchronous communication is outside the scope of
our paper.
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Communication primitives. SwitchML [7] uses a pro-
grammable network switch to implement in-network aggrega-
tion. Instead of compression, SwitchML reduces the transmitted
data by computing on the network switch. A similar idea is
explored in DAIET [78]. SparcML [79], on the other hand,
implements a stream structure to support sparse tensors.
Other communication strategies. OmniReduce [80] imple-
ments sparse Allreduce and sends the non-zero gradient blocks
to the workers. Gajjala et al. [81] use Huffman encoding
for efficiently packing and transmitting the quantized vectors.
DeepReduce [82] is a compressed communication framework
that allows both independent and combined compression of
values and indices of sparse tensors.
Model compression. Instead of compressing the communi-
cated gradient, many papers propose to compress the model
parameters. ZipML [34], in particular, applies compression
similar to that of QSGD to the model, data, and gradient.
Model compression is orthogonal to our work and out of
scope; we refer to a survey by Guo [83].

VII. CONCLUSION

We survey the most influential methods on gradient compres-
sion for distributed, data-parallel DNN training. We propose
GRACE, a unified framework with the corresponding Ten-
sorFlow and PyTorch API, and implement 16 representative
compression methods. We use convolutional and recurrent
DNNs, as well as a variety of datasets and system configura-
tions, to perform thorough quantitative evaluation and report
metrics that include accuracy, throughput and communication
volume. We observe that the computational overhead of
compression / decompression is non-trivial and may render
several methods inapplicable in practice. We release our API,
code and experimental results, as well as the DNN models and
datasets. We envision that our work will benefit: (i) researchers,
who will use it as the basis for consistent implementation and
evaluation of new methods; and (ii) practitioners, who need
an appropriate compression method for their training setup.
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