
In-Network Aggregation with Transport Transparency for
Distributed Training

Shuo Liu∗

Huawei
China

Qiaoling Wang∗

Huawei
China

Junyi Zhang
Huawei
China

Wenfei Wu†

Peking University
China

Qinliang Lin
Huawei
China

Yao Liu
Sun Yat-sen University

China

Meng Xu
Huawei
China

Marco Canini
KAUST

Saudi Arabia

Ray C. C. Cheung
City University of Hong Kong

China

Jianfei He
City University of Hong Kong

China

ABSTRACT

Recent In-Network Aggregation (INA) solutions offload the all-

reduce operation onto network switches to accelerate and scale

distributed training (DT). On end hosts, these solutions build cus-

tom network stacks to replace the transport layer. The INA-oriented

network stack cannot take advantage of the state-of-the-art perfor-

mant transport layer implementation, and also causes complexity

in system development and operation.

We design a transport-transparent INA primitive named NetRe-

duce for modern multi-rack data centers. NetReduce runs beneath

the transport layer. The switch performs aggregation operations

but preserves data transmission connections. The host uses RoCE

as its transport layer to deliver gradient messages and receive ag-

gregation results. NetReduce achieves performance gains from both

INA and RoCE: linear scalability, traffic reduction, and bandwidth

freeing-up from INA — high throughput, low latency, and low CPU

overhead from RoCE. For jobs spanning several multi-GPU ma-

chines, we also devise parallel all-reduce based on NetReduce to

make use of intra-machine and inter-machine bandwidth efficiently.

We prototype NetReduce on an FPGA board attached to an Ether-

net switch. We compare NetReduce with existing programmable

switch-based solutions and justify the FPGA-based design choice.

We evaluate NetReduce’s performance by training typical Deep

Neural Network models on single-GPU and multi-GPU testbeds.

NetReduce inter-operates with the existing Ethernet transport layer,

∗Co-primary Author
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00
https://doi.org/10.1145/3582016.3582037

is training-framework friendly, accelerates network-intensive DT

jobs effectively (e.g., 70% for AlexNet), reduces CPU overheads (e.g.,

only one core for transmission), and is cost-effective (e.g., only

2.40% more capital expense and 0.68% more power consumption

making 12.3-57.9% more performance acceleration).

CCS CONCEPTS

• Networks→ In-network processing.

KEYWORDS

In-Network Aggregation, FPGA, RDMA, Distributed Training.

ACM Reference Format:

Shuo Liu, Qiaoling Wang, Junyi Zhang, Wenfei Wu, Qinliang Lin, Yao Liu,

Meng Xu, Marco Canini, Ray C. C. Cheung, and Jianfei He. 2023. In-Network

Aggregation with Transport Transparency for Distributed Training. In Pro-

ceedings of the 28th ACM International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, Volume 3 (ASPLOS

’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3582016.3582037

1 INTRODUCTION

Recently, a class of In-Network Aggregation (INA) solutions is pro-

posed to promote distributed training (DT) [8, 14, 17, 35, 38, 58].

INA solutions perform the all-reduce operation among DT workers;

these solutions offload the gradient aggregation onto programmable

switches, which accelerates network transmission, scales out train-

ing jobs, and frees network bandwidth. As INA (as a case of In-

Network Computation, INC) “blurs the division between compu-

tation and networking” [3], INA is typically designed as a custom

transport protocol [64]. Existing practices and prototypes imple-

ment INA as a clean-slate network stack (called INA stack). The

INA stack needs to combine both functions of the traditional trans-

port layer (i.e., (de)packetization, connection management, flow

control, reliability, and congestion control) and of the application

(i.e., tensor aggregation, fallback, floating-point quantization).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini, R. Cheung, J. He

The tight coupling of INA and the transport layer has shortcom-

ings in performance, development, and operation, respectively. First,

the INA stack cannot benefit from the technical progress in the

transport layer. Modern data centers employ various acceleration

techniques on the transport layer, e.g., Segmentation Offload [44].

And especially, RDMA over Converged Ethernet — RoCE, which

is a message transport protocol implemented on hardware NICs,

has been gradually deployed at a large scale due to its good proper-

ties of low latency, low CPU overhead, and high throughput [18].

But the mismatched abstractions (INA’s hierarchical data flow v.s.

end-to-end transport connections) and the cost of re-implementing

INA’s transport functions prevent existing INA solutions from tak-

ing advantage of these new features and acquiring the consequent

performance gains.

Second, the INA stack causes development complexity to Ma-

chine Learning (ML) system developers. The system developer

needs to spare two kinds of efforts to build an INA DT system. (1)

Traditional transport layer has matured interfaces to applications,

e.g., TCP socket or RDMA verbs, and they have been widely ap-

plied in existing cloud applications [18, 22, 30, 31, 76] including

distributed training [15, 25, 37, 57, 72, 73]. But switching to new

INA primitives requires a learning curve, which could not be within

the system developers’ willingness and/or expertise. (2) The devel-

oper also needs to rebuild the basic transport layer functions (i.e.,

flow control, reliability, and congestion control); although these

functions are already baked-in in existing transport protocols, they

have to be re-invented in INA.

Third, the INA stack complicates network management. (1) De-

ploying the INA stack on a shared cluster requires either dedicating

or virtualizing physical NICs (e.g., using SR-IOV [11, 12, 19, 34])

for INA-specific traffic. The deployment also crosses administrative

boundaries [3], requiring longer business cycles to coordinate ML

system developers and cluster operators. (2) In a shared cluster,

the network also has to apply QoS rules to isolate INA traffic and

other transport traffic variants; otherwise, bandwidth contention

between them could lead to unexpected behaviors. For example,

ECN-based INA (e.g., ATP [35]) would be more conservative or

even starved when competing with non-ECN transport protocols.

Designing a transport-transparent INA is challenging. First, INA

merges gradient data flows in an aggregation hierarchy, which

violates the end-to-end byte stream abstraction of the transport

connection. Our intuition is to preserve transport connections by

creating a “man-in-the-middle” data flow splice in the switch. Sec-

ond, the transport layer segments messages into packets without

providing the flexibility to insert an INA header, but the INA header

is critical to direct the aggregation behavior on switches. Our in-

tuition is to track the mapping between the INA header and the

connection in a connection lookup table, and populate the table along

with data transmission (§2.3).

We design an in-Network All-Reduce primitive named NetRe-

duce to achieve transport transparent INA for DT jobs. (1) On its

northbound, NetReduce interfaces DT jobs with a ring abstraction

for gradient aggregation. (2) Workers on the ring establish connec-

tions to neighbors. We use RoCEv2 for message transport, but do

not exclude other transport protocols. (3) NetReduce designs an

on-switch accelerator to perform connection-preserving INA. (4)

For jobs spanning multi-GPUs on multi-machines, we also design

a method to set up parallel NetReduce rings to make full usage

of inter- and intra- machine bandwidth. In addition to transport

transparency, NetReduce also supports other features as in existing

INA solutions, such as floating-point calculation and hierarchical

extension [8, 14, 17, 35, 38, 58, 74].

We prototype the NetReduce accelerator on an FPGA board

attached to switches. We justify the FPGA-based design choice

instead of P4 programmable switches due to the switch’s hardware

limitation to achieve full transport functionality, line rate, and low

overhead together (§6). We evaluate NetReduce by training typical

Deep Neural Network (DNN) models in ImageNet [33] classification

and Transformer models [10] in NLP. NetReduce provides INA with

compatibility with the RoCE network and it provides full bandwidth

saturation (93%) in 100 Gbps networks with low RTT latency (6.3 𝜇s)
and low CPU overhead (only one CPU core is occupied). NetReduce

can accelerate typical DT jobs by 5% - 45%, especially in the multi-

GPU multi-machine scenario. NetReduce outperforms Flat Ring

AllReduce and Tencent AllReduce [26] significantly (15.1% - 68.8%

and 12.3% - 57.9%).

We make the following contributions.

• A transport transparent INA primitive NetReduce, achieving INA’s

communication acceleration and RoCE’s high throughput, low

latency, and low CPU overhead.

• A parallel all-reduce method based on NetReduce for training on

multi-GPU multi-machines, where the inter- and intra- machine

bandwidth is more efficiently utilized.

• A system prototype and extensive evaluation to demonstrate

NetReduce’s feasibility, performance gain, compatibility, and low

overhead.

2 BACKGROUND AND MOTIVATION

INA could significantly accelerate DT jobs but is not compatible

with the state-of-the-art performant transport layer, which intro-

duces extra system complexity in deployment. In production net-

works, operators can hardly trade the system complexity for INA’s

performance gain.

2.1 Training with In-Network Aggregation

All-Reduce in DT. In ML model training, the algorithm takes

iterations to compute a gradient and update the model. For a data-

parallel DT job, in each iteration, multiple workers compute their

gradients, aggregate the gradients, and use the aggregation result

to update the model. There are two main architectures to support

gradient aggregation.

In a Parameter Server (PS) architecture, one or several dedicated

physical servers are assigned for gradient aggregation. Workers

send gradients to the PS(s), and the PS(s) compute the aggregation

result and send the result back to the workers. Each worker needs to

establish one connectionwith the PS (Figure 1A). In a RingAllReduce

(RAR) architecture, workers form rings to aggregate gradients. A

gradient message travels along the ring for two rounds: in the first

round, each worker accumulates its gradient on the message, and in

the second round, the aggregated result is delivered to each worker

hop by hop. Each worker establishes one connection to its successor

(Figure 1B).

In-Network Aggregation with Transport Transparency for Distributed Training ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Switch

worker PS worker

Switch

worker worker worker

Switch

worker worker worker

Switch

worker worker worker

Switch

worker worker worker

(A) PS (B) Ring All-Reduce (C) Aggregation in INA (D) Multicast in INA (E) NetR

man-in-the
-middle

2 connections 3 connections 1 “giant” connection 1 “giant” connection 3 spliced connections

S

W1 W2 W3

Figure 1: All-Reduce solutions and their connections.

Table 1: Performance of RoCE, parallel DMA, and DPDK.

CPU Throughput (Gbps) RTT (us)

RoCE 25.6% 84.2 5.7

Parallel DMA 100% 58.67 70.2

DPDK 200% 90.5 20.5

In-Network Aggregation (INA) Preliminaries. INA offloads

gradient aggregation onto network switches equipped with a pro-

grammable data plane (e.g., Tofino [1] in ATP and SwitchML [58],

FPGA in PANAMA[14]) or a fixed-functionASIC (e.g., Quantum [43]

in SHARP). Workers and switches form an aggregation hierarchy:

workers stream gradient flows into the hierarchy; each switch ag-

gregates its incoming flows into one flow and sends it to its parent;

the root node (could be a switch [58] or a server [35]) multicasts the

complete aggregation result back to workers along the hierarchy.

INA could reduce network traffic volume, shorten data trans-

mission time, and eliminate incast bottlenecks. Thus, INA frees

network resources [14], accelerates training jobs, and improves

training scalability. For example, SwitchML reports a speedup of

5.5× for single jobs, and ATP reports 38-68% in a shared cluster.

In INA, there is no end-to-end connection. Instead, the aggrega-

tion hierarchy and themulticast tree act as a “giant connection”with

multiple endpoints (i.e., leaf servers and the root). All endpoints co-

operate to perform transport functions: network (de)multiplex, pace

synchronization, flow control, and congestion control (Figure 1C

and 1D).

2.2 Need for Transport Transparency

Existing INA replaces the transport layer. On its northbound,

INA provides a “message” delivery interface for DT applications

to exchange gradient messages (tensors); on its southbound, INA

stack prepares “packets” for programmable switches. Thus, the INA

stack needs to (de)packetize messages to/from network packets,

where the data operation granularity exactly overlaps that in the

transport layer.

Since the data mutation in INA contradicts the (immutable)

stream abstraction in transport protocols, existing practices [8,

14, 17, 35, 38, 58] and proposals [64] choose to replace the trans-

port layer. In detail, the traffic volume change (i.e., packet aggre-

gation) would confuse the receiver’s sequence number computing,

acknowledgment, and window moving, and the packet content

change would interfere with the packet integrity validation.

Issues of INA and transport coupling. As introduced in Sec-

tion 1, the coupling of INA and the transport layer causes issues in

performance, development, and operation. We illustrate the issues

Table 2: Lines of code of functions in ATP network stack.

Function Lines of Code Percentage

Packetization & IO 1090 32.12%

Flow Control 50 1.47%

Reliability 181 5.33%

Congestion Control 64 1.89%

Floating Point Support 220 6.48%

Fallback 100 2.95%

Others 1689 49.76%

Total 3394 100%

0 50 100
Time(s)

0

25

50

75

100
G

oo
dp

ut
 (G

bp
s)

1. ATP 2. non-ATP 3. ATP + non-ATP

Figure 2: Bandwidth contention of VGG16 in ATP and back-

ground DCTCP, cited from [35].

with examples of existing INA solutions. First, the INA stack can-

not benefit from the transport layer advances. Recent data centers

are evolving the message transport to RoCEv2 [18, 31, 76]. RoCE

offloads message packetization and connection management onto

hardware NICs and achieves high throughput and low latency with

near-zero CPU overhead. However, INA stacks cannot be built atop

RoCE and have to be implemented in software. We test the network

I/O modules in existing INA — parallel DMA in ATP [35] and DPDK

in SwitchML [58] and compare them with RoCE. Results in Table 1

show that the existing INA stacks cost more CPU resources but

cannot match RoCE in latency and throughput.

Second, the INA stack causes development complexity in ML

system building. We dissect the code organization of ATP. Table 2

lists the functions in ATP and their lines of code in implementation.

We observe that nearly 40.81% of development effort is spent on re-

inventing the basic functions (packetization, flow control, reliability,

and congestion control) in the transport layer. Such efforts could

have been saved, had the traditional transport layer been reused. In

addition, according to the code repository records, ATP developers

spent more than four months integrating ATP with BytePS with

12K lines of code changed, which is a non-trivial amount of labor.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini, R. Cheung, J. He

Third, the INA stack causes network management complexity.

When deploying INA in a legacy network, the operator has to make

performance isolation between the INA traffic and existing traffic.

Otherwise, there may be unexpected interaction behaviors between

these transport variants. For example, Figure 2 shows the unfair

bandwidth sharing of ATP and DCTCP due to their different con-

gestion control algorithms. Making performance isolation involves

configurations on tunneling (e.g., VLAN, VxLan) and QoS rules.

Note that our goal is not to solve the fairness issue between trans-

port variants, but to make INA “reuse” existing congestion control

as so to reduce the complexity to manage bandwidth sharing.

2.3 Goal and Challenges

Goal. Our goal is to design a transport transparent INA primitive

for DT jobs. The new primitive should achieve the communication

acceleration and scalability from INA, inherit high throughput and

low latency with low CPU overhead by reusing recent popular

RoCE, and be development and management friendly. There are

two challenges to this goal.

Challenge 1: Connection preservation. A data transmission

connection delivers an end-to-end immutable byte stream, i.e., loss

freedom, order-preserving, and content immutability; and the two

endpoints maintain the connection states — sliding window — for

the flow control. However, the INA aggregation hierarchy violates

loss-freedom by consuming packets and content immutability by

replacing packet payload with aggregation results.

Intuition. Existing solutions view the gradient aggregation and

the result multicast as two separate processes. In each process,

the data flow is indeed mutated. But if we put the two processes

together, we can splice data flows to form end-to-end connections.

Figure 1E illustrates an example: the gradient aggregation hierarchy

has three data flows 𝑊𝑖 → 𝑆 , and the multicast tree has three

flows 𝑆 → 𝑊𝑖 . We can splice the gradient data flow 𝑊 0 → 𝑆
with the result data flow 𝑆 → 𝑊 1. The whole data flow𝑊 0 →

𝑊 1 would experience “man-in-the-middle” data manipulation but

keep the volume unchanged, and (if the checksum is corrected) the

two endpoints would not perceive the data mutation, keeping the

connection states (e.g., sliding window) function correctly. Similarly,

spliced data flows𝑊 1 →𝑊 2 and𝑊 2 →𝑊 3 would be end-to-end

connections, and all connections form a ring.

Challenge 2: INA header recovery. Transport protocols segment

a message into packets and add a layer-4 header, but INA solutions

additionally require each packet to contain an INA header to direct

the switch operation. For example, the switch needs an ID to dis-

tinguish simultaneous DT jobs, e.g., JobID in SwitchML/ATP and

aggregation group in SHARP; the switch also needs a worker’s

position in the aggregation hierarchy to check the aggregation com-

pletion and deduplicate retransmitted packets, e.g., bitmap in ATP.

However, existing transport protocols do not provide the flexibility

to insert a custom header.

Intuition. We observe that a connection has a longer life than

that of its packets. Thus, we can concatenate the INA header on

the gradient, and hand the whole message to the transport layer.

After packetization, the first packet would contain the INA header.

The switch records the mapping between the connection and the

INA header: the first packet would update the mapping, and the

following packets would look up the mapping to recover the INA

header.

3 DESIGN

We first introduce NetReduce’s overall architecture and workflow

(§3.1), and then describe its transport-transparent design (§3.2),

multi-rack extension (§3.3), and parallel all-reduce method (§3.4).

3.1 Architecture and Workflow

Modules. Figure 3 shows the architecture of NetReduce. NetRe-

duce consists of a message-level flow control module on hosts and

an FPGA accelerator attached to the Ethernet switch. On the north-

bound of NetReduce, workers form a ring to perform the gradient

all-reduce operation: each worker establishes a connection with

its successor along the ring. The job worker passes the gradient

messages to the flow control module, which further delivers the

message to the connection of the ring.

NetReduce chooses to keep the server-to-server communication

instead of building server-to-switch communication. Because ex-

isting applications use the server-to-server communication (i.e.,

TCP/RDMA connection in Ring AllReduce), NetReduce can keep

this abstraction/interface unchanged so that the application does

not need to be modified. If we choose to design a server-to-switch

communication, we need to implement a network stack on the

switch, it causes non-trivial development efforts and hardware re-

sources to port a network stack onto the switch (e.g., commodity

SHARP switch only implements partial network functions); the

on-switch network stack can hardly be fully functional, and the

server side still need to be modified to complement the missing

functions (e.g., ATP and SwitchML need to change the server-side

network stack for reliability).

Like existing INA solutions, NetReduce organizes an aggregator

array for each ring in the accelerator. The aggregator works in

the middle of connections: intercepting and aggregating gradient

packets, and multicasting the aggregation result packets back to

connections.

RoCEv2 as the transport layer. NetReduce chooses RoCEv2 as

the transport layer but does not exclude other transport protocols.

RoCE provides the following advantages: (1) applications have al-

ready applied standard RDMA interfaces (write/send/read verbs)

for data transmission, and NetReduce could make minimum modi-

fications to the legacy code; (2) the transport layer functions, e.g.,

reliability and congestion control, are offloaded onto the hardware

NICs, which provides high performance and saves the effort of

re-implementation.

NetReduce requires the connection ID and packet sequence num-

ber (PSN) of the data transmission to achieve transport transparency.

In an RDMA connection, two hosts use Queue Pair(QP) as the con-

nection endpoint. When a RoCE NIC packetizes a message, it inserts

an IB BTH header between the UDP header and the data payload

(in RoCEv2, see Figure 4). dstQP (destination QP) and PSN are in

the IB BTH header, which can be recognized by the programmable

data plane.

NetReduce can also adapt to other transport protocols with little

modification — only the connection ID and sequence number are

required. For example, in TCP, the connection ID is the five-tuple

In-Network Aggregation with Transport Transparency for Distributed Training ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Ethernet Switch

Aggregator Array

packet buffer

worker

FPGA Accelerator

worker worker

Packet

header payloadheader payloadheader payload

Packet
bitmap

value

CLT
addressing

lookup

checksum

indexed by Rank

aggregateCTT

Multi-rack INA (3.3)

multicast

aggregation

after translation

(A) Connection establishment (B) Accelerator internal structure (C) Aggregator internal structure

Flow Ctrl. Flow Ctrl. Flow Ctrl.

gradients gradients gradients

A

B

C

Figure 3: NetReduce Architecture and Workflow.

of IP addresses, port numbers, and the protocol, and TCP also has

a sequence number field; as long as NetReduce can recognize the

connection ID and the PSN, it would correctly achieve transport

transparency.

NetReduce’s RoCE-specific design also demonstrates its trans-

port transparency. RoCE’s transport layer is implemented in hard-

ware on NICs, without providing any programming flexibility for

INA, and our NetReduce prototype interacts with RoCE correctly

and efficiently.

Initialization.When a DT job boots up, it sets up one or several

rings for gradient aggregation, where each ring is assigned a ringID
and each worker on the ring has a Rank ID. Each worker in a ring

sets up one RDMA connection to its successor and also accepts

one RDMA connection from its predecessor (�). In the switch

accelerator, an aggregator array is allocated for each ring. The

aggregators in the array are accessed by index.

Worker Sending Gradient. Workers in the job synchronously

send gradient tensors in the same order to the flow control module

(�). The flow control module chunks tensors to messages of the

same fixed length MsgLen, and organizes themessages in a sequence.

Each message is assigned a message ID MsgID whose value is its

index in the message sequence.

The flow control module delivers messages sequentially to the

RDMA connection. Each message is attached with an INA header

(MsgID, MsgLen, Rank, and RingID) in front of the tensor values.

The RDMA connection chunks a message into packets and sends

packets to the network. The flow control module applies a slid-

ing window to stream messages in concert with the aggregator

array. The maximum window size is denoted as 𝑁 messages, and

the aggregator array size is set to be 2𝑁 messages to guarantee

correctness (explained later).

Switch Aggregating Packets. When a gradient packet arrives at

the accelerator, it is addressed to one aggregator in the aggregator

array (�). Packets with the same relative sequence number across

workers are addressed to the same aggregator. A gradient packet’s

aggregator address is computed as

𝑀𝑠𝑔𝐼𝐷%(2𝑁) ×𝑀𝑠𝑔𝐿𝑒𝑛 + (𝑃𝑆𝑁 − 𝑃𝑆𝑁0),

where 𝑃𝑆𝑁 − 𝑃𝑆𝑁0 is the relative sequence number of the current

packet to the first packet of the message.

An aggregator has a bitmap and a packet buffer. Each gradient

packet would set one bit in the bitmap and fill in a slot in the

packet buffer, indexed by the packet’s sender’s Rank (�). When an

aggregator’s bitmap is full, the aggregator adds up the payloads

in its packet buffer, constructs packets using the original headers

and the result, and outputs the packets (�). The accelerator further

re-computes the checksum of a packet and sends it back to the

switch (�).

The aggregator array is a circular array used by the gradient

packet stream, it needs a way to deallocate aggregators which

completes the aggregation. NetReduce does not immediately release

an aggregator when the result packet is sent, because the result

packet could be lost and further retransmission needs to fetch the

result again. NetReduce makes a gradient packet to deallocate an

aggregator one window away in the further, i.e.,

(𝑀𝑠𝑔𝐼𝐷 + 𝑁)%(2𝑁) ×𝑀𝑠𝑔𝐿𝑒𝑛 + (𝑃𝑆𝑁 − 𝑃𝑆𝑁0).

For a packet with PSN 𝑖 , packets within the range of (𝑖 − (𝑀𝑠𝑔𝐼𝐷 −

𝑁)×𝑀𝑠𝑔𝐿𝑒𝑛, 𝑖+(𝑀𝑠𝑔𝐼𝐷+𝑁)×𝑀𝑠𝑔𝐿𝑒𝑛) could all possibly be within
the sliding window and in flight, thus, the aggregator array size is

set to be 2𝑁 messages to avoid falsely deallocating an aggregator

in use.

Worker Receiving Results. An aggregation result packet is for-

warded back to its RDMA connections and the destination. Ne-

tReduce uses RDMA write1, where the sender specifies a remote

memory address at the receiver. The RDMA connection assem-

bles packets at the destination memory address, and the receiver’s

flow control module fetches the result and hands the results to the

training application.

3.2 Transport Transparency

NetReduce overcomes the two challenges to achieve transport trans-

parency and is compatible with other transport layer functions.

Connection Preservation. As each gradient traverses the accel-

erator, it is temporarily held in the aggregator packet buffer. The

packet payload is eventually replaced by the aggregation result.

And the packet checksum is re-computed. So the receiver endpoint

would not perceive the “man-in-the-middle” payload mutation and

the connection endpoint would function normally.

INA Header Recovery. The flow control module concatenates an

INA header (containing RingID, MsgID, Rank, and MsgLen) and
tensor values as one whole message, and passes the message to

the RoCE connection. The RoCE NIC chunks the message into a

sequence of packets, where the first packet contains the INA header

1RDMA write is a one-side operation, where the receiver does not need to start a
receive thread waiting for messages.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini, R. Cheung, J. He

ETH IP UDP IB BTH IB RETH InetTag RingID MsgID MsgLen Rank fragment 1 ICRC

fragment 2ETH IP UDP IB BTH ICRC

IB IMM fragment kETH IP UDP IB BTH ICRC

First
Packet

InetTag RingID MsgID MsgLen Rank gradients (fragment1, fragment2, …, fragment k)

NetR Header

32 bits 8 bits 8 bits 8 bits 8 bits

Middle
Packet
Last
Packet

Figure 4: NetReduce Packet Format: (A) NetReduce message (INA header and tensor);

(B) Packetizing a RoCE message on NIC.

Physical
Cable Connection

W1 W2

Leaf1

W3 W4

Leaf2

Spine

Figure 5: A Spine-Leaf Topology.

but the remaining packets do not (Figure 4). Since the switch accel-

erator needs the INA header in aggregator addressing, NetReduce

introduces a Connection Lookup Table (CLT) to recover the INA

header for non-first packets (A© in Figure 3).

CLT maps a connection to the aggregation direction state (INA

header and other temporary states). For RoCE-specific connections,

CLT has a format of

<(SrcIP,DstIP,DstQP):(RingID,Rank,MsgID,PSN)>.
The first packet of a message is identified by the InetTag (a magic

number) in the INA header, and fills an entry in the CLT. The PSN
field in CLT records the PSN of the first packet (denoted as PSN0)
of the message MsgID. The non-first packets would look up CLT

and retrieve the aggregation direction state, which is further used

in aggregator addressing (step � in §3.1).

Reliability (and Correctness). The network could drop packets

during transmission. NetReduce configures the host RDMA in Reli-

able Connection (RC) mode: whenever a packet is lost, the receiver

finds the missing PSN and sends a NACK to the sender, and the

sender retransmits packets since the missing PSN (go-back-N). The

retransmission makes each packet eventually appear at the acceler-

ator. NetReduce should guarantee correctness in various cases of

loss and retransmission.

There could be computation errors in both the aggregator ad-

dressing process and the aggregation process. (1) If the first packet

of a message is lost, the following packets cannot be correctly ad-

dressed. Because the CLT contains a stale MsgID and PSN0 of the
previous message. Since packets of the current message are out

of the previous message’s PSN range, i.e., 𝑃𝑆𝑁 − 𝑃𝑆𝑁0 > 𝑀𝑠𝑔𝐿𝑒𝑛,
NetReduce identifies this case and drops packets whose first packet

is lost. (2) A packet could appear more than once at the accelerator,

e.g., the result packet loss triggering the gradient packet retrans-

mission. Each packet is supposed to be aggregated “exactly one

time” in the result [35, 58].

NetReduce’s aggregation is idempotent, where the repeated exe-

cution of steps � - � always outputs the same aggregation value.

Because NetReduce buffers packets, overwriting the buffer and

computing on the buffer does not change the result. Note that this

design is different from the “accumulation” method in existing so-

lutions [35, 58], and the aggregation logic is simplified without the

need to recognize and handle retransmitted packets specifically.

Flow Control. During the transmission and aggregation, each

in-flight packet is addressed to one aggregator in the accelerator,

thus, the sender needs to control the number of in-flight packets

not to exceed the aggregator array size. Transport protocols adjust

the window size to control the number of in-flight packets not to

exceed the receiver’s buffer, but NetReduce does not have control

over the transport layer window size.

Instead, NetReduce’s flow control module builds a message-level

slidingwindow to control the in-flight traffic volume. On theworker,

gradient messages are buffered in a FIFO queue with the sliding

window. Messages within the window are passed to the RDMA con-

nection; whenever a result message is received (from the predeces-

sor), the window advances and the next message is sent. Bunching

a window of messages and sending them together also improve

the NIC bandwidth saturation. These two sliding windows (in the

transport layer and NetReduce, respectively) cooperate in the flow

control.

The window size 𝑁 is decided by the network bandwidth-delay

product. Assume each machine is dedicated to the DT job and

could saturate the bandwidth 𝑃𝑜𝑟𝑡𝑅𝑎𝑡𝑒; the switch can process

(aggregating and switching) packets at the line rate. The in-flight

bytes are 𝑅𝑇𝑇 × 𝑃𝑜𝑟𝑡𝑅𝑎𝑡𝑒 . The window should contain at least the

same number of bytes to saturate the bandwidth. Thus, we have

𝑁 ×𝑀𝑠𝑔𝐿𝑒𝑛 × 𝑝𝑘𝑡𝑆𝑖𝑧𝑒 ≥ 𝑅𝑇𝑇 × 𝑃𝑜𝑟𝑡𝑅𝑎𝑡𝑒 ,
and

𝑁 ≥ 𝑅𝑇𝑇×𝑃𝑜𝑟𝑡𝑅𝑎𝑡𝑒
𝑀𝑠𝑔𝐿𝑒𝑛×𝑝𝑘𝑡𝑆𝑖𝑧𝑒 .

Congestion Control. NetReduce reuses the RoCEv2 Congestion

Mechanism (RCM) on NICs. As NetReduce flow control bounds

the window size not to exceed 𝑁 messages, the congestion control

would not falsely stream more packets (than the aggregator array

size) into the network.

Packet Integrity. NetReduce re-computes the checksum before a

result packet is sent out. So the receiver NIC would not misinterpret

the result packet as a corrupted one. RoCE-specific packets have a

checksum — Invariant CRC (ICRC) — appended after the payload.

For a NetReduce RoCE connection, packet integrity is guaranteed:

the sender NIC appends ICRC, the accelerator mutates the payload

and re-computes the ICRC, and the receiver NIC verifies the ICRC.

3.3 Extension to Multi-racks

In modern data centers, a DT job may span multi-racks. Thus, we

extend NetReduce to support hierarchical multi-rack aggregation.

Figure 5 shows a spine-leaf topology with four workers across

racks. Multi-rack INA makes two changes to the single-rack design:

virtual switch-to-switch connection and connection translation.

Virtual Switch-to-Switch Connection. In hierarchical aggre-

gation, traffic volume changes (decreased in aggregation and in-

creased in multicast), thus, connections cannot be spliced. Instead,

In-Network Aggregation with Transport Transparency for Distributed Training ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 3: Connection Translation Table in Figure 5.

Switch Direction From_Conn To_Conn

Spine Aggregation 𝐿1 → 𝑆 𝑆 → 𝐿1
(S) and 𝐿1 → 𝑆 𝑆 → 𝐿2

Multicast 𝐿2 → 𝑆 𝑆 → 𝐿1
𝐿2 → 𝑆 𝑆 → 𝐿2

Leaf Aggregation 𝑊 1 →𝑊 2 𝐿1 → 𝑆
(L1) 𝑊 2 →𝑊 3 𝐿1 → 𝑆

Multicast 𝑆 → 𝐿1 𝑊 1 →𝑊 2

𝑆 → 𝐿1 𝑊 4 →𝑊 1

NetReduce translates connections. In an aggregation hierarchy, Ne-

tReduce builds virtual switch-to-switch connections for neighboring

switches, e.g., 𝐿1 → 𝑆 , 𝐿2 → 𝑆 , 𝑆 → 𝐿1, and 𝑆 → 𝐿2 in Figure 5.

Connection Translation.

The switch maintains a Connection Translation Table (CTT) to

translate packets along the aggregation hierarchy and the multi-

cast tree. CTT entry’s key is the connection that may trigger the

translation, i.e., the child connections in aggregation and the parent

connection in multicast; CTT entry’s value is the connection that

leaves the switch, i.e., the parent connection in aggregation and

the child connection in multicast. Table 3 shows the CTTs for the

example: the root switch has four entries (a combination of two

gradient data flows and two result data flows), and the leaf switch

has four entries (two for aggregation and two for multicast).

In the aggregation process (traffic from leaf to root), each accel-

erator first aggregates packets as in §3.1, and then looks up the

CTT before the checksum computation (B© in Figure 3). NetReduce

duplicates the packet for each matched entry in CTT, and translates

the packet header to the entry’s target connection, i.e., its value

field.

In the multicast process, the accelerator translates the packet

based on CTT, bypasses the aggregator array (C©), and then updates

the packet checksum and sends it back to the switch.

Table Populating. Non-leaf switches’ CTTs only contain switch-

to-switch connections, which are known before hosts start RDMA

connections; thus, they are pre-computed and populated during the

job initialization. Leaf switch CTTs contain end-to-end connections,

which are dynamically decided when hosts initiate RDMA connec-

tions; thus, they are populated along with the RDMA connection

establishment.

Each message’s first packet not only participates in the aggrega-

tion but also (its header) is duplicated as a CTT populating notifica-

tion and transmitted along its route. For an end-to-end connection,

its source leaf switch adds a rule translating the connection to its

parent switch-to-switch connection, and its destination leaf switch

adds a rule doing a reverse translation. For example, the connec-

tion𝑊 2 → 𝑊 3 would populate two rules, one from𝑊 2 → 𝑊 3

to 𝐿1 → 𝑆 on 𝐿1 (shown in Table 3) and one from 𝑆 → 𝐿2 to

𝑊 2 →𝑊 3 on 𝐿2.

3.4 Parallel All-Reduce using NetReduce

Modern ML training clusters are usually equipped with multi-GPUs

on each machine. In a DT job, each GPU is dedicated to one worker.

These workers/GPUs can communicate in different patterns [24].

Stage1: intra-server
reduce

Stage 2: inter-server
all-reduce

Stage 3: intra-server
broadcast

Stage 1: intra-server
reduce-scatter

Stage 2: inter-server
in-network aggregation

Stage 3: intra-server
all-gather

(A)

(B)

Machine 0 Machine 1

Machine 3 Machine 2

Master GPUs Slave GPUs

GPUs in Ring 0 GPUs in Ring 1 GPUs in Ring 2 GPUs in Ring 3

Machine 0 Machine 1

Machine 3 Machine 2

Machine 0 Machine 1

Machine 3 Machine 2

Machine 0 Machine 1

Machine 3 Machine 2

Machine 0 Machine 1

Machine 3 Machine 2

Machine 0 Machine 1

Machine 3 Machine 2

Figure 6: Communication Patterns: (A) Tencent AllReduce:

master GPUs become bottleneck; (B) NetReduce: 4 arrows

form a ring.

Constructing the communication pattern should take the bandwidth

gap between intra- and inter-machines into consideration for better

overall throughput. The NetReduce protocol provides the flexibility

for a job to build multiple parallel rings to saturate the bandwidth.

We list Flat Ring AllReduce (FR) and Tencent AllReduce (TA) as

the baselines and derive the NetReduce-specific design — Parallel

NetReduce (PN).

Flat Ring AllReduce (FR). All GPUs of all machines form one

ring without hierarchical aggregation. This design ignores the band-

width gap between intra-machine and inter-machine.

Tencent AllReduce (TA). It is a hierarchical all-reduce [26] as

shown in Figure 6A. Each machine has one GPU as the master GPU.

The aggregation of all GPUs’ gradients is performed in three stages.

First, all GPUs within one machine perform a reduce operation

to aggregate the whole gradient to the master GPU. Second, all

machines’ master GPUs form a ring and perform all-reduce oper-
ation. By then, each master GPU would get the global aggregation

result (the final complete aggregation result). Third, each master

GPU broadcasts the global result to other local GPUs within the

same machine. In this pattern, the master GPUs could undertake a

heavier workload than slave GPUs, causing an imbalanced usage

of GPU resources.

Parallel NetReduce (PN). NetReduce system fully balances the

aggregation workload. In a NetReduce job with total 𝑃 GPUs, each

machine with 𝑛 GPUs (𝑃/𝑛machines), the job sets up 𝑛 rings during

initialization. The 𝑖-th GPU on each machine belongs to the 𝑖-th
ring.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini, R. Cheung, J. He

0 50 100 150 200 250
0

20

40

(A) Tensor size,𝑀 (MB)

C
o
m
m
.T

im
e
(m

s)

𝑃 = 1024, 𝛼 = 1 µs

FR TA (𝐵𝑖𝑛𝑡𝑟𝑎=100GB/s) PN (𝐵𝑖𝑛𝑡𝑟𝑎=15.75GB/s) PN (𝐵𝑖𝑛𝑡𝑟𝑎=50GB/s) PN (𝐵𝑖𝑛𝑡𝑟𝑎=100GB/s)

0 200 400 600 800 1,000
0

20

40

(B) No. of GPUs, 𝑃

𝑀 = 250MB, 𝛼 = 1 µs

0.1 1 10 100
0

50

100

150

(C) Latency, 𝛼 (𝜇s)

𝑃 = 1024,𝑀 = 250MB

Figure 7: Communication cost taken by a single machine for parameter synchronization (𝑛=8, 𝐵𝑖𝑛𝑡𝑒𝑟=12.5GB/s, varying 𝐵𝑖𝑛𝑡𝑟𝑎).

It also has three stages shown in Figure 6B. First, each GPU

chunks its gradient of size𝑀 into 𝑛 pieces, and all GPUs within a

machine perform the reduce-scatter operation. That is, within
each machine, the 𝑖-th GPU would fetch the 𝑖-th piece of the gradi-

ent from all other local GPUs, and aggregate these pieces. Second,

GPUs belonging to the same ring perform NetReduce aggregation,

i.e., the 𝑖-th ring aggregates all machine’s 𝑖-th GPU’s 𝑖-th gradient

piece. Then each machine’s 𝑖-th GPU would have the global aggre-

gation result of all gradient’s 𝑖-th pieces. Third, all GPUs within a

machine perform the all-gather operation to exchange the com-

plete aggregated piece, i.e., the 𝑖-th GPU broadcasts its 𝑖-th piece to

all other local GPUs and replaces their 𝑖-th local pieces.

It is worth noting that Ring All-Reduce can also apply parallel

rings like NetReduce, i.e., replacing the NetReduce INA in Figure 6B

with Ring All-Reduce, called Parallel RAR (PR). PR is also a feasible

approach that can accelerate All-Reduce by parallelism. Comparing

NetReducewith PR, NetReduce has the advantage of reducing traffic

volume (and the transmission time) due to in-network aggregation.

Comparing Approaches. PN outperforms FR and TA in most sce-

narios. The intuitive reasons are as follows. First, for inter-machine

traffic, all endpoints in PN send traffic concurrently, which meets si-

multaneously at the switch; but those in FR and TA have to wait and

accumulate tensor values along a ring, suffering from hop-by-hop

delay accumulation on the ring. Thus, FR and TA experience larger

traffic relay latency. Especially for small messages, the latency is

more obvious.

Second, for intra-machine traffic, it is reasonable to balance

the aggregation workload as in PN. Because intra-machine data

paths have more abundant bandwidth than inter-machine ones (e.g.,

NVLink with 1.2 Tbps internal all-to-all bandwidth), balancing data
among GPUs does not cause obvious overhead; furthermore, with

all GPUs participating in the aggregation, the in-network reduction

process is parallelized and accelerated.

Appendix § A gives the mathematical modeling to compare

approaches, andwe list the results below. Table 4 defines the notions

to describe the testbed settings. The sufficient conditions where PN

outperforms FR and TA: 𝑃 > 3𝑛 and 𝐵𝑖𝑛𝑡𝑟𝑎
𝐵𝑖𝑛𝑡𝑒𝑟

≥ 2𝑃
𝑃−2 (𝑃 > 𝑛 ≥ 2).

In a production network, the first is not hard to achieve, e.g., our

testbed has 𝑃 = 32 and 𝑛 = 8; and the latter can be achieved

with the recent progress of intra-machine GPU inter-connection:

NVLink makes 𝐵𝑖𝑛𝑡𝑟𝑎=150GB/s and typical high-speed Ethernet

is 𝐵𝑖𝑛𝑡𝑒𝑟=100Gbps.
Simulation. Figure 7 shows the simulation results of comparing PN

with FR and TA in amulti-GPUmulti-machine cluster.We conduct a

flow-level simulation to understand the impact factors influencing

communication time. We simulate a multi-GPU multi-machine

cluster with 𝑛 = 8 and 𝐵𝑖𝑛𝑡𝑒𝑟 =12.5GB/s (Ethernet), compare PN

with FR and TA, and tune the intra-machine bandwidth 𝐵𝑖𝑛𝑡𝑟𝑎 from

15.75GB/s (16-lane PCIe 3.0) to 100GB/s (NVLink), total number

of GPUs 𝑃 from 32 to 1024, and per-hop latency on a ring 𝛼 from

0.1 µs to 100 µs.

First, FR’s and TA’s communication time varies with 𝑃 and 𝛼 ,
but NetReduce’s does not (Figure 7B and 7C). The reason is that FR

(TA) has a ring structure, and the total latency on a ring is decided

by the number of hops 𝑃 (𝑃/𝑛) and the per-hop latency 𝛼 . But PN
intra-machine reduce-scatter and all-gather is one hop, and the

inter-machine aggregation re-organizes the (logical) ring into a

physical aggregation hierarchy with limited hops.

Second, for typical tensor transmission, the data transmission

time dominates over the latency; PN could reduce this dominant

factor more significantly than FR and TA. A model with the size

of 100MB transmitted on a 10GB/s link costs 10ms; but a typical

per-hop latency is 1-10 µs. Increasing 𝐵𝑖𝑛𝑡𝑟𝑎 to reduce the transmis-

sion time could effectively reduce the overall time. For example, in

Table 4: Symbols and their meaning.

Symbols Meaning

𝑀 The size of the gradient

𝑛 Number of GPUs per machine

𝑃 Total number of GPUs in a job

𝛼 Per-hop latency in a ring for data preparation.

𝑁 The window size

𝐵𝑖𝑛𝑡𝑟𝑎 Intra-machine bandwidth

𝐵𝑖𝑛𝑡𝑒𝑟 Inter-machine bandwidth, i.e., network bandwidth

𝑇𝑓 𝑟 Comm. time of one iteration in Flat Ring

𝑇𝑡𝑎 Comm. time of one iteration in Tencent AllReduce

𝑇𝑝𝑛 Comm. time of one iteration in Parallel NetReduce

In-Network Aggregation with Transport Transparency for Distributed Training ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Parser

Separator Payload
Buffer AggregatorArbiter

State
Record

State
Manager

Aggregation
Value

Selector

Header
Buffer

Header
Manager

C
om

bi
na

to
r

Selector

Control Plane

OUT FIFOIN FIFO

Figure 8: The architecture of NetReduce FPGA accelerator

(dash and solid arrow lines refer to control and data flows,

respectively).

Figure 7A and 7B, with 𝐵𝑖𝑛𝑡𝑟𝑎 larger than 15.75GB/s, PN always

outperforms FR and TA.

4 IMPLEMENTATION

FPGA NetReduce Accelerator (and Justifying the Choice).

We prototype the INA accelerator on an FPGA board. The FPGA

board is equipped with a Xilinx Virtex Ultrascale chip [71] which

supports six ports at a line rate of 100Gbps. The implementation of

NetReduce consumes small portions of the whole FPGA resources:

10.31% (109025), 7.91% (167554), and 26.27% (993) for LUTs, Flip-

Flops, and BRAM, respectively.

The internal architecture of the FPGA accelerator is shown in

Figure 8. The bitmap, packet buffer, and value in aggregators are

implemented as separate arrays — State Record, Header Buffer,
Payload Buffer, and Aggregation Value. When a packet arrives,

a Parser identifies the aggregation packet or directs other kinds

of packets to the output port directly. The Parser further feeds

the NetReduce header to a State Manager which tracks the ar-

rival states of the packets, i.e., the bitmaps of aggregators. Figure 9

shows the data structure to track the arrival states: it is a matrix

of bits with the row index indicating a host and the column index

indicating packet sequence number (each column is a bitmap). The

Aggregation Value is the array of tensor values field of aggrega-

tors. Header Manager is in charge of packet address translation.

Combinator merges the header with the payload and sends the

final packet out.

The INA accelerator is deployed as an external middlebox at-

tached to a commodity Ethernet switch; both sides spare six ports

to connect. The INA accelerator is fully compatible with legacy

Ethernet switches. The switch is configured with rules to route DT

traffic into the accelerator. The wiring with the Ethernet switch

is shown in Figure 10B. If the NetReduce accelerator tapes out to

ASIC, it can be integrated into the switch in the same way as the

programmable switch (Figure 10C).

We argue that FPGA is a reasonable approach for NetReduce

compared with programmable switches. First, FPGA has better

programmability to completely implement transport functions,

e.g., ICRC. Second, implementing CLT and CTT on programmable

switches is costly: one or two pipeline stages and out-of-band table

management. Third, programmable switch-based solutions either

1 1 1 1 0 0

1 1 1 1 1 0

1 1 1 1 1 0

Figure 9: Arrival states (bitmap) of packets for each ring (𝐻
and 𝑁 refer to no. of hosts and no. of message in a window,

respectively).

Switch Fabric

pipeline pipeline

Switch Fabric

FPGA

Switch Fabric

ASIC ASIC
workers

(A) Programmable Switches (B) NetR External FPGA (C) NetR ASIC

Figure 10: Accelerator with an Ethernet Switch.

suffer from small packet issues and consequent low goodput (e.g.,

SwitchML and ATP) or spare too much switch internal bandwidth

to complement the low goodput (e.g., SwitchML RDMA); the extra

switch bandwidth overhead is even larger than that of NetReduce’s

wiring. Section 6 has a quantitative analysis of the bandwidth over-

head.

Host. NetReduce reuses RoCE (its high-speed I/O and reliability)

and the ring abstraction in NVIDIA Collective Communication Li-

brary (NCCL) [51], whose communication primitives are optimized

for NVIDIAGPUs and networking. And the host ismade aminimum

modification, including incorporating NetReduce header with gra-

dients, adding a sliding window, and modifying enqueue/dequeue

behaviors.

Switch. NetReduce uses standard commodity Ethernet switches.

They are configured with Access Control List (ACL) rules to direct

DT traffic to FPGA, and each worker would install one extra rule

in the switch.

Training Framework.We implement NetReduce protocol as a new

primitiveGenericOp in NCCL-2.4.7 [48]. Andwe use the primitive in

PyTorch-1.5.1 [65] and Horovod-0.16.0 [59] supported TensorFlow-

1.12.0 [66] for training.

Comparison of implementation complexity. Table 5 shows the

lines of code (LoC) of ATP, SwitchML, and NetReduce. NetReduce

host reuses RoCE (interfaces and transport functionalities) and the

ring in Ring AllReduce, so it has the lowest complexity on hosts

(only ∼850 LoC v.s. ∼3400 and ∼3100 in ATP and SwitchML).

5 EVALUATION

The evaluation demonstrates NetReduce’s superior properties.

Table 5: Lines of code in solutions.

SwitchML ATP NetReduce

Host (C/C++) ∼3100 ∼3400 ∼850

Switch ∼3700 P4 ∼5200 P4 ∼8600 FPGA

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini, R. Cheung, J. He

Table 6: [6 machines] Micro benchmark.

Tput/Gput CPU RTT Switch Overhead

ATP 50.3/39.7Gbps 128% 751 𝜇𝑠 50% bandwidth
SwitchML 46.8/32.7Gbps 130% 812 𝜇𝑠 N/A

SwitchML RDMA 89.4/82.7Gbps 100% 8.1 𝜇𝑠 75% bandwidth
NetReduce 92.5/86.8Gbps 100% 6.3 𝜇𝑠 50% switch ports

(1) NetReduce inter-operates with the transport layer correctly,

and inherits RoCE’s low overhead, high throughput, and low

latency. (§5.2)

(2) NetReduce’s overhead of switch ports is not more significant

than programmable switch-based solutions. (§5.2)

(3) NetReduce accelerates and scales DT jobs, and the parallel all-

reduce based on NetReduce efficiently utilizes both intra- and

inter-machine bandwidth compared with the state of the art.

(§5.3, §5.4)

(4) NetReduce is cost-effective, achieving performance gain with a

lower capital expense and power. (§5.5)

5.1 Experiment Settings

Environments. We test NetReduce on two testbeds. (1) Testbed

1 is a single-GPU multi-machine one that can validate the NetRe-

duce protocol. There are six machines, each equipped with two

10-core CPUs (Intel Xeon E5-2064 2.4GHz), 32GB*3 DDR4 mem-

ory, one NVIDIA Geforce RTX 2080 8GB GPU [52], and a Mel-

lanox ConnectX-5 [42] 100GbE NIC. (2) Testbed 2 is a multi-GPU

multi-machine one that we use for a limited time to validate par-

allel NetReduce. There are four machines, each with two 18-core

CPUs (Intel Xeon Gold 6154 3.00GHz), 1 TB (64GB *16) DDR4

memory, eight NVIDIA Tesla V100 SXM2 32GB GPUs [50], and a

Mellanox ConnectX-5 100GbE NIC. Within each machine, a hybrid

cube-mesh topology [47] is used for 8-GPU interconnection via

NVLink [49].

Baselines.We compareNetReducewith RingAllReduce, SwitchML,

and Tencent AllReduce. Ring AllReduce and Tencent AllReduce are

implemented by NCCL-2.4.7, while SwitchML is implemented by

using a programming switch equipped with a Tofino chip. We also

use a microbenchmark to compare NetReduce, ATP, and SwitchML.

Workloads. We evaluate the systems in typical image classifica-

tion training workload ImageNet [9]. Three representative Convo-

lutional Neural Network (CNN) models are chosen: AlexNet [33],

VGG16 [63], and ResNet50 [21]. We also evaluate NetReduce on

typical NLP Transformer models, including BERT[10] and GPT [55]

pertaining, and GLUE [62, 69] and SQuAD [23, 56] fine-tuning.

Parameters. In the experiments, the sliding window size 𝑁 = 2,

each message has 170 packets, and the packet payload carries 1 KB

of data. In the experiment, we also tune the parameters of batch

size and value precision to observe their impact on the result.

Metrics.We measure two metrics: the training throughput — the

average number of samples that each worker/GPU can train in

one second — to measure the system efficiency; the loss — the

objective function of training — to measure the training quality.

The experimental results are obtained by using float-point number

arithmetic for aggregation.

Alex
Net

VGG
16
ResN

et50
0

0.5

1

1.5

Sp
ee
d
u
p

(A) ImageNet

RAR SwitchML NetReduce

BER
T
GPT

-2
MNLIQNL

I
QQPSQu

AD
0

0.5

1

1.5

(B) NLP

Figure 11: [Testbed 1] Speedup of NetReduce and SwitchML

v.s. RAR for deep learning models.

5.2 Micro Benchmark

We run micro-benchmarks to make all-reduce communication on

ATP, SwitchML, SwitchML RDMA, and NetReduce. There are six

workers in the experiment. In the benchmarking, all workers send

traffic with their best effort. Table 6 shows the results.

Transport Transparency. NetReduce inter-operates with the un-

derlying RoCEv2 correctly. Together with the LoC comparison in

Table 5, the transport transparent design of NetReduce makes it

friendly for development and deployment.

Performance Acceleration. ATP and SwitchML consume more

CPU than NetReduce, have large latency, but only achieve half of

NetReduce’s throughput. ATP and SwitchML run in software multi-

thread mode, which causes the CPU and latency overhead and low

performance. The latency increased by software packetization in

ATP and SwitchML even exceeds the latency introduced by two

extra hops (between FPGA accelerator and switch) in NetReduce.

ATP and SwitchML also suffer from the small packet issue, and

their goodput is lower (less than half of NetReduce).

Switch Overhead. NetReduce attaches the external FPGA acceler-

ator to the switch, consuming 50% of switch ports. But for solutions

using programmable switches (mainly Tofino), the hardware limita-

tion also causes equal or even larger bandwidth overhead. In Tofino

switches, a pipeline can only connect 16 switch ports and process

four 32-bit tensor values in the payload (detailed discussion in §6).

ATP uses internal recirculation to process packets with a larger

payload, the recirculation costs 50% switch internal bandwidth;

SwitchML does not handle the small-payload issue, its goodput

upper bound is 63% line rate (128-byte payload) [58]; SwitchML

RDMA chains four pipelines of a 6.4 Tbps switch to get a huge

pipeline for a larger payload, but the recirculation costs 75% switch

internal bandwidth, leaving only 16 ports for machines. INA so-

lutions usually need to make a tradeoff between extra hardware

costs and high performance. NetReduce costs reasonable switch

ports/bandwidth compared with state-of-the-art solutions.

5.3 Performance on Single-GPU Machines

Training Throughput. We run CNN model training on Testbed 1

and show the results in Figure 11A. First, NetReduce and SwitchML

both accelerate the training speed compared with Ring AllReduce

(RAR), e.g., the training speed ratio of the three is 1.45:1.18:1 for

In-Network Aggregation with Transport Transparency for Distributed Training ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

0

0.5

1

1.5
·10−2

Training steps

L
o
ss

ra
ti
o AlexNet VGG16 ResNet50

Figure 12: [Testbed 1] Loss difference ratio between NetRe-

duce and ring all-reduce.

AlexNet because INA reduces the gradient transmission time. Sec-

ond, NetReduce outperforms SwitchML by a larger speedup for the

reason that NetReduce has full-length Ethernet frames and segmen-

tation is offloaded to RoCE NIC. Third, NetReduce and SwitchML

have similar performance on ResNet50. The reason is that ResNet50

is a computation-intensive model, and the communication time

improvement from INA is marginal in this case.

Figure 11B shows the performance gain of NetReduce compared

with RAR in NLP model training. We get similar observations with

the CNN models. Compared with RAR, NetReduce improves BERT

pretraining, GPT-2 pretraining, GLUE-MNLI, GLUE-QUNLI, GLUE-

QQP, and SQuAD by 34.6%, 24.8%, 27.3%, 29.6%, 22.2%, 42.5%, re-

spectively.

Training Quality. Figure 12 shows the loss difference between

NetReduce and RAR in training iterations, and the metric is
|𝐿𝑂𝑆𝑆𝑖𝑛𝑒𝑡−𝐿𝑂𝑆𝑆𝑟𝑖𝑛𝑔 |

𝐿𝑂𝑆𝑆𝑟𝑖𝑛𝑔
. Both solutions progress at the same pace (the

same loss value) with the training iterations: the loss ratio is usually

smaller than 0.2% (ResNet50 occasionally shows a larger difference

of 1.5%, but is still negligible). Thus, NetReduce does not pay the

price of losing training accuracy to get a higher speed (Figure 11).

5.4 Performance on Multi-GPU Machines

We train CNN models on testbed 2 with two settings: one GPU on

eachmachine involved (Figure 13) and all GPUs involved (Figure 14).

Ring AllReduce and NetReduce are compared in the single-GPU

setting, and Flat Ring (FR), Tencent AllReduce (TA), and Parallel

NetReduce (PN) are compared in the multi-GPU setting. The batch

size (BS) and precision, i.e., 16bit and 32bit floating-point (FP), are

tuned. The training throughput is measured.

Scaling across machines. NetReduce could scale linearly with the

number of machines, which outperforms other solutions. In both

figures, NetReduce’s average throughput of 4 machines is the same

as the throughput of a single machine. (Parallel) NetReduce has

performance gains of 68.8%, 57.9%, and 35.6% for AlexNet compared

with FR, TA, and RAR with BS=32 and FP16. The experiment result

complies with the analysis in §3.4: NetReduce achieving better cross-

machine scalability by coordinating concurrent worker sending

and balancing GPU workload.

Impact on different models. NetReduce impacts model train-

ing differently due to their communication-to-computation ratio,

and benefits the communication-intensive models. Table 7 further

specifies the case of BS=32 and FP16 in Figure 13. In Table 7, Ne-

tReduce improves AlexNet on the throughput by 35.6%, which is

Table 7: Training performance in Figure 13 (4 GPUs) with

BS=32 and FP16.

Model Throughput Iteration Communication
(images/s) (ms) (ms)

AlexNet Ring all-reduce 527.9 60.62 47.12(77.7%)
(236MB) NetReduce 716.0 44.69 31.10(69.6%)

↑ 35.6% 26.3% 34.0%
VGG16 Ring all-reduce 172.9 185.08 111.98(60.5%)
(528MB) NetReduce 215.3 148.63 74.64(50.2%)

↑ 24.5% 19.7% 33.3%
ResNet50 Ring all-reduce 358.8 89.19 23.04(25.8%)
(98MB) NetReduce 383.6 83.42 19.29(23.1%)

↑ 6.9% 6.5% 16.3%

Table 8: Throughput scaling-down for AlexNet, FP=32.

Batch NetReduce (images/s) Flat Ring (images/s)

Size 32 GPUs 4 GPUs ↓ 32 GPUs 4 GPUs ↓

64 938.4 1372.2 31.6% 585.2 1051.1 44.3%

128 1555.5 2225.3 30.1% 1037.2 1912 45.8%

Table 9: Training performance in Figure 14 (32 GPUs) with

with BS=32 and FP16.

Model Flat ring Tencent Parallel
all-reduce all-reduce NetReduce

AlexNet Images/s 307.5 328.8 519.2
(236MB) ↑ 68.8% 57.9% -
VGG-16 Images/s 115.2 122.2 173.6
(528MB) ↑ 50.7% 42.1% -
ResNet-50 Images/s 276.0 282.8 317.6
(98MB) ↑ 15.1% 12.3% -

the most. This is because when using the ring all-reduce algorithm

to train AlexNet, the time taken for communication occupies 77.7%

(=47.12/60.62 as shown in the 5𝑡ℎ column in Table 7) of the whole

iteration time, which has a significant potential to improve. Indeed,

NetReduce improves AlexNet in communication by 34.0%. On the

contrary, although VGG16 is improved on communication by 33.3%,

which is similar to AlexNet, the communication part occupies 60.5%,

which is smaller than AlexNet, resulting in a smaller improvement

in total training throughput (24.5%). Especially for ResNet50, which

is a computation-intensive model, with 16.3% improvement on the

communication part, which accounts for only 25.8% of the iteration

time, we only have 6.9% improvement on the training throughput.

Scaling across GPUs on multi-machines. FR, TA, and PN show

sub-linear scaling in the multi-GPU multi-machine setting, but

PN degrades less. Table 8 shows the average GPU throughput of

AlexNet in Figure 13 and Figure 14. NetReduce decreases from

1372.2 to 938.4 (31.6%) and FR/RAR from 1051.1 to 585.2 (44.3%).

All solutions cannot handle the inter-machine and intra-machine

bandwidth gap without throughput loss, because moving data be-

tween the network and GPU memory is expensive (especially for

multi-GPUs with one NIC); NetReduce shows less degradation, as

its parallelization method (GPU balanced) and INA acceleration

complements the loss.

Table 9 details Figure 14 when BS=32 and FP16. Parallel NetRe-

duce outperforms Flat Ring by 68.8%, 50.7%, and 15.1% for AlexNet,

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini, R. Cheung, J. He

16 32 64 128 256
0

1,000

2,000

3,000

4,000

Batch Size

Im
ag
es
/s

(A) AlexNet

RAR-FP32 NetReduce-FP32 RAR-FP16 NetReduce-FP16

16 32 64 128 256
0

100

200

300

400

Batch Size

(B) VGG16

16 32 64 128 256
0

200

400

600

800

Batch Size

(C) ResNet50

Figure 13: [Testbed 2: 1 GPU/machine] Training throughput, varying batch size (BS) and precision.

16 32 64 128
0

500

1,000

1,500

Batch Size

Im
ag
es
/s

(A) AlexNet

FR-FP32 TA-FP32 PN-FP32 FR-FP16 TA-FP16 PN-FP16

16 32 64 128
0

100

200

300

Batch Size

(B) VGG16

16 32 64 128
0

200

400

600

Batch Size

(C) ResNet50

Figure 14: [Testbed 2: 8 GPUs/machine] Training throughput, varying batch size (BS) and precision.

VGG-16, and ResNet-50, respectively. Compared with Tencent All-

Reduce, parallel NetReduce speeds up training by 57.9%, 42.1%, and

12.3% for the three models, respectively.

Validating CommunicationModeling (in §3.4).Our experiment

validates the report in [26] that TA brings performance gain for

tensors with smaller sizes, but for relatively larger tensors, FR still

outperforms TA. In Appendix § A, we model the communication

cost of each algorithm as a combination consisting of two items:

message processing latency item with 𝛼 and tensor transmission

item with𝑀 . The 𝛼 item is mostly affected by the number of GPUs

participating in training 𝑃 . Therefore, for small tensors where the 𝛼
item accounts for most communication costs, TA gives superior per-

formance. However, for big tensors where the𝑀 item accounts for

most communication costs and the system becomes less sensitive

to 𝑃 , TA brings less gain.

PNwould always outperform FR if condition (6) holds, regardless

of tensor size. Considering our hardware prototype, substituting

P=32 and n=8 into (6) gives 𝐵𝑖𝑛𝑡𝑟𝑎
𝐵𝑖𝑛𝑡𝑒𝑟

≥ 2.3. Indeed, intra and inter

nodes being connected via NVLink and 100GbE gives 𝐵𝑖𝑛𝑡𝑟𝑎 =

150 GB/s and 𝐵𝑖𝑛𝑡𝑒𝑟 = 12.5 GB/s, respectively. Therefore, in our

hardware prototype, 𝐵𝑖𝑛𝑡𝑟𝑎
𝐵𝑖𝑛𝑡𝑒𝑟

=12 > 2.3. With increased 𝑃 , the 𝛼 item

accounts for a larger proportion in FR, resulting in poor scalability.

PN reduces the impact of 𝛼 item by dividing a big ring into multiple

small parallel rings, improving the scalability.

Table 10: Cost effect comparison, with price in 2019.

CapEx($) Power (W)

One GPU (V100) 9075.4 300

Unit Switch Port (3.2 Tbps) 245.5 9.4

One FPGA Board 6000 28.3

Testbed 2 without NetReduce 291394.6 9637.4

Testbed 2 with NetReduce 298376.5 9703.2

5.5 Cost Effectiveness

Table 10 shows the price and power of the unit component and the

whole Testbed 2. When the testbed is not equipped with NetReduce,

each machine consumes one switch port; when equipped with

NetReduce, there is one extra FPGA board that consumes six extra

ports. NetReduce spends 2.40% more capital expense and 0.68%

more power than the original testbed. According to the experiment

in Figure 14, the extra cost promotes the cluster efficiency by 12.3%-

57.9% in model training. Thus, NetReduce is a cost-effective solution

to promote existing GPU clusters.

6 DISCUSSION

ComparedwithProgrammable Switch-based Solutions. Switch-

based INA solutions are difficult to achieve full functionality, line

rate, and low overhead together. First, NetReduce achieves transport

transparency essentially by maintaining the connection states in

the switch. Implementing NetReduce on the programmable switch

In-Network Aggregation with Transport Transparency for Distributed Training ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

incurs two kinds of overhead: one stage for CLT and one for CTT,

and, more critically, an out-of-band process to populate the table

for each connection/message, which delays each message. In ad-

dition, some functions like ICRC computation are not available

on switches, and the endpoint has to turn the feature off, which,

however, could lead to the endpoint misbehaving in the case of

packet corruption.

Second, programmable switches have hardware limitations that

lead to small payload sizes and consequent low bandwidth efficiency,

and existing solutions make complicated tradeoffs to complement

the throughput. The programmable switches process a packet in

a pipeline of stages, with each stage able to process four 32-bit

integers and each pipeline can connect 16 × 100Gbps ports. One

pass of a packet can only process values of at most 192 bytes (12

stages × 4 registers/stage × 4 bytes/register). (1) SwitchML does

not handle the small payload issue specifically, thus, its goodput

upper bound is 63% line rate (reported in [58]). (2) ATP runs re-

circulation for each packet, so that the packet has a second pass

on the switch pipeline, and the goodput can be 40Gbps with 256-

byte payload. However, recirculating packets once costs 50% in-

ternal bandwidth. (3) SwitchML RDMA recirculates packets on all

four switch pipelines to get a huge pipeline; it achieves 89.4Gbps
throughput (line rate), but it costs 75% switch ports saturated in

loopback mode.

NetReduce achieves full transport functions and transparency at

line rate, and the overhead is no larger than switch-based solutions.

Further Comparison with SwitchML RDMA. SwitchML RDMA

uses RDMA Write Immediate in Unreliable Connection (UC) trans-

port mode (like UDP) and (logically) chains pipelines to achieve

a line rate packet processing. This design is not fully transport

transparent. In UC mode, unordered and duplicated packets are

detected by the responder but the requester is not informed. To

achieve reliability when packet loss happens, the application has

to be involved in loss detection, notification, and retransmission.

SwitchML RDMA also encodes aggregation information in the

RDMA header, which could affect the flexibility of setting up RDMA

connections. SwtichML INAmetadata such as pool index is encoded

in RDMA Extended Transport Header (RETH) which position orig-

inally contains Virtual Address and R_Key for remote DMA. RETH

only appears in the first packet in a message, and SwitchML RDMA

links non-first packets to first packets by using a sequence number

as NetReduce does. Once the switch completes a packet aggregation

(metadata is consumed), it reloads Virtual Address and R_Key back

to packet RETH. This requires endpoints to install such information

to the switch out of the band at the job initialization time.

SwtichML RDMA turns off the ICRC on the NIC because the

programmable switch mutates the packet content but cannot com-

pute this checksum. Thus, the endpoint is not able to detect packet

corruption.

Feasibility on SmartNIC/DPU. Recently, SmartNIC/DPU has

gained attention. They provide programmability on NICs. Thus, it

provides the potential to offload the INA stack to SmartNICs/DPUs.

This approach can save the host CPU, but may not get develop-

ment simplicity or good performance. (1) For SmartNICs with FPGA

to program, it is not trivial to re-design and re-implement the entire

INA stack on FPGA, especially the transport layer. (2) For DPUs

with ARM cores, the programmability is sufficient, but dumping a

network stack on ARM cores makes its software architecture to be

the same as on the host, which could suffer from similar latency

and low throughput issues as existing INA solutions.

Multi-Tenancy. NetReduce supports multi-tenancy. Different jobs

can declare disjoint ring IDs and accelerator memory regions for

their gradient aggregation.

7 RELATEDWORK

INA Solutions. ATP [35], SwitchML [58], iSwitch [38], PANA-

MA [14], and NVIDIA’s accelerator-centric network [32] build ded-

icated network stack. SHARP [16] has hardware support on NIC

and switches. Flare [8] only proposes the switch logic. OmniRe-

duce [13] does not fully elaborate its INA realization in a switch,

which derives from SwitchML and inherits some of its limitations.

SwitchML RDMA is implemented in RDMA Unreliable Connection

mode (like UDP) as discussed in Section 6. To the best of our knowl-

edge, NetReduce is the first solution that is compatible with the

existing transport layer, especially RDMA.

DT Acceleration with High-Speed Networks. The class of so-

lutions that directly accelerate DT jobs by improving the network

throughput can be complementary with NetReduce. For example,

GossipGraD [7] uses InfiniBand, MG-WFBP [60] merges smaller

messages into a large one, SiP-ML [29] applies optical network to

transfer gradients, and Horovod can be accelerated by RDMA [59].

Other Network-centric DT Acceleration Solutions. A class of

DT acceleration solutions focuses on the control plane. By opti-

mizing job scheduling and job placement, the infrastructure can

carry more jobs and complete them more quickly. NetReduce is

orthogonal with this class of solutions. For example, Gavel, and

THEMIS schedule jobs to shorten average JCT [41, 46]; Blink, AFS,

and PLink allocate network resources (e.g., routing, bandwidth) to

jobs [40, 61, 70]; TicTac, ByteScheduler, and MLfabric schedules

gradient tensors’ order [20, 53, 68].

Other In-Network Computation Solutions. Offloading compu-

tation to programmable network devices is an effective approach to

accelerate systems. There are system acceleration solutions in the

field of storage [27, 28, 30, 39, 75], network functions [5, 6], and data

query [4, 36, 45, 67]. And NetReduce offloads gradient aggregation

specifically.

8 CONCLUSION

We built NetReduce, a transport transparent INA primitive for dis-

tributed training. NetReduce provides a ring abstraction to DT

jobs, and workers establish RDMA connections along the ring.

NetReduce implements an FPGA accelerator attached to Ether-

net switches. The accelerator provides a connection-preserving

in-network aggregation. We also devised parallel all-reduce with

NetReduce to efficiently utilize the inter- and intra- machine band-

width. Our prototype and evaluation demonstrated the feasibility,

low CPU overhead, high throughput, low latency, scalability, and

cost-effectiveness of NetReduce.

ACKNOWLEDGMENTS

We thank our shepherd and all the anonymous reviewers for their

helpful feedback. Part of the evaluation in this work is done by

using the resources of Peng Cheng Laboratory.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini, R. Cheung, J. He

A COMMUNICATION TIME MODELING

Modeling. Using the symbols in Table 4, we model the commu-

nication time in FR, TA, and PN. In the multi-GPU multi-machine

scenario, the communication time taken by using the flat ring all-

reduce algorithm is modeled as

𝑇𝑓 𝑟 = 2(𝑃 − 1)𝛼 + 2
𝑃 − 1

𝑃

𝑀

𝐵𝑖𝑛𝑡𝑒𝑟
(1)

where 𝐵𝑖𝑛𝑡𝑒𝑟 refers to the inter-machine bandwidth where ma-

chines are connected via computer networks such as Ethernet or

InfiniBand.

For Tencent all-reduce, consider Rabenseifner’s reduce algo-

rithm [54] and Van de Geijn’s broadcast algorithm [2], and assume

𝑛 is a power of 2, the communication cost can be modeled as

𝑇𝑡𝑎 = 𝑇𝑡𝑎1 +𝑇𝑡𝑎2 +𝑇𝑡𝑎3

=

[
2𝛼 log2 (𝑛) +

2(𝑛 − 1)

𝑛

𝑀

𝑛𝐵𝑖𝑛𝑡𝑟𝑎

]

+

[
2(

𝑃

𝑛
− 1)𝛼 + 2

𝑃/𝑛 − 1

𝑃/𝑛

𝑀

𝐵𝑖𝑛𝑡𝑒𝑟

]

+

[
(log2 (𝑛) + 𝑛 − 1)𝛼 + 2

𝑛 − 1

𝑛

𝑀

𝐵𝑖𝑛𝑡𝑟𝑎

]

=
𝑛2 + 3𝑛 log2 (𝑛) − 3𝑛 + 2𝑃

𝑛
𝛼

+
4(𝑛 − 1)𝑃𝐵𝑖𝑛𝑡𝑒𝑟 + 2(𝑃 − 𝑛)𝑛𝐵𝑖𝑛𝑡𝑟𝑎

𝑛𝑃𝐵𝑖𝑛𝑡𝑟𝑎𝐵𝑖𝑛𝑡𝑒𝑟
𝑀 (2)

where 𝐵𝑖𝑛𝑡𝑟𝑎 refers to the intra-machine bandwidth where GPUs

are connected via expansion bus such as PCIe or NVLinks.

The communication cost of parallel NetReduce is given as

𝑇𝑝𝑛 = 𝑇𝑝𝑛1 +𝑇𝑝𝑛2 +𝑇𝑝𝑛3

=

[
(𝑛 − 1)𝛼 + (𝑛 − 1)

𝑀

𝑛𝐵𝑖𝑛𝑡𝑟𝑎

]
+

(
𝛼 +

𝑀

𝐵𝑖𝑛𝑡𝑒𝑟

)

+

[
(𝑛 − 1)𝛼 + (𝑛 − 1)

𝑀

𝑛𝐵𝑖𝑛𝑡𝑟𝑎

]

= (2𝑛 − 1)𝛼 +
2(𝑛 − 1)𝐵𝑖𝑛𝑡𝑒𝑟 + 𝑛𝐵𝑖𝑛𝑡𝑟𝑎

𝑛𝐵𝑖𝑛𝑡𝑟𝑎𝐵𝑖𝑛𝑡𝑒𝑟
𝑀 (3)

When 𝑛 = 1, 𝐵𝑖𝑛𝑡𝑟𝑎 = 𝐵𝑖𝑛𝑡𝑒𝑟 = 𝐵, Eq.(3) reduces to the single-GPU

case as 𝑇𝑖𝑛𝑒𝑡 = 𝛼 + 𝑀
𝐵 .

Comparison. Eq.(2) subtracting Eq.(3) gives

Δ𝑇𝑡𝑎−𝑝𝑛 = 𝑇𝑡𝑎 −𝑇𝑝𝑛

= (2𝑃/𝑛 + 3 log2 (𝑛) − 𝑛 − 2)𝛼

+
(𝑃 − 2𝑛)𝑛𝐵𝑖𝑛𝑡𝑟𝑎 + 2(𝑛 − 1)𝑃𝐵𝑖𝑛𝑡𝑒𝑟

𝑛𝑃𝐵𝑖𝑛𝑡𝑟𝑎𝐵𝑖𝑛𝑡𝑒𝑟
𝑀 (4)

When 𝑃 > 3𝑛, (4) is always larger than 0, considering 𝑛 is usually

no larger than 16.

Eq.(1) subtracting Eq.(3) gives

Δ𝑇𝑓 𝑟−𝑝𝑛 = 𝑇𝑓 𝑟 −𝑇𝑝𝑛

= (2𝑃 − 2𝑛 − 1)𝛼

+
(𝑃 − 2)𝑛𝐵𝑖𝑛𝑡𝑟𝑎 − 2(𝑛 − 1)𝑃𝐵𝑖𝑛𝑡𝑒𝑟

𝑛𝑃𝐵𝑖𝑛𝑡𝑟𝑎𝐵𝑖𝑛𝑡𝑒𝑟
𝑀 (5)

Similarly, we can obtain a relaxed sufficient condition from (5)

that parallel NetReduce outperforms flat ring all-reduce on commu-

nication as follows

𝐵𝑖𝑛𝑡𝑟𝑎
𝐵𝑖𝑛𝑡𝑒𝑟

≥
2𝑃

𝑃 − 2
(𝑃 > 𝑛 ≥ 2) (6)

We get the sufficient conditions where PN outperforms FR and

TA: 𝑃 > 3𝑛 and 𝐵𝑖𝑛𝑡𝑟𝑎
𝐵𝑖𝑛𝑡𝑒𝑟

≥ 2𝑃
𝑃−2 (𝑃 > 𝑛 ≥ 2). In a production

network, the first is not hard to achieve, e.g., our testbed has

𝑃 = 32 and 𝑛 = 8; and the latter can be achieved with the recent

progress of intra-machine GPU inter-connection: NVLink makes

𝐵𝑖𝑛𝑡𝑟𝑎 >=100GB/s and typical high-speed Ethernet is 𝐵𝑖𝑛𝑡𝑒𝑟 =

100Gbps.

REFERENCES
[1] Barefoot. 2019. TOFINO: World’s fastest P4-programmable Ethernet switch

ASICs. (2019). https://barefootnetworks.com/products/brief-tofino/.
[2] Mike Barnett, Lance Shuler, Robert vanDeGeijn, Satya Gupta, David G Payne, and

Jerrell Watts. 1994. Interprocessor collective communication library (InterCom).
In Proceedings of IEEE Scalable High Performance Computing Conference. IEEE,
357–364. https://ieeexplore.ieee.org/abstract/document/296665.

[3] Theophilus A Benson. 2019. In-network compute: Considered armed and danger-
ous. In Proceedings of the Workshop on Hot Topics in Operating Systems. 216–224.

[4] Li Chen, Ge Chen, Justinas Lingys, and Kai Chen. 2018. Programmable switch as
a parallel computing device. arXiv preprint arXiv:1803.01491 (2018).

[5] Xiang Chen, Qun Huang, Peiqiao Wang, Zili Meng, Hongyan Liu, Yuxin Chen,
Dong Zhang, Haifeng Zhou, Boyang Zhou, and Chunming Wu. 2021. LightNF:
Simplifying Network Function Offloading in Programmable Networks. In 2021
IEEE/ACM 29th International Symposium on Quality of Service (IWQOS). IEEE,
1–10.

[6] Eyal Cidon, Sean Choi, Sachin Katti, and Nick McKeown. 2017. AppSwitch:
Application-Layer Load Balancing within a Software Switch. In Proceedings of
the First Asia-Pacific Workshop on Networking (Hong Kong, China) (APNet’17).
Association for Computing Machinery, New York, NY, USA, 64–70. https://doi.
org/10.1145/3106989.3106998

[7] Jeff Daily, Abhinav Vishnu, Charles Siegel, Thomas Warfel, and Vinay Amatya.
2018. Gossipgrad: Scalable deep learning using gossip communication based
asynchronous gradient descent. arXiv preprint arXiv:1803.05880 (2018). https:
//arxiv.org/pdf/1803.05880.pdf.

[8] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashkboos, Shigang Li, and Torsten
Hoefler. 2021. Flare: flexible in-network allreduce. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. 1–16.

[9] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255. https://www.image-net.org/papers/
imagenet_cvpr09.pdf.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018). https://arxiv.org/abs/1810.04805.

[11] Yaozu Dong, Xiaowei Yang, Jianhui Li, Guangdeng Liao, Kun Tian, and Haibing
Guan. 2012. High performance network virtualization with SR-IOV. J. Parallel
and Distrib. Comput. 72, 11 (2012), 1471–1480.

[12] Yaozu Dong, Zhao Yu, and Greg Rose. 2008. SR-IOV Networking in Xen: Archi-
tecture, Design and Implementation.. In Workshop on I/O Virtualization, Vol. 2.

[13] Jiawei Fei, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Amedeo Sapio.
2021. Efficient Sparse Collective Communication and its application to Accelerate
Distributed Deep Learning. In Proceedings of SIGCOMM.

[14] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. 2021. In-network Aggregation
for Shared Machine Learning Clusters. Proceedings of Machine Learning and
Systems 3 (2021), 829–844.

[15] Jinkun Geng, Dan Li, and Shuai Wang. 2019. Rima: an RDMA-accelerated model-
parallelized solution to large-scale matrix factorization. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE). IEEE, 100–111.

[16] Richard L Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad Shainer, Gil
Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchubievsky, Vladimir Koushnir,
et al. 2016. Scalable hierarchical aggregation protocol (SHArP): A hardware
architecture for efficient data reduction. In 2016 First International Workshop on
Communication Optimizations in HPC (COMHPC). IEEE, 1–10. https://ieeexplore.
ieee.org/abstract/document/7830486/.

[17] Richard L Graham, Lion Levi, Devendar Burredy, Gil Bloch, Gilad Shainer, David
Cho, George Elias, Daniel Klein, Joshua Ladd, Ophir Maor, et al. 2020. Scalable Hi-
erarchical Aggregation and Reduction Protocol (SHARP) Streaming-Aggregation

In-Network Aggregation with Transport Transparency for Distributed Training ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Hardware Design and Evaluation. In International Conference on High Performance
Computing. Springer, 41–59. https://link.springer.com/chapter/10.1007/978-3-
030-50743-5_3.

[18] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over commodity Ethernet at scale.
In Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 202–215. https:
//dl.acm.org/doi/pdf/10.1145/2934872.2934908.

[19] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. 2015. SoftNIC: A software NIC to augment hardware. EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155 (2015).

[20] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell. 2018. Tictac:
Accelerating distributed deep learning with communication scheduling. arXiv
preprint arXiv:1803.03288 (2018).

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778. http://openaccess.thecvf.com/content_
cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf.

[22] Zhiqiang He, Dongyang Wang, Binzhang Fu, Kun Tan, Bei Hua, Zhi-Li Zhang,
and Kai Zheng. 2020. MasQ: RDMA for Virtual Private Cloud (SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.
org/10.1145/3387514.3405849 https://doi.org/10.1145/3387514.3405849.

[23] Huggingface. 2020. Transformers:State-of-the-art Natural Language Process-
ing for PyTorch and TensorFlow 2.0. (2020). https://github.com/huggingface/
transformers.

[24] Sylvain Jeaugey. 2017. NCCL 2.0. (2017). http://on-demand.gputechconf.com/
gtc/2017/presentation/s7155-jeaugey-nccl.pdf.

[25] Chengfan Jia, Junnan Liu, Xu Jin, Han Lin, Hong An, Wenting Han, Zheng Wu,
and Mengxian Chi. 2018. Improving the performance of distributed tensorflow
with RDMA. International Journal of Parallel Programming 46, 4 (2018), 674–685.

[26] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,
Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. 2018. Highly scalable
deep learning training system with mixed-precision: Training Imagenet in four
minutes. arXiv preprint arXiv:1807.11205 (2018). https://arxiv.org/pdf/1807.11205.

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Renton, WA, 35–49. https://www.usenix.org/
conference/nsdi18/presentation/jin

[28] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (Shanghai, China) (SOSP ’17). Association for Computing Ma-
chinery, New York, NY, USA, 121–136. https://doi.org/10.1145/3132747.3132764

[29] Mehrdad Khani, Manya Ghobadi, Mohammad Alizadeh, Ziyi Zhu, Madeleine
Glick, Keren Bergman, Amin Vahdat, Benjamin Klenk, and Eiman Ebrahimi. 2021.
SiP-ML: high-bandwidth optical network interconnects for machine learning
training. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 657–675.

[30] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. 2018. Hyperloop: Group-Based NIC-Offloading to Accel-
erate Replicated Transactions in Multi-Tenant Storage Systems. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication
(Budapest, Hungary) (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 297–312. https://doi.org/10.1145/3230543.3230572

[31] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye,
Shachar Raindel, Chuanxiong Guo, Vyas Sekar, and Srinivasan Seshan. 2019.
FreeFlow: Software-based Virtual RDMA Networking for Containerized Clouds.
In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 113–126. https://www.usenix.org/
conference/nsdi19/presentation/kim.

[32] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry Dennison. 2020. An in-
network architecture for accelerating shared-memory multiprocessor collectives.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 996–1009.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in neural informa-
tion processing systems. 1097–1105. http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

[34] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, YaogongWang, Chong-
gang Li, Valas Valancius, Jake Adriaens, Steve Gribble, Nate Foster, et al. 2019.
PicNIC: predictable virtualized NIC. In Proceedings of the ACM Special Interest
Group on Data Communication. 351–366.

[35] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning. In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association, 741–761. https://www.usenix.org/
conference/nsdi21/presentation/lao.

[36] Alberto Lerner, Rana Hussein, Philippe Cudre-Mauroux, and U eXascale Infolab.
2019. The Case for Network Accelerated Query Processing.. In CIDR.

[37] Mingfan Li, Ke Wen, Han Lin, Xu Jin, Zheng Wu, Hong An, and Mengxian Chi.
2019. Improving the performance of distributed mxnet with rdma. International
Journal of Parallel Programming 47, 3 (2019), 467–480.

[38] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. 2019. Accelerating distributed reinforcement learning with in-switch
computing. In 2019 ACM/IEEE 46th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, 279–291. https://ieeexplore.ieee.org/abstract/
document/8980345.

[39] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing for
Large-Scale Storage SystemswithDistributed Caching. In 17th USENIX Conference
on File and Storage Technologies (FAST 19). USENIX Association, Boston, MA,
143–157. https://www.usenix.org/conference/fast19/presentation/liu

[40] Liang Luo, Peter West, Arvind Krishnamurthy, Luis Ceze, and Jacob Nelson. 2020.
PLink: Discovering and Exploiting Datacenter Network Locality for Efficient
Cloud-based Distributed Training. Proc. of MLSys (2020).

[41] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-
man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis:
Fair and efficient {GPU} cluster scheduling. In 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20). 289–304.

[42] Mellanox. 2022. ConnectX-5 EN Single/Dual-Port Adapter Supporting 100Gb/s
Ethernet. (2022). https://www.mellanox.com/products/ethernet-adapters/
connectx-5-en.

[43] Mellanox. 2022. InfiniBand Switch Silicon: Mellanox Quantum. (2022). https:
//www.mellanox.com/products/infiniband-switches-ic/quantum.

[44] Jeffrey C Mogul. 2003. TCP Offload Is a Dumb Idea Whose Time Has Come.. In
HotOS. 25–30.

[45] Craig Mustard, Fabian Ruffy, Anny Gakhokidze, Ivan Beschastnikh, and Alexan-
dra Fedorova. 2019. Jumpgate: In-network processing as a service for data ana-
lytics. In 11th {USENIX} Workshop on Hot Topics in Cloud Computing (HotCloud
19).

[46] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
and Matei Zaharia. 2020. Heterogeneity-aware cluster scheduling policies for
deep learning workloads. In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20). 481–498.

[47] NVIDIA. 2017. NVIDIA DGX-1 with Tesla V100 System Architecture.
(2017). https://www.nvidia.com/en-us/data-center/resources/dgx-1-system-
architecture-whitepaper/.

[48] NVIDIA. 2019. NCCL: Optimized primitives for collective multi-GPU communi-
cation. (2019). https://github.com/NVIDIA/nccl.

[49] NVIDIA. 2019. NVIDIA NVLink Fabric. (2019). https://www.nvidia.com/en-
sg/data-center/nvlink/.

[50] NVIDIA. 2020. NVIDIA V100: The First Tensor Core GPU. (2020). https:
//www.nvidia.com/en-sg/data-center/v100/.

[51] NVIDIA. 2021. NVIDIA Collective Communication Library (NCCL). (2021).
https://developer.nvidia.com/nccl.

[52] NVIDIA. 2023. GeForce RTX 2080. (2023). https://www.nvidia.com/en-us/
geforce/graphics-cards/rtx-2080/.

[53] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-
tributed DNN training acceleration. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 16–29. https://dl.acm.org/doi/abs/10.1145/3341301.
3359642.

[54] Rolf Rabenseifner. 1997. A new optimized MPI reduce algorithm. (1997). https:
//fs.hlrs.de/projects/par/mpi//myreduce.html.

[55] Alec Radford, Jeffrey Wu, Dario Amodei, Daniela Amodei, Jack Clark, Miles
Brundage, and Ilya Sutskever. 2019. Better languagemodels and their implications.
OpenAI Blog (2019). https://openai.com/blog/better-language-models.

[56] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQUAD: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016). https://arxiv.org/abs/1606.05250.

[57] Yufei Ren, Xingbo Wu, Li Zhang, Yandong Wang, Wei Zhang, Zijun Wang,
Michel Hack, and Song Jiang. 2017. irdma: Efficient use of rdma in distributed
deep learning systems. In 2017 IEEE 19th International Conference on High Per-
formance Computing and Communications; IEEE 15th International Conference
on Smart City; IEEE 3rd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 231–238.

[58] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, 785–808. https://www.usenix.org/conference/
nsdi21/presentation/sapio.

[59] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018). https:
//arxiv.org/pdf/1802.05799.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Liu, Q. Wang, J. Zhang, W. Wu, Q. Lin, Y. Liu, M. Xu, M. Canini, R. Cheung, J. He

[60] Shaohuai Shi, Xiaowen Chu, and Bo Li. 2019. MG-WFBP: Efficient data com-
munication for distributed synchronous SGD algorithms. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 172–180. https:
//arxiv.org/pdf/1811.11141.pdf.

[61] Jinwoo Shin and KyoungSoo Park. 2021. Elastic Resource Sharing for Distributed
Deep Learning. (2021).

[62] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using gpu model parallelism. arXiv preprint arXiv:1909.08053
(2019). https://arxiv.org/abs/1909.08053.

[63] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). https:
//arxiv.org/pdf/1409.1556.

[64] Brent E Stephens, Darius Grassi, Hamidreza Almasi, Tao Ji, Balajee Vamanan,
and Aditya Akella. 2021. TCP is Harmful to In-Network Computing: Designing a
Message Transport Protocol (MTP). In Proceedings of the Twentieth ACMWorkshop
on Hot Topics in Networks. 61–68.

[65] PyTorch Team. 2023. PyTorch. (2023). https://github.com/pytorch/pytorch.
[66] TensorFlow. 2019. A benchmark framework for Tensorflow. (2019). https:

//github.com/tensorflow/benchmarks.
[67] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020. Cheetah:

Accelerating Database Queries with Switch Pruning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2407–2422.

[68] Raajay Viswanathan, Arjun Balasubramanian, and Aditya Akella. 2020. Network-
accelerated distributed machine learning for multi-tenant settings. In Proceedings
of the 11th ACM Symposium on Cloud Computing. 447–461.

[69] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018). https://arxiv.

org/abs/1804.07461.
[70] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin,

Nikhil Devanur, and Ion Stoica. 2019. Blink: Fast and generic collectives for
distributed ml. arXiv preprint arXiv:1910.04940 (2019).

[71] Xilinx. 2023. Virtex UltraScale - Xilinx. (2023). https://www.xilinx.com/products/
silicon-devices/fpga/virtex-ultrascale.html#productAdvantages.

[72] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang, and Lidong
Zhou. 2019. Fast distributed deep learning over rdma. In Proceedings of the
Fourteenth EuroSys Conference 2019. 1–14.

[73] Weihong Yang, Yang Qin, Zukai Jiang, and Xiaowen Chu. 2021. Traffic Manage-
ment for Distributed Machine Learning in RDMA-enabled Data Center Networks.
In ICC 2021-IEEE International Conference on Communications. IEEE, 1–6.

[74] Yifan Yuan, Omar Alama, Jiawei Fei, Jacob Nelson, Dan R. K. Ports, Amedeo Sapio,
Marco Canini, and Nam Sung Kim. 2022. Unlocking the Power of Inline Floating-
Point Operations on Programmable Switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22).

[75] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow. 13, 3 (Nov. 2019), 376–389.
https://doi.org/10.14778/3368289.3368301

[76] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (London, United Kingdom) (SIGCOMM ’15). Association for Com-
putingMachinery, New York, NY, USA, 523–536. https://doi.org/10.1145/2785956.
2787484 https://doi.org/10.1145/2785956.2787484.

Received 2022-10-20; accepted 2023-01-19

