
A NICE Way to Test OpenFlow Applications

EPFL Technical Report EPFL-REPORT-169211

Marco Canini⋆, Daniele Venzano⋆, Peter Perešı́ni⋆, Dejan Kostić⋆, and Jennifer Rexford†

⋆EPFL †Princeton University

Abstract
The emergence of OpenFlow-capable switches enables

exciting new network functionality, at the risk of pro-

gramming errors that make communication less reliable.

The centralized programming model, where a single con-

troller program manages the network, seems to reduce

the likelihood of bugs. However, the system is inherently

distributed and asynchronous, with events happening at

different switches and end hosts, and inevitable delays

affecting communication with the controller. In this pa-

per, we present efficient, systematic techniques for test-

ing unmodified controller programs. Our NICE tool ap-

plies model checking to explore the state space of the en-

tire system—the controller, the switches, and the hosts.

Scalability is the main challenge, given the diversity of

data packets, the large system state, and the many possi-

ble event orderings. To address this, we propose a novel

way to augment model checking with symbolic execu-

tion of event handlers (to identify representative pack-

ets that exercise code paths on the controller). We also

present a simplified OpenFlow switch model (to reduce

the state space), and effective strategies for generating

event interleavings likely to uncover bugs. Our proto-

type tests Python applications on the popular NOX plat-

form. In testing three real applications—aMAC-learning

switch, in-network server load balancing, and energy-

efficient traffic engineering—we uncover eleven bugs.

1 Introduction

While lowering the barrier for introducing new func-

tionality into the network, Software Defined Networking

(SDN) also raises the risks of software faults (or bugs).

Even today’s networking software—written and exten-

sively tested by equipment vendors, and constrained

(at least somewhat) by the protocol standardization

process—can have bugs that trigger Internet-wide out-

ages [1, 2]. In contrast, programmable networks will of-

fer a much wider range of functionality, through software

created by a diverse collection of network operators and

third-party developers. The ultimate success of SDN,

and enabling technologies like OpenFlow [3], depends

on having effective ways to test applications in pursuit

of achieving high reliability. In this paper, we present

NICE, a tool that efficiently uncovers bugs in OpenFlow

programs, through a combination of model checking and

symbolic execution. Building on our position paper [4]

that argues for automating the testing of OpenFlow ap-

plications, we introduce several new contributions sum-

marized in Section 1.3.

1.1 Bugs in OpenFlow Applications

An OpenFlow network consists of a distributed collec-

tion of switches managed by a program running on a

logically-centralized controller, as illustrated in Figure 1.

Each switch has a flow table that stores a list of rules

for processing packets. Each rule consists of a pattern

(matching on packet header fields) and actions (such as

forwarding, dropping, flooding, or modifying the pack-

ets, or sending them to the controller). A pattern can re-

quire an “exact match” on all relevant header fields (i.e.,

a microflow rule), or have “don’t care” bits in some fields

(i.e., a wildcard rule). For each rule, the switch main-

tains traffic counters that measure the bytes and packets

processed so far. When a packet arrives, a switch selects

the highest-priority matching rule, updates the counters,

and performs the specified action(s). If no rule matches,

the switch sends the packet header to the controller and

awaits a response on what actions to take. Switches also

send event messages, such as a “join” upon joining the

network, or “port change” when links go up or down.

The OpenFlow controller (un)installs rules in the

switches, reads traffic statistics, and responds to events.

For each event, the controller program defines a han-

dler, which may install rules or issue requests for traf-

fic statistics. Many OpenFlow applications1 are writ-

1In this paper, we use the terms “OpenFlow application” and “con-



OpenFlow

program

Host BHost A

Switch 1 Switch 2

Install

rule

(delayed)

Install

rule
Packet

Controller

Figure 1: An example of OpenFlow network traversed by

a packet. In a plausible scenario, due to delays between

controller and switches, the packet does not encounter an

installed rule in the second switch.

ten on the NOX controller platform [5], which offers an

OpenFlow API for Python and C++ applications. These

general-purpose programs can perform arbitrary compu-

tation and maintain arbitrary state. A growing collection

of controller applications support new network function-

ality [6–11], over OpenFlow switches available from sev-

eral different vendors. Our goal is to create an efficient

tool for systematically testing these applications.

On the surface, the centralized programming model

should reduce the likelihood of bugs. Yet, the system

is inherently distributed and asynchronous, with events

happening at multiple switches and inevitable delays af-

fecting communication with the controller. To reduce

overhead and delay, applications push as much packet-

handling functionality to the switches as possible. A

common programming idiom is to respond to a packet

arrival by installing a rule for handling subsequent pack-

ets in the data plane. Yet, a race condition can arise if

additional packets arrive while installing the rule. A pro-

gram that implicitly expects to see just one packet may

behave incorrectly when multiple arrive [4]. In addition,

many applications install rules at multiple switches along

a path. Since rules are not installed atomically, some

switches may apply new rules before others install theirs.

Figure 1 shows an example where a packet reaches an

intermediate switch before the relevant rule is installed.

This can lead to unexpected behavior, where an interme-

diate switch directs a packet to the controller. As a re-

sult, an OpenFlow application that works correctly most

of the time can misbehave under certain event orderings.

1.2 Challenges of Testing OpenFlow Apps

Testing OpenFlow applications is challenging because

the behavior of a program depends on the larger envi-

ronment. The end-host applications sending and receiv-

ing traffic—and the switches handling packets, installing

rules, and generating events—all affect the program run-

ning on the controller. The need to consider the larger en-

troller program” interchangeably.

vironment leads to an extremely large state space, which

“explodes” along three dimensions:

Large space of switch state: Switches run their own

programs that maintain state, including the many packet-

processing rules and associated counters and timers. Fur-

ther, the set of packets that match a rule depends on the

presence or absence of other rules, due to the “match the

highest-priority rule” semantics. As such, testing Open-

Flow applications requires an effective way to capture

the large state space of the switch.

Large space of input packets: Applications are data-

plane driven, i.e., programs must react to a huge space

of possible packets. The OpenFlow specification al-

lows switches to match on source and destination MAC

addresses, IP addresses, and TCP/UDP port numbers,

as well as the switch input port; future generations of

switches will match on even more fields. The controller

can perform arbitrary processing based on other fields,

such as TCP flags or sequence numbers. As such, test-

ing OpenFlow applications requires effective techniques

to deal with large space of inputs.

Large space of event orderings: Network events,

such as packet arrivals and topology changes, can happen

at any switch at any time. Due to communication delays,

the controller may not receive events in order, and rules

may not be installed in order across multiple switches.

Serializing rule installation, while possible, would sig-

nificantly reduce application performance. As such, test-

ing OpenFlow applications requires efficient strategies to

explore a large space of event orderings.

To simplify the problem, we could require program-

mers to use domain-specific languages that prevent cer-

tain classes of bugs. However, the adoption of new lan-

guages is difficult in practice. Not surprisingly, most

OpenFlow applications are written in general-purpose

languages, like Python, Java, and C++. Alternatively,

programmers could create abstract models of their ap-

plications, and use formal-methods techniques to prove

properties about the system. However, these models

are time-consuming to create and easily become out-

of-sync with the real implementation. In addition, ex-

isting model-checking tools like SPIN [12] and Java

PathFinder (JPF) [13] cannot be directly applied be-

cause they require explicit developer inputs to resolve the

data-dependency issues and sophisticated modeling tech-

niques to leverage domain-specific information. They

also suffer state-space explosion, as we show in Sec-

tion 7. Instead, we argue that testing tools should oper-

ate directly on unmodified OpenFlow applications writ-

ten in general-purpose languages, and leverage domain-

specific knowledge to improve scalability.

2



OpenFlow

controller
program

Network
topology

Correctness

properties

Traces of 
property 

violations

Input OutputNICE

State-space

search

Model 

Checking

Symbolic 
Execution

Figure 2: Given an OpenFlow program, a network topol-

ogy, and correctness properties, NICE performs a state-

space search and outputs traces of property violations.

1.3 NICE Research Contributions

To address these scalability challenges, we present NICE

(No bugs In Controller Execution)—a tool that tests un-

modified controller programs by automatically generat-

ing carefully-crafted streams of packets under many pos-

sible event interleavings. To use NICE, the programmer

supplies the controller program, and the specification of

a topology with switches and hosts. The programmer can

instruct NICE to check for generic correctness properties

such as no forwarding loops or no black holes, and op-

tionally write additional, application-specific correctness

properties (i.e., Python code snippets that make asser-

tions about the global system state). By default, NICE

systematically explores the space of possible system be-

haviors, and checks them against the desired correctness

properties. The programmer can also configure the de-

sired search strategy. In the end, NICE outputs property

violations along with the traces to deterministically re-

produce them. The programmer can also use NICE as a

simulator to perform manually-driven, step-by-step sys-

tem executions or random walks on system states.

Our design uses explicit state, software model check-

ing [13–16] to explore the state space of the en-

tire system—the controller program, the OpenFlow

switches, and the end hosts—as discussed in Section 2.

However, applying model checking “out of the box” does

not scale. While simplified models of the switches and

hosts help, the main challenge is the event handlers in

the controller program. These handlers are data depen-

dent, forcing model checking to explore all possible in-

puts (which doesn’t scale) or a set of “important” in-

puts provided by the developer (which is undesirable).

Instead, we extend model checking to symbolically ex-

ecute [17, 18] the handlers, as discussed in Section 3.

By symbolically executing the packet-arrival handler,

NICE identifies equivalence classes of packets—ranges

of header fields that determine unique paths through the

code. NICE feeds the network a representative packet

from each class by adding a state transition that inject the

packet. To reduce the space of event orderings, we pro-

pose several domain-specific search strategies that gen-

erate event interleavings that are likely to uncover bugs

in the controller program, as discussed in Section 4.

Bringing these ideas together, NICE combines model

checking (to explore system execution paths), symbolic

execution (to reduce the space of inputs), and search

strategies (to reduce the space of event orderings). The

programmer can specify correctness properties as snip-

pets of Python code that operate on system state, or se-

lect from a library of common properties, as discussed in

Section 5. Our NICE prototype tests unmodified appli-

cations written in Python for the popular NOX platform,

as discussed in Section 6. Our performance evaluation in

Section 7 shows that: (i) even on small examples, NICE

is five times faster than approaches that apply state-of-

the-art tools (ii) our OpenFlow-specific search strategies
reduce the state space by up to 20 times, and (iii) the
simplified switch model brings a 7-fold reduction on its

own. In Section 8, we apply NICE to three real Open-

Flow applications and uncover 11 bugs. Most of the bugs

we found are design flaws, which are inherently less nu-

merous than simple implementation bugs. In addition,

at least one of these applications was tested using unit

tests. Section 9 discusses the trade-off between testing

coverage and the overhead of symbolic execution. Sec-

tion 10 discusses related work, and Section 11 concludes

the paper with a discussion of future research directions.

2 Model Checking OpenFlow Applications

The execution of a controller program depends on the un-

derlying switches and end hosts; the controller, in turn,

affects the behavior of these components. As such, test-

ing is not just a simple matter of exercising every path

through the controller program—we must consider the

state of the larger system. The need to systematically ex-

plore the space of system states, and check correctness in

each state, naturally leads us to consider model checking

techniques. To apply model checking, we need to iden-

tify the system states and the transitions from one state

to another. After a brief review of model checking, we

present a strawman approach for applying model check-

ing to OpenFlow applications, and proceed by describing

changes that make it more tractable.

2.1 Background on Model Checking

Modeling the state space. A distributed system con-

sists of multiple components that communicate asyn-

chronously over message channels, i.e., first-in, first-out

buffers (e.g., see Chapter 2 of [19]). Each component has

a set of variables, and the component state is an assign-

ment of values to these variables. The system state is the

composition of the component states. To capture in-flight

3



1 state stack = []; explored states = []; errors = []
2 initial state = create initial state()
3 for t in initial state.enabled transitions:
4 state stack.push([initial state, t])
5 while len(state stack) > 0:
6 state, transition = choose(state stack)
7 try:
8 next state = run(state, transition)
9 check properties(next state)
10 if next state not in explored states:
11 explored states.add(next state)
12 for t in state.enabled transitions:
13 state stack.push([next state, t])
14 except PropertyViolation as e:
15 errors.append([e, trace])

Figure 3: Pseudo-code of the basic model-checking loop.

messages, the system state also includes the contents of

the channels. A transition represents a change from one

state to another (e.g., due to sending a message). At any

given state, each component maintains a set of enabled

transitions, i.e., the state’s possible transitions. For each

state, the enabled system transitions are the union of en-

abled transitions at all components. A system execution

corresponds to a sequence of these transitions, and thus

specifies a possible behavior of the system.

Model-checking process. Given a model of the state

space, performing a search is conceptually straightfor-

ward. Figure 3 shows the pseudo-code of the model-

checking loop. First, the model checker initializes a stack

of states with the initial state of the system. At each step,

the checker chooses one state from the stack and one of

its enabled transitions. After executing that transition,

the checker tests the correctness properties on the newly

reached state. If the new state violates a correctness prop-

erty, the checker saves the error and the execution trace.

Otherwise, the checker adds the new state to the set of

explored states (unless the state was added earlier) and

schedules the execution of all transitions enabled in this

state (if any). The model checker can run until the stack

of states is empty, or until detecting the first error.

2.2 Transition Model for OpenFlow Apps

Model checking relies on having a model of the system,

i.e., a description of the state space. This requires us to

identify the states and transitions for each component—

the controller program, the OpenFlow switches, and the

end hosts. However, we argue that applying existing

model-checking techniques imposes too much work on

the developer and leads to an explosion in the state space.

1 ctrl state = {} # State of the controller is a global variable (a hashtable)

2 def packet in(sw id, inport, pkt, bufid): # Handles packet arrivals
3 mactable = ctrl state[sw id]
4 is bcast src = pkt.src[0] & 1
5 is bcast dst = pkt.dst[0] & 1
6 if not is bcast src:
7 mactable[pkt.src] = inport
8 if (not is bcast dst) and (mactable.has key(pkt.dst)):
9 outport = mactable[pkt.dst]
10 if outport != inport:
11 match = {DL SRC: pkt.src, DL DST: pkt.dst, ←֓

DL TYPE: pkt.type, IN PORT: inport}
12 actions = [OUTPUT, outport]
13 install rule(sw id, match, actions, soft timer=5, ←֓

hard timer=PERMANENT) # 2 lines optionally
14 send packet out(sw id, pkt, bufid) # combined in 1 API

15 return
16 flood packet(sw id, pkt, bufid)

17 def switch join(sw id, stats): # Handles when a switch joins

18 if not ctrl state.has key(sw id):
19 ctrl state[sw id] = {}

20 def switch leave(sw id): # Handles when a switch leaves

21 if ctrl state.has key(sw id):
22 del ctrl state[sw id]

Figure 4: Pseudo-code of a MAC-learning switch, based

on the pyswitch application. The packet in handler

learns the input port associated with each non-broadcast

source MAC address; if the destination MAC address is

known, the handler installs a forwarding rule and instructs

the switch to send the packet according to that rule; and

otherwise floods the packet. The switch join/leave events

initialize/delete a table mapping addresses to switch ports.

Note that another API (not shown) wraps an OpenFlow

protocol optimization that combines into a single one the

two operations: modifying the flow table and processing the

packet that caused the modification.

2.2.1 Controller Program

Modeling the controller as a transition system seems rel-

atively straightforward. A controller program is struc-

tured as a set of event handlers (e.g., packet arrival and

switch join/leave for the MAC-learning application in

Figure 4), that interact with the switches using a stan-

dard interface, and these handlers execute atomically. As

such, we can model the state of the program as the values

of its global variables (e.g., ctrl state in Figure 4),

and treat each event handler as a transition. To execute a

transition, the model checker can simply invoke the asso-

ciated event handler. For example, receiving a packet-in

message from a switch enables the packet in transi-

tion, and the model checker can execute the transition by

invoking the corresponding event handler.

However, the behavior of event handlers is often data-

dependent. In line 7 of Figure 4, for instance, the

packet in handler assigns mactable only for uni-

cast source MAC addresses, and either installs a forward-

4



ing rule or floods a packet depending on whether or not

the destination MAC address is known. This leads to dif-

ferent system executions. Unfortunately, model check-

ing does not cope well with data-dependent applications

(e.g., see Chapter 1 of [19]). Since enumerating all pos-

sible inputs is intractable, a brute-force solution would

require developers to specify a set of “relevant” inputs

based on their knowledge of the application. Hence, a

controller transition would be modeled as a pair con-

sisting of an event handler and a concrete input. This

is clearly undesirable. NICE overcomes this limitation

by using symbolic execution to automatically identify the

relevant inputs, as discussed in Section 3.

2.2.2 OpenFlow Switches

To test the controller program, the system model must

include the underlying switches. Yet, switches run com-

plex software, and this is not the code we intend to test.

A strawman approach for modeling the switch is to start

with an existing reference OpenFlow switch implemen-

tation (e.g., [20]), define the switch state as the values

of all variables, and identify transitions as the portions

of the code that process packets or exchange messages

with the controller. However, the reference switch soft-

ware has a large amount of state (e.g., several hundred

KB), not including the buffers containing packets and

OpenFlowmessages awaiting service; this aggravates the

state-space explosion problem. Importantly, such a large

program has many sources of nondeterminism and it is

difficult to identify them automatically [16].

Instead, we create a switch model that omits inessen-

tial details. Indeed, creating models of some parts of the

system is common to many standard approaches for ap-

plying model checking. Further, in our case, this is a one-

time effort that does not add burden on the user. Follow-

ing the OpenFlow specification [21], we view a switch as

a set of communication channels, transitions that handle

data packets and OpenFlow messages, and a flow table.

Simple communication channels: Each channel is

a first-in, first-out buffer. Packet channels have an

optionally-enabled fault model that can drop, duplicate,

or reorder packets, or fail the link. The channel with the

controller offers reliable, in-order delivery of OpenFlow

messages, except for optional switch failures. We do not

run the OpenFlow protocol over SSL on top of TCP/IP,

allowing us to avoid intermediate protocol encoding/de-

coding and the substantial state in the network stack.

Two simple transitions: The switch model supports

process pkt and process of transitions—for pro-

cessing data packets and OpenFlow messages, respec-

tively. We enable these transitions if at least one packet

channel or the OpenFlow channel is non empty, respec-

tively. To match the controller program’s expecta-

tions about the environment, our switch model includes

buffers that temporarily store packets awaiting further in-

struction from the controller. However, to improve scala-

bility, we do not include these buffers in our definition of

the state space. A final simplification we make is in the

process pkt transition. Here, the switch dequeues

the first packet from each packet channel, and processes

all these packets according to the flow table. So, multi-

ple packets at different channels are processed as a single

transition. This optimization is safe because the model

checker already systematically explores the possible or-

derings of packet arrivals at the switch.

Merging equivalent flow tables: A flow table can eas-

ily have two states that appear different but are seman-

tically equivalent, leading to a larger search space than

necessary. For example, consider a switch with two mi-

croflow rules. These rules do not overlap—no packet

would ever match both rules. As such, the order of these

two rules is not important. Yet, simply storing the rules

as a list would cause the model checker to treat two dif-

ferent orderings of the rules as two distinct states. In-

stead, as often done in model checking (e.g., [22]), we

construct a canonical representation of the flow table that

derives a unique order of rules with overlapping pat-

terns.

2.2.3 End Hosts

Modeling the end hosts is tricky, because hosts run ar-

bitrary applications and protocols, have large state, and

have behavior that depends on incoming packets. We

could require the developer to provide the host pro-

grams, with a clear indication of the transitions between

states. Instead, NICE provides simple programs that act

as clients or servers for a variety of protocols including

Ethernet, ARP, IP, and TCP. These models have explicit

transitions and relatively little state. For instance, the de-

fault client has two basic transitions—send (initially en-

abled; can executeC times, whereC is configurable) and

receive—and a counter of sent packets. The default

server has the receive and the send reply transi-

tions; the latter is enabled by the former. A more real-

istic refinement of this model is the mobile host that in-

cludes the move transition that moves the host to a new

<switch, port> location. The programmer can also cus-

tomize the models we provide, or create new models.

3 Symbolic Execution of Event Handlers

To systematically test the controller program, we must

explore all of its possible transitions. Yet, the behavior

of an event handler depends on the inputs (e.g., the MAC

addresses of packets in Figure 4). Rather than explore all

5



possible inputs, NICE identifies which inputs would ex-

ercise different execution paths through an event handler.

Systematically exploring all code paths naturally leads us

to consider symbolic execution (SE) techniques. After a

brief review of symbolic execution, we describe how we

apply symbolic execution to controller programs. Then,

we explain how NICE combines model checking and

symbolic execution to explore the state space effectively.

3.1 Background on Symbolic Execution

Symbolic execution runs a program with symbolic vari-

ables as inputs (i.e., any values). The symbolic ex-

ecution engine tracks the use of symbolic variables

and records the constraints on their possible values.

For example, the engine does not learn the value of

is bcast src in line 4 of Figure 4, but instead learns

that is bcast src is “pkt.src[0] & 1”. At any

branch, the engine queries a solver for two assignments

of symbolic inputs—one that satisfies the branch pred-

icate and one that satisfies its negation (i.e., takes the

“else” branch)— and logically forks the execution to fol-

low the feasible paths. For example, the engine deter-

mines that to reach line 7 of Figure 4, the source MAC

address must have its eighth bit set to zero. The engine

then updates the path constraint, i.e., the conjunction of

all constraints on symbolic variables that led execution

down that path. The values of symbolic variables that

are sufficient for execution to take a path derive from that

path constraint.

Unfortunately, symbolic execution does not scale well

because the number of code paths can grow exponen-

tially with the number of branches and the size of the in-

puts. Also, symbolic execution does not explicitly model

the state space, which can cause repeated exploration

of the same system state. In addition, despite explor-

ing all code paths, symbolic execution does not explore

all system execution paths, such as different event inter-

leavings. Techniques exist that can add artificial branch-

ing points to a program to inject faults or explore dif-

ferent event orderings [18, 23], but at the expense of

extra complexity. As such, symbolic execution is not

a sufficient solution for testing OpenFlow applications.

Instead, NICE uses model checking to explore system

execution paths (and detect repeated visits to the same

state [24]), and symbolic execution to determine which

inputs would exercise a particular state transition.

3.2 Symbolic Execution of OpenFlow Apps

Applying symbolic execution to the controller event han-

dlers is relatively straightforward, with two exceptions.

First, to handle the diverse inputs to the packet in

handler, we construct symbolic packets. Second, to min-

imize the size of the state space, we choose a concrete

(rather than symbolic) representation of controller state.

Symbolic packets. The main input to the packet in

handler is the incoming packet. To perform symbolic

execution, NICE must identify which (ranges of) packet

header fields determine the path through the handler.

Rather than view a packet as a generic array of sym-

bolic bytes, we introduce symbolic packets as our sym-

bolic data type. A symbolic packet is a group of symbolic

integer variables that each represents a header field. To

reduce the overhead for the constraint solver, we main-

tain each header field as an individual symbolic variable

(e.g., a MAC address is a 6-byte variable), which reduces

the number of variables. Yet, we still allow byte- and bit-

level accesses to the fields. We also apply domain knowl-

edge to further constrain the possible values of header

fields (e.g., the MAC and IP addresses used by the hosts

and switches in the system model, as specified by the in-

put topology). Finally, the fields are lazily-initialized so

that we reduce the overhead for the constraint solver by

omitting the unused fields. This also tells us whether

the program is agnostic to particular protocols (e.g., ig-

noring transport header fields), allowing us to select a

simpler host model for generating the input packets.

Concrete controller state. The execution of the event

handlers also depends on the controller state. For ex-

ample, the code in Figure 4 reaches line 9 only for uni-

cast destination MAC addresses stored in mactable.

Starting with an empty mactable, symbolic execution

cannot find an input packet that forces the execution of

line 9; yet, with a non-empty table, certain packets could

trigger line 9 to run, while others would not. As such,

we must incorporate the global variables into the sym-

bolic execution. We choose to represent the global vari-

ables in a concrete form. We apply symbolic execution

by using these concrete variables as the initial state and

by marking as symbolic the packets and statistics argu-

ments to the handlers. The alternative of treating the con-

troller state as symbolic would require a sophisticated

type-sensitive analysis of complex data structures (e.g.,

[24]), which is computationally expensive and difficult

for an untyped language like Python. In addition, hav-

ing purely symbolic controller state could cause NICE to

test spurious states that are not reachable in practice due

to the constraints imposed by the larger environment.

3.3 Combining SE With Model Checking

With all of NICE’s parts in place, we now describe

how we combine model checking (to explore system ex-

ecution paths) and symbolic execution (to reduce the

space of inputs). Figure 5 shows the unfolding of con-

troller’s state-space graph. At any given controller state,

we want to identify the packets that each client should

6



New relevant 
packets:

[pkt1, pkt2]

Enable new 

transitions:
client1 send(pkt1)

client1 send(pkt2)

Symbolic

execution

of packet_in

handler

State
0

State
1

State
2

Controller state
sw_id, inport

client1

discover_packets

client1

send(pkt1)

State
3

client1

discover_packets

client1

discover_packets

discover_packets transition:

Figure 5: Example of how NICE identifies relevant packets

and uses them as new enabled send packet transitions of

client1. For clarity, the circled states refer to the controller

state only.

send—specifically, the set of packets that exercise all

feasible code paths on the controller in that state. To

do so, we create a special end-host transition called

discover packets that is initially enabled. When

executed, this transition invokes the symbolic-execution

engine to symbolically execute the packet in handler.

NICE executes the handler symbolically starting from

the initial state defined by (i) the concrete controller

state (State 0 in Figure 5) and (ii) a concrete “con-

text” (i.e., the switch and input port that identify the

host’s location). For every feasible code path in the

handler, the symbolic-execution engine finds an equiv-

alence class of packets that exercise it. For each equiva-

lence class, we instantiate one concrete packet (referred

to as the relevant packet) and enable a corresponding

send transition for the client. While this example fo-

cuses on the packet in handler, we apply similar tech-

niques to deal with traffic statistics, by introducing a spe-

cial discover stats transition that symbolically ex-

ecutes the statistics handler with symbolic integers as ar-

guments. Other handlers, related to topology changes,

operate on concrete inputs (e.g., the switch and port ids).

Figure 6 shows the pseudo-code of our search-space

algorithm, which extends extends the basic model-

checking loop of Figure 3 in two main ways.

Initialization (lines 3-5): For each host (or “client”),

the algorithm (i) creates an empty map for storing the

relevant packets for a given controller state and (ii) en-
ables the discover packets transition.

Checking process (lines 12-18): Upon reaching a

new state, the algorithm checks for each client (line

15) whether a set of relevant packets already exists.

If not, it enables the discover packets transi-

tion. In addition, it checks (line 17) if the controller

has a process stat transition enabled in the newly-

reached state, meaning that the controller is awaiting a

1 state stack = []; explored states = []; errors = []
2 initial state = create initial state()

3 for client in initial state.clients
4 client.packets = {}
5 client.enable transition(discover packets)

6 for t in initial state.enabled transitions:
7 state stack.push([initial state, t])
8 while len(state stack) > 0:
9 state, transition = choose(state stack)
10 try:
11 next state = run(state, transition)

12 ctrl = next state.ctrl # Reference to controller in next state
13 ctrl state = state(ctrl) # Stringified controller state in next state

14 for client in state.clients:
15 if not client.packets.has key(ctrl state):
16 client.enable transition(discover packets, ctrl)
17 if process stats in ctrl.enabled transitions:
18 ctrl.enable transition(discover stats, state, sw id)

19 check properties(next state)
20 if next state not in explored states:
21 explored states.add(next state)
22 for t in state.enabled transitions:
23 state stack.push([next state, t])
24 except PropertyViolation as e:
25 errors.append([e, trace])

26 def discover packets transition(client, ctrl):
27 sw id, inport = switch location of(client)
28 new packets = SymbolicExecution(ctrl, packet in, ←֓

context=[sw id, inport])
29 client.packets[state(ctrl)] = new packets
30 for packet in client.packets[state(ctrl)]:
31 client.enable transition(send, packet)

32 def discover stats transition(ctrl, state, sw id):
33 new stats = SymbolicExecution(ctrl, process stats, ←֓

context=[sw id])
34 for stats in new stats:
35 ctrl.enable transition(process stats, stats)

Figure 6: Pseudo-code of the state-space search algorithm

used in NICE for finding errors. The highlighted parts, in-

cluding the special “discover” transitions, are our additions

to the basic model-checking loop of Figure 3.

response to a previous query for statistics. If so, the al-

gorithm enables the discover stats transition.

Invoking the discover packets (lines 26-31) and

discover stats (lines 32-35) transitions allows the

system to evolve to a state where new transitions be-

come possible—one for each path in the packet-arrival

or statistics handler. This allows the model checker to

reach new controller states, allowing symbolic execution

to again uncover new classes of inputs that enable addi-

tional transitions, and so on.

By symbolically executing the controller event han-

dlers, NICE can automatically infer the test inputs for

enabling model checking without developer input, at the

expense of some limitations in coverage of the system

7



MC

+

SE

MC

FLOW-IR

NO-DELAY

UNUSUAL

Figure 7: Illustration of the state space explored by our

search strategies in relation to the entire state space.

state space which we discuss later in Section 9.

4 OpenFlow-Specific Search Strategies

Even with our optimizations from the last two sections,

the model checker cannot typically explore the entire

state space, since events can occur in so many different

orders. Thus, we propose domain-specific heuristics that

substantially reduce the space of event orderings while

focusing on scenarios that are likely to uncover bugs.

Figure 7 graphically summarizes the state space explored

by the proposed search strategies in relation to the entire

state space. Most of the strategies operate on the event

interleavings produced by model checking, except for

PKT-SEQ which reduces the state-space explosion due

to the transitions uncovered by symbolic execution.

PKT-SEQ: Relevant packet sequences. The effect of

discovering new relevant packets and using them as new

enabled send transitions is that each end-host gener-

ates a potentially-unbounded tree of packet sequences.

To make the state space finite and smaller, this heuris-

tic reduces the search space by bounding the possible

end host transitions (indirectly, bounding the tree) along

two dimensions, each of which can be fine tuned by the

user. The first is merely the maximum length of the se-

quence, or in other words, the depth of the tree. Ef-

fectively, this places a hard limit to the issue of infinite

execution trees due to symbolic execution. The second

is the maximum number of outstanding packets, or in

other words, the length of a packet burst. For example,

if client1 in Figure 5 is allowed only a 1-packet burst,

this heuristic would disallow both send(pkt2) in State

2 and send(pkt1) in State 3. Effectively, this limits

the level of “packet concurrency” within the state space.

To introduce this limit, we conceive each end host has a

counter c, and when c = 0, the end host cannot send any

more packet until the counter is replenished. As we are

dealing with multiple communicating end hosts, we find

it natural to use as the default behavior increasing c by

one unit for every received packet. However, this behav-

ior can be modified in more complex end host models,

e.g., to mimic the TCP flow and congestion controls.

NO-DELAY: Instantaneous rule updates. When us-

ing this simple heuristic, NICE treats each communi-

cation between a switch and the controller as a single

atomic action (i.e., not interleaved with any other transi-

tions). In other words, the global system runs in “lock

step.” This heuristic is useful during the early stages of

development to find basic design errors, rather than race

conditions or other concurrency-related problems. For

instance, this heuristic would allow the developer to re-

alize that installing a rule prevents the controller from

seeing other packets that are important for program cor-

rectness. For example, a MAC-learning application that

installs forwarding rules based only on the destination

MAC address would prevent the controller from seeing

some packets with new source MAC addresses.

UNUSUAL: Uncommon delays and reorderings.

With this heuristic, NICE only explores event orderings

with unusual and unexpected delays, with the goal of un-

covering race conditions. For example, if an event han-

dler in the controller installs rules in switches 1, 2, and

3, the heuristic explores transitions that reverse the order

by allowing switch 3 to install its rule first, followed by

switch 2 and then switch 1. This heuristic uncovers bugs

like the example in Figure 1.

FLOW-IR: Flow independence reduction. Many

OpenFlow applications treat different groups of packets

independently; that is, the handling of one group is not

affected by the presence or absence of another. In this

case, NICE can reduce the search space by exploring

only one relative ordering between the events affecting

each group. To use this heuristic, the programmer pro-

vides isSameFlow, a Python function that takes two

packets (and the switch and input port) as arguments and

returns whether the packets belong to the same group.

For example, in some scenarios different microflows are

independent, whereas other programs may treat packets

with different destination MAC addresses independently.

Summary. PKT-SEQ is complementary to other strate-

gies in that it only reduces the number of send tran-

sitions rather than the possible kind of event orderings.

PKT-SEQ is enabled by default and used in our experi-

ments (unless otherwise noted). The other heuristics can

be selectively enabled and arbitrarily combined.

5 Specifying Application Correctness

Correctness is not an intrinsic property of a system—a

specification of correctness states what the system should

(or should not) do, whereas the implementation deter-

mines what it actually does. NICE allows programmers

to specify correctness properties as Python code snippets,

and provides a library of common properties (e.g., no for-

warding loops or blackholes).

8



5.1 Customizable Correctness Properties

Testing correctness involves asserting safety properties

(“something bad never happens”) and liveness prop-

erties (“eventually something good happens”), defined

more formally in Chapter 3 of [19]. Checking for safety

properties is relatively easy, though sometimes writing

an appropriate predicate over all state variables is te-

dious. As a simple example, a predicate could check

that the collection of flow rules does not form a forward-

ing loop or a black hole. Checking for liveness proper-

ties is typically harder because of the need to consider

a possibly infinite system execution. In NICE, we make

the inputs finite (e.g., a finite number of packets, each

with a finite set of possible header values), allowing us

to check some liveness properties. For example, NICE

could check that, once two hosts exchange at least one

packet in each direction, no further packets go to the con-

troller (a property we call “StrictDirectPaths”). Checking

this liveness property requires knowledge not only of the

system state, but also which transitions have executed.

To check both safety and liveness properties, NICE al-

lows correctness properties to (i) access the system state,

(ii) register callbacks invoked by NICE to observe im-

portant transitions in system execution, and (iii) main-

tain local state. In our experience, these features offer

enough expressiveness for specifying correctness prop-

erties. For ease of implementation, these properties are

represented as snippets of Python code that make as-

sertions about global system state. NICE invokes these

snippets after each transition. For example, to check the

StrictDirectPaths property, the code snippet would have

local state variables that keep track of whether a pair of

hosts has exchanged at least one packet in each direc-

tion, and would flag a violation if a subsequent packet

triggers a packet in event at the controller. When a

correctness check signals a violation, the tool records the

execution trace that recreates the problem.

5.2 Library of Correctness Properties

NICE provides a library of correctness properties appli-

cable to a wide range of OpenFlow applications. A pro-

grammer can select properties from a list, as appropriate

for the application. Writing these correctness modules

can be challenging because the definitions must be ro-

bust to communication delays between the switches and

the controller. Many of the definitions must intentionally

wait until a “safe” time to test the property to prevent

natural delays from erroneously triggering a violation of

the property. Providing these modules as part NICE can

relieve the developers from the challenges of specifying

correctness properties precisely, though creating any cus-

tom modules would require similar care.

• NoForwardingLoops: This property checks that each

packet goes through any given<switch, input port> pair

at most once.

• NoBlackHoles: This property states that no packets

should be dropped in the network, and is implemented

by checking that every packet that enters the network ul-

timately leaves the network or is consumed by the con-

troller itself (for simplicity, we disable optional packet

drops and duplication on the channels). To account for

flooding, the property enforces a zero balance between

the packet copies and packets consumed.

• DirectPaths: This property checks that, once a packet

has successfully reached its destination, future packets

of the same flow do not go to the controller. Effectively,

this checks that the controller successfully establishes a

direct path to the destination as part of handling the first

packet of a flow. This property is useful for many Open-

Flow applications, though it does not apply to the MAC-

learning switch, which requires the controller to learn

how to reach both hosts before it can construct unicast

forwarding paths in either direction.

• StrictDirectPaths: This property checks that, after two

hosts have successfully delivered at least one packet of

a flow in each direction, no successive packets reach the

controller. This checks that the controller has established

a direct path in both directions between the two hosts.

• NoForgottenPackets: This property checks that all

switch buffers are empty at the end of system execution.

A program can easily violate this property by forgetting

to tell the switch how to handle a packet. This can even-

tually consume all the available buffer space for pack-

ets awaiting controller instruction; after a timeout, the

switch may discard these buffered packets. 2. A short-

running program may not run long enough for the queue

of awaiting-controller-response packets to fill, but the

NoForgottenPackets property easily detects these bugs.

6 Implementation Highlights

We have built a prototype implementation of NICE writ-

ten in Python so as to seamlessly support OpenFlow con-

troller programs for the popular NOX controller platform

(which provides an API for Python).

As a result of using Python, we face the challenge of

doing symbolic execution for a dynamic, untyped lan-

guage. This task turned out to be quite challenging from

an implementation perspective. To avoid modifying the

Python interpreter, we implement a derivative technique

2In our tests of the ProCurve 5406zl OpenFlow switch, we see that,

once the buffer becomes full, the switch starts sending the entire con-

tents of new incoming packets to the controller, rather than buffering

them. After a ten-second timeout, the switch deletes the packets that

are buffered awaiting instructions from the controller.

9



of symbolic execution called concolic execution [25]3,

which executes the code with concrete instead of sym-

bolic inputs. Alike symbolic execution, it collects con-

straints along code paths and tries to explore all feasible

paths. Another consequence of using Python is that we

incur a significant performance overhead, which is the

price for favoring usability. We plan to improve perfor-

mance in a future release of the tool.

NICE consists of three parts: (i) a model checker,

(ii) a concolic-execution engine, and (iii) a collection

of models including the simplified switch and several end

hosts. We now briefly highlight some of the implementa-

tion details of the first two parts: the model checker and

concolic engine, which run as different processes.

Model checker details. To checkpoint and restore

system state, NICE takes the approach of remembering

the sequence of transitions that created the state and re-

stores it by replaying such sequence, while leveraging

the fact that the system components execute deterministi-

cally. State-matching is doing by comparing and storing

hashes of the explored states. The main benefit of this

approach is that it reduces memory consumption and,

secondarily, it is simpler to implement. Trading com-

putation for memory is a common approach for other

model-checking tools (e.g., [15, 16]). To create state

hashes, NICE serializes the state via the cPickle mod-

ule and applies the built-in hash function to the resulting

string. We surmise it would be possible to reduce NICE

running time by storing the serialized state itself, at the

cost of higher memory usage.

Concolic execution details. A key step in concolic ex-

ecution is tracking the constraints on symbolic variables

during code execution. To achieve this, we first imple-

ment a new “symbolic integer” data type that tracks as-

signments, changes and comparisons to its value while

behaving like a normal integer from the program point

of view. We also implement arrays (tuples in Python ter-

minology) of these symbolic integers. Second, we reuse

the Python modules that naturally serve for debugging

and disassembling the byte-code to trace the program ex-

ecution through the Python interpreter.

Further, before running the code symbolically, we nor-

malize and instrument it since, in Python, the execu-

tion can be traced at best with single code-line granu-

larity. Specifically, we convert the source code into its

abstract syntax tree (AST) representation and then ma-

nipulate this tree through several recursive passes that

perform the following transformations: (i) we split com-

posite branch predicates into nested if statements to work

around shortcut evaluation, (ii) we move function calls

before conditional expressions to ease the job for the STP

constraint solver [26], (iii) we instrument branches to

3Concolic stands for concrete + symbolic.

inform the concolic engine on which branch is taken,

(iv) we substitute the built-in dictionary with a special

stub that exposes the constraints, and (v) we intercept

and remove sources of nondeterminism (e.g., seeding the

pseudo-random number generator). The AST tree is then

converted back to source code for execution.

7 Performance Evaluation

Here we present an evaluation of how effectively NICE

copes with the large state space in OpenFlow.

Experimental setup. We run the experiments on the

simple topology of Figure 1, where the end hosts behave

as follows: host A sends a “layer-2 ping” packet to host

B which replies with a packet to A. The controller runs

the MAC-learning switch program of Figure 4. We re-

port the numbers of transitions and unique states, and the

execution time as we increase the number of concurrent

pings (a pair of packets). We run all our experiments on a

machine set up with Linux 2.6.32 x86 64 that has 64 GB

of RAM and a clock speed of 2.6 GHz. Our prototype

implementation does not yet make use of multiple cores.

Benefits of simplified switch model. We first perform a

full search of the state space using NICE as a depth-first

search model checker (NICE-MC, without symbolic ex-

ecution) and compare to NO-SWITCH-REDUCTION:

doing model-checking without a canonical representa-

tion of the switch state. Effectively, this prevents the

model checker from recognizing that it is exploring se-

mantically equivalent states. These results, shown in

Table 1, are obtained without using any of our search

strategies. We compute ρ, a metric of state-space re-

duction due to using the simplified switch model, as
Unique(NO-SWITCH-REDUCTION)−Unique(NICE-MC)

Unique(NO-SWITCH-REDUCTION)
.

We observe the following:

• In both samples, the number of transitions and of

unique states grow roughly exponentially (as expected).

However, using the simplified switch model, the unique

states explored in NICE-MC only grow with a rate

that is about half the one observed for NO-SWITCH-

REDUCTION.

• The efficiency in state-space reduction ρ scales with the

problem size (number of pings), and is substantial (factor

of seven for three pings).

Heuristic-based search strategies. Figure 8 illustrates

the contribution of NO-DELAY and FLOW-IR in reduc-

ing the search space relative to the metrics reported for

the full search (NICE-MC). We omit the results for UN-

USUAL as they are similar. The state space reduction is

again significant; about factor of four for three pings. In

summary, our switch model and these heuristics result in

a 28-fold state space reduction for three pings.

Comparison to other model checkers. Next, we con-

10



NICE-MC NO-SWITCH-REDUCTION

Pings Transitions Unique states CPU time Transitions Unique states CPU time ρ

2 470 268 0.94 [s] 760 474 1.93 [s] 0.38

3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71

4 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84

5 14,052,853 4,161,335 30 [h] - - - -

Table 1: Dimensions of exhaustive search in NICE-MC vs. model-checking without a canonical representation of the

switch state, which prevents recognizing equivalent states. Symbolic execution is turned off in both cases. NO-SWITCH-

REDUCTION did not finish with five pings in four days.

2 3 4 5
0

0.5

1

Number of pings

R
e

d
u

c
ti
o

n
 [

%
]

 

 

NO−DELAY transitions

FLOW−IR transitions

NO−DELAY CPU time

FLOW−IR CPU time

Figure 8: Relative state-space search reduction of our

heuristic-based search strategies vs. NICE-MC.

trast NICE-MC with two state-of-the-art model check-

ers, SPIN [12] and JPF [13]. We create system models in

PROMELA and Java that replicate as closely as possible

the system tested in NICE. For clarity, we present the

details of these modeling efforts in Appendix A and we

summarize the results here:

• As expected, by using an abstract model of the system,

SPIN performs a full search more efficiently than NICE.

Of course, state-space explosion still occurs: e.g., with

7 pings, SPIN runs of out memory. This validates our

decision to maintain hashes of system states instead of

keeping entire system states.

• SPIN’s partial-order reduction (POR)4, decreases the

grow rate of explored transitions by only 18%. This is

because POR is applied to the granularity level that can-

not be refined to distinguish between independent net-

work flows.

• Taken “as is”, JPF is already slower than NICE by a

factor of 290 with 3 pings. The reason is that JPF uses

Java threads to represent system concurrency. However,

JPF leads to too many possible thread interleavings to

explore even in our small example.

• Even with our extra effort in rewriting the Java model

to explicitly expose possible transitions, JPF is 5.5 times

slower than NICE using 4 pings.

These results suggest that NICE, in comparison to the

other model-checkers, strikes a good balance between (i)
capturing system concurrency at the right level of granu-

larity, (ii) simplifying the state space and (iii) allowing
testing of unmodified controller programs.

4POR is a well-known technique for avoiding exploring unneces-

sary orderings of transitions (e.g., [27]).

8 Experiences With Real Applications

In this section, we report on our experiences apply-

ing NICE to three real applications—a MAC-learning

switch, a server load-balancer, and energy-aware traffic

engineering—and uncovering eleven bugs.

8.1 MAC-learning Switch (PySwitch)

Our first application is the pyswitch software included

in the NOX distribution. The application implements

MAC learning, coupled with flooding to unknown des-

tinations, common in Ethernet switches. Realizing this

functionality seems straightforward (e.g., the pseudo-

code in Figure 4), yet NICE automatically detects three

violations of correctness conditions.

BUG-I: Host unreachable after moving. This fairly

subtle bug is triggered when a hostB moves from one lo-

cation to another. Before B moves, host A starts stream-

ing toB, which causes the controller to install a forward-

ing rule. When B moves, the rule stays in the switch as

long as A keeps sending traffic, because the soft timeout

does not expire. As such, the packets do not reach B’s

new location. This serious correctness bug violates the

NoBlackHoles condition. If the rule had a hard timeout,

the application would eventually flood packets and reach

B at its new location; then, B would send return traffic

that would trigger MAC learning, allowing future pack-

ets to follow a direct path to B. While this “bug fix” pre-

vents persistent packet loss, the network still experiences

transient loss until the hard timeout expires. Designing

a new NoBlackHoles condition that is robust to transient

loss is part of our ongoing work.

BUG-II: Delayed direct path. The pyswitch also vi-

olates the StrictDirectPaths condition, leading to subop-

timal performance. The violation arises after a host A

sends a packet to host B, and B sends a response packet

to A. This is because pyswitch installs a forwarding

rule in one direction—from the sender (B) to the desti-

nation (A), in line 13 of Figure 4. The controller does

not install a forwarding rule for the other direction until

seeing a subsequent packet from A to B. For a three-

way packet exchange (e.g., a TCP handshake), this per-

formance bug directs 50% more traffic than necessary to

the controller. Anecdotally, fixing this bug can easily

11



introduce another one. The naı̈ve fix is to add another

install rule call, with the addresses and ports re-

versed, after line 14, for forwarding packets fromA toB.

However, since the two rules are not installed atomically,

installing the rules in this order can allow the packet from

B to reach A before the switch installs the second rule.

This can cause a subsequent packet from A to reach the

controller. A correct fix would install the rule for traffic

from A first, before allowing the packet from B to A to

traverse the switch. With this “fix”, the resulting program

satisfies the StrictDirectPaths property.

BUG-III: Excess flooding. When we test pyswitch

on a topology that contains a cycle, the program violates

the NoForwardingLoops property. This is not surprising,

since pyswitch does not construct a spanning tree.

8.2 Web Server Load Balancer

Data centers rely on load balancers to spread incoming

requests over service replicas. Previous work created a

load-balancer application that uses wildcard rules to di-

vide traffic based on the client IP addresses to achieve

a target load distribution [9]. The application can dy-

namically adjust the load distribution by installing new

wildcard rules; during the transition, old transfers com-

plete at their existing servers while new requests are han-

dled according to the new distribution. We test this ap-

plication with one client and two servers connected to a

single switch. The client opens a TCP connection to a

virtual IP address corresponding to the two replicas. In

addition to the default correctness properties, we create

an application-specific condition FlowAffinity that veri-

fies that all packets of a single TCP connection go to the

same server replica. Here we report on the bugs NICE

found in the original code.

BUG-IV: Next TCP packet always dropped after re-

configuration. Having observed a violation of the No-

ForgottenPackets property, we identified a bug where the

application neglects to handle the “next” packet of each

flow—for both ongoing transfers and new requests—

after a change in the load-balancing policy. Despite cor-

rectly installing the forwarding rule for each flow, the

application does not instruct the switch to forward the

packet that triggered the packet in handler. Since

the TCP sender ultimately retransmits the lost packet,

the program does successfully handle each Web request,

making it hard to notice the bug. The bug degrades per-

formance and, for a long execution trace, would ulti-

mately exhaust the switch’s space for buffering packets

awaiting controller action.

BUG-V: Some TCP packets dropped after reconfig-

uration. After fixing BUG-IV, NICE detected another

NoForgottenPackets violation, due to a race condition.

In switching from one load-balancing policy to another,

the application sends multiple updates to the switch for

each existing rule: (i) a command to remove the exist-

ing forwarding rule followed by (ii) commands to install

one or more rules (one for each group of affected client

IP addresses) that direct packets to the controller. Since

these commands are not executed atomically, packets ar-

riving between the first and second step do not match

either rule. The OpenFlow specification prescribes that

packets that do not match any rule should go to the con-

troller. Although the packets go to the controller either

way, these packets arrive with a different “reason code”

(i.e., NO MATCH). As written, the packet in handler

ignores such (unexpected) packets, causing the switch to

hold them until the buffer fills. This appears as a packet

loss to the end hosts5. To fix this bug, the program should

reverse the two steps, installing the new rules (perhaps at

a lower priority) before deleting the existing ones.

BUG-VI: ARP packets forgotten during address res-

olution. Another NoForgottenPackets violation uncov-

ered two bugs that are similar in spirit to the previous

one. The controller program handles client ARP re-

quests. Despite sending the correct reply, the program

neglects to discard the ARP request packet. A similar

problem occurs for server-generated ARP messages.

BUG-VII: Duplicate SYN packets during transitions.

A FlowAffinity violation detected a subtle bug that arises

only when a connection experiences a duplicate (e.g., re-

transmitted) SYN packet while the controller changes

from one load-balancing policy to another. During the

transition, the controller inspects the “next” packet of

each flow, and assumes a SYN packet implies the flow

is new and should follow the new load-balancing policy.

Under duplicate SYN packets, some packets of a con-

nection (arriving before the duplicate SYN) may go to

one server, and the remaining packets to another, leading

to a broken connection. The authors of [9] acknowledge

this possibility (see footnote #2 in their paper), but only

realized this problem after careful consideration.

8.3 Energy-Efficient Traffic Engineering

OpenFlow enables a network to reduce energy consump-

tion [10,28] by selectively powering down links and redi-

recting traffic to alternate paths during periods of lighter

load. REsPoNse [28] precomputes several routing ta-

bles (the default is two), and makes an online selection

for each flow. The NOX implementation has an always-

on routing table (that can carry all traffic under low de-

mand) and an on-demand table (that serves additional

traffic under higher demand). Under high load, the flows

5To understand the impact, consider a switch with 1 Gb/s links,

850-byte frames, and a flow-table update rate of 257 rules/s (as widely

reported for the HP 5406zl). That would lead to 150 dropped packets

per switch port.

12



should probabilistically split evenly over the two classes

of paths. The application learns the link utilizations by

querying the switches for port statistics. Upon receiving

a packet of a new flow, the packet in handler chooses

the routing table, looks up the list of switches in the path,

and installs a forwarding rule at each hop.

For testing with NICE, we install a network topology

with three switches in a triangle, one sender host at one

switch and two receivers at another switch. The third

switch lies on the on-demand path. We define the fol-

lowing application-specific correctness property:

• UseCorrectRoutingTable: This property checks that

the program, upon receiving a packet from an ingress

switch, issues the installation of rules to all and just the

switches on the appropriate path for that packet, as deter-

mined by the network load, It uses the source and desti-

nation addresses to determine the path (as does the appli-

cation code). Enforcing this is important, because if it is

violated, the network might be configured to carry more

traffic than it physically can, degrading the performance

of end-host applications running on top of the network.

NICE found several bugs in this application:

BUG-VIII: The first packet of a new flow is dropped.

A violation of NoForgottenPackets revealed a bug that is

almost identical to BUG-IV. The packet in handler

installed a rule but neglected to instruct the switch to for-

ward the packet that triggered the event.

BUG-IX: The first few packets of a new flow can be

dropped. After fixing BUG-VIII, NICE detected an-

other violation of the NoForgottenPackets property at the

second switch in the path. Since the packet in han-

dler installs an end-to-end path when the first packet of a

flow enters the network, the program implicitly assumes

that intermediate switches would never direct packets to

the controller. However, with communication delays in

installing the rules, the packet could reach the second

switch before the rule is installed. Although these pack-

ets trigger packet in events, the handler implicitly ig-

nores them, causing the packets to buffer at the inter-

mediate switch. This bug is hard to detect because the

problem only arises under certain event orderings. Sim-

ply installing the rules in the reverse order, from the last

switch to the first, is not sufficient—differences in the de-

lays for installing the rules could still cause a packet to

encounter a switch that has not (yet) installed the rule. A

correct “fix” should either handle packets arriving at in-

termediate switches, or use “barriers” to ensure that rule

installation completes at all intermediate hops before al-

lowing the packet to depart the ingress switch.

BUG-X: Only on-demand routes used under high

load. NICE detects a CorrectRoutingTableUsed vio-

lation that prevents on-demand routes from being used

properly. The program updates an extra routing table in

the port-statistic handler (when the network’s perceived

BUG PKT-SEQ only NO-DELAY FLOW-IR UNUSUAL

I 23 / 0.02 23 / 0.02 23 / 0.02 23 / 0.02

II 18 / 0.01 18 / 0.01 18 / 0.01 18 / 0.01

III 11 / 0.01 16 / 0.01 11 / 0.01 11 / 0.01

IV 386 / 3.41 1661 / 9.66 321 / 1.1 64 / 0.19

V 22 / 0.05 Missed 21 / 0.02 60 / 0.18

VI 48 / 0.05 48 / 0.06 31 / 0.04 49 / 0.07

VII 297k / 1h 191k / 39m Missed 26.5k / 5m

VIII 23 / 0.03 22 / 0.02 23 / 0.03 23 / 0.02

IX 21 / 0.03 17 / 0.02 21 / 0.03 21 / 0.02

X 2893 / 35.2 Missed 2893 / 35.2 2367 / 25.6

XI 98 / 0.67 Missed 98 / 0.67 25 / 0.03

Table 2: Comparison of the number of transitions / running

time to the first violation that uncovered each bug. Time is

in seconds unless otherwise noted.

energy state changes) to either always-on or on-demand,

in an effort to let the remainder of the code simply ref-

erence this extra table when deciding where to route a

flow. Unfortunately, this made it impossible to split flows

equally between always-on and on-demand routes, and

the code directed all new flows over on-demand routes

under high load. A “fix” was to abandon the extra table

and choose the routing table on per-flow basis.

BUG-XI: Packets can be dropped when the load re-

duces. After fixing BUG-IX, NICE detected another vi-

olation of the NoForgottenPackets. When the load re-

duces, the program recomputes the list of switches in

each always-on path. Under delays in installing rules,

a switch not on these paths may send a packet to the con-

troller, which ignores the packet because it fails to find

this switch in any of those lists.

8.4 Overhead of Running NICE

In Table 2, we summarize how many seconds NICE took

(and how many state transitions were explored) to dis-

cover the first property violation that uncovered each

bug, under four different search strategies. Note the num-

bers are generally small because NICE quickly produces

simple test cases that trigger the bugs. One exception,

BUG-VII, is found in 1 hour by doing a PKT-SEQ-only

search but UNUSUAL can detect it in just 5 minutes.

Our search strategies are also generally faster than PKT-

SEQ-only to trigger property violations, except in one

case (BUG-IV). NO-DELAY takes longer for BUG-IV

because the latter is faster to explore a sequence of tran-

sitions where the network reconfiguration event happens

at the right time for experiencing a NoForgottenPackets

violation. FLOW-IR does not produce benefits for the

last four bugs because these are uncovered by test cases

that do not involve using multiple flows. Also, note that

only in few cases (BUG-IV, BUG-X and BUG-XI) the

heuristic-based strategies experience false negatives. Ex-

pectedly, these race condition bugs are missed by NO-

13



DELAY, which does not consider rule installation delays.

Finally, the reader may find that some of the bugs

we found—like persistently leaving some packets in the

switch buffer—are relatively simple and their manifesta-

tions could be detected with run-time checks performed

by the controller platform. However, the programmer

would not know what caused it. For example, a run-

time check that flags a “no forgotten packets” error due

to BUG-IV or BUG-V would not tell the programmer

what was special about this particular system execution

that triggered the error. Subtle race conditions are very

hard to diagnose, so having a (preferably small) example

trace—like NICE produces—is crucial.

9 Coverage vs. Overhead Trade-Offs

Testing is inherently incomplete, walking a fine line be-

tween good coverage and low overhead. As part of our

ongoing work, we want to explore further how to best

leverage symbolic execution in NICE. We here discuss

some limitations of our current approach.

Concrete execution on the switch: In identifying the

equivalence classes of packets, the algorithm in Fig-

ure 6 implicitly assumes the packets reach the controller.

However, depending on the rules already installed in the

switch, some packets in a class may reach the controller

while others do not. This leads to two limitations. First,

if no packets in an equivalence class would go to the

controller, generating a representative packet from this

class was unnecessary. This leads to some loss in ef-

ficiency. Second, if some (but not all) packets go to the

controller, we maymiss an opportunity to test a code path

through the handler by inadvertently generating a packet

that stays in the “fast path” through the switches. This

leads to some loss in both efficiency and coverage. We

could overcome these limitations by extending symbolic

execution to include our simplified switch model and

performing “symbolic packet forwarding” across mul-

tiple switches. We chose not to pursue this approach

because (i) symbolic execution of the flow-table code

would lead to a path-explosion problem, (ii) including
these variables would increase the overhead of the con-

straint solver, and (iii) rules that modify packet headers

would further complicate the symbolic analysis. Still, we

are exploring “symbolic forwarding” as future work, by

leveraging reachability-analysis techniques [29].

Concrete global controller variables: In symbolically

executing each event handler, NICE could miss com-

plex dependencies between handler invocations. This

is a byproduct of our decision to represent global con-

troller variables in a concrete form. In some cases, one

call to a handler could update the variables in a way that

affects the symbolic execution of a second call (to the

same handler, or a different one). Symbolic execution of

the second handler would start from the concrete global

variables, and may miss an opportunity to recognize ad-

ditional constraints on packet header fields. We could

overcome this limitation by running symbolic execution

across multiple handler invocations, at the expense of a

significant explosion in the number of code paths. Or, we

could revisit our decision to represent global variables

in a concrete form. As future work, we are consider-

ing ways to efficiently represent global variables sym-

bolically.

Infinite execution trees in symbolic execution: Sym-

bolically unrolling a “for loop” in a program can lead to

an arbitrarily large state space. In our context, such an

infinite execution tree [24] arises if each state has at least

one input that modifies the controller state. This is an in-

herent limitation of symbolic execution, whether applied

independently or in conjunction with model checking.

To address this limitation, we explicitly bound the state

space by limiting the size of the input (e.g., a limit on the

number of packets) and devise OpenFlow-specific search

strategies that explore the system state space efficiently.

These heuristics offer a tremendous improvement in effi-

ciency, at the expense of some loss in coverage.

10 Related Work

Bug finding. While model checking [12–16] and sym-

bolic execution [17, 18, 25] are automatic techniques,

a drawback is that they typically require a closed sys-

tem, i.e., a system (model) together with its environ-

ment. Typically, the creation of such environment is a

manual process (e.g., [23]). NICE re-uses the idea of

model checking—systematic state-space exploration—

and combines it with the idea of symbolic execution—

exhaustive path coverage—to avoid pushing the burden

of modeling the environment on the user. Also, NICE is

the first to demonstrate the applicability of these tech-

niques for testing the dynamic behavior of OpenFlow

networks. Finally, NICE makes a contribution in man-

aging state-space explosion for this specific domain.

Khurshid et al. [24] enable a model checker to per-

form symbolic execution. Both our and their work share

the spirit of using symbolic variables to represent data

from very large domains. Our approach differs in that it

uses state matching and symbolic execution in a selective

way for uncovering possible transitions given a certain

controller state. As a result, we (i) reduce state-space

explosion due to feasible code paths because not all code

is symbolically executed, and (ii) preserve system state

as a first-class notion that is used to further reduce the

search of the state-space.

OpenFlow and network testing. Frenetic [30] is a

domain-specific language for OpenFlow that aims to

eradicate a large class of programming faults. Using Fre-

14



netic requires the network programmer to learn exten-

sions to Python to support the higher-layer abstractions.

OFRewind [31] enables recording and replay of events

for troubleshooting problems in production networks due

to closed-source network devices. However, it does not

automate the testing of OpenFlow controller programs.

Mai et al. [32] use static analysis of network devices

forwarding information bases to uncover problems in the

data plane. FlowChecker [33] applies symbolic model

checking techniques on a manually-constructed network

model based on binary decision diagrams to detect mis-

configurations in OpenFlow forwarding tables. We view

these works as orthogonal to ours since they both aim to

analyze a snapshot of the data plane.

Bishop et al. [34] examine the problem of testing the

specification of end host protocols. NICE tests the net-

work itself, in a new domain of software defined net-

works. Kothari et al. [35] use symbolic execution and

developer input to identify protocol manipulation at-

tacks for network protocols. In contrast, NICE combines

model checking with symbolic execution to identify rel-

evant test inputs for injection into the model checker.

11 Conclusion

We built NICE, a tool for automating the testing of Open-

Flow applications that combines model checking and

concolic execution to quickly explore the state space of

unmodified controller programs written for the popular

NOX platform. Further, we devised a number of new,

domain-specific techniques for mitigating the state-space

explosion that plagues approaches such as ours. We con-

trast NICE with an approach that applies off-the-shelf

model checkers to the OpenFlow domain, and demon-

strate that NICE is five times faster even on small ex-

amples. We applied NICE to implementations of three

important applications, and found 11 bugs. A release of

NICE will be made publicly available.

We plan to use the simplified switch model as the ba-

sis for testing the OpenFlow controller program with real

switch implementations: run n-versions of OpenFlow

switches side-by-side with the switch model and auto-

matically detect deviant behaviors.

Acknowledgments.

We are grateful to Stefan Bucur, Olivier Crameri, Jo-

hannes Kinder, Viktor Kuncak, Darko Marinov and

Sharad Malik for useful discussions and comments on

earlier drafts of this work. The research leading to these

results has received funding from the European Research

Council under the European Union’s Seventh Frame-

work Programme (FP7/2007-2013) / ERC grant agree-

ment 259110.

A Model-checking with Existing Tools

SPIN [12] is one of the most popular tools for verify-

ing the correctness of distributed software models. In

this case, these are written in a high-level modeling lan-

guage called PROMELA. This language exposes non-

determinism as a first-class concept, making it easier

to model the concurrency in OpenFlow. However, us-

ing this language proficiently is non-trivial and it took

several person-days to implement the model of the sim-

ple OpenFlow system (Figure 1). To capture the system

concurrency at the right level of granularity, we use the

atomic language feature to model each transition as

a single atomic computation that cannot be interleaved

to any other transition. In practice, this behavior can-

not be faithfully modeled due to the blocking nature of

channels in PROMELA. To enable SPIN’s POR be

most effective, we assign exclusive rights to the pro-

cesses involved in each communication channel.

Figure 9a shows the memory usage and elapsed time

for the exhaustive search with POR as we increase the

number of packets sent by host 1. As expected, we ob-

serve an exponential increase in computational resources

until SPIN reaches the memory limit when checking the

model with 8 pings (i.e., 16 packets).

To see how effective POR is, we compare in Figure 9b

the number of transitions explored with POR vs. without

POR (NOPOR) while we vary the number of pings. In

relative terms, POR’s efficiency increases, although with

diminishing returns, from 24% to 73% as we inject more

packets that are identical to each other. The benefits due

to POR on elapsed time follow a similar trend and POR

can finish 6 pings in 28% of time used by NOPOR. How-

ever, NOPOR hits the memory limit at 7 pings, so POR

only adds one extra ping.

Finally, we test if POR can reduce the search space by

taking advantage of one simple rule of independence for

the networking domain: i.e., packets involving disjoint

pairs of source and destination addresses are completely

independent. Unfortunately, we observe that there is no

reduction when we inject two packets with distinct ad-

dress pairs compared to the case with identical packets.

This is because SPIN uses the accesses to communica-

tion channels to derive the independence of events.

Java PathFinder (JPF) [13] is one among the first

modern model checkers which use the implementation in

place of the model. We follow two approaches to model

the system by porting our Python code to Java.

In the first approach, we naively use threads to cap-

ture nondeterminism, hoping that JPF’s automatic state-

space reduction techniques would cope with different

thread creation orders of independent transitions. How-

ever, in our case, the built-in POR is not very effi-

cient in removing unnecessary network event interleav-

15



2 4 6 8
10

0

10
1

10
2

10
3

10
4

10
5

Number of pings

M
e
m

o
ry

 [
M

B
]

10
−2

10
0

10
2

10
4

T
im

e
 [
s
]

 

 

Hits memory limit
of 65000 MB

(a) Memory usage and elapsed

time (log y-scales).

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of pings

1
 −

 P
O

R
/N

O
P

O
R

 t
ra

n
s
it
io

n
s

(b) Efficiency of POR.

Figure 9: SPIN: Exponential increase in computational re-

sources partially mitigated by POR.

Ping Time [s] Unique states End states Mem. [MB]

1 0 55 2 17

2 9 20638 134 140

3 13689 25470986 2094 1021

Table 3: JPF: Exhaustive search on thread-based model.

Ping Time [s] Unique states End states Mem. [MB]

1 0 1 1 17

2 1 691 194 33

3 16 29930 6066 108

4 11867 16392965 295756 576

Table 4: JPF: Exhaustive search on choice-based model.

ings because thread interleaving happens at finer gran-

ularity than event interleavings. To solve this problem,

we tune this model by using the beginAtomic() and

endAtomic() functions provided by JPF. As this still

produces too many possible interleavings, we further in-

troduced a global lock.

In a second approach to further refine the model,

we capture nondeterminism via JPF’s choice generator:

Verify.getInt(). This gives a significant improve-

ment over threads, mainly because we are able to specify

precisely the granularity of interleavings. However, this

second modeling effort is non trivial since we are man-

ually enumerating the state space and there are several

caveats in this case too. For example, explicit choice val-

ues should not be saved on the stack as the choice value

may became a part of the global state, thus preventing re-

duction. The vector of possible transitions must also be

sorted6.

Table 3 illustrates the state space explosion when us-

ing the thread-based model. Unfortunately, as show in

Table 4, the choice-based model improves only by 1 ping

the size of the model that we can explore within a com-

parable time period (≈ 4 hours).

6We order events by their states’ hash values.

References

[1] AfNOG Takes Byte Out of Internet. http://

goo.gl/HVJw5.

[2] Reckless Driving on the Internet. http://goo.

gl/otilX.

[3] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. OpenFlow: Enabling Innovation in

Campus Networks. SIGCOMM Comput. Commun.

Rev., 38:69–74, March 2008.

[4] M. Canini, D. Kostić, J. Rexford, and D. Venzano.

Automating the Testing of OpenFlow Applications.

InWRiPE, 2011.

[5] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: Towards an

Operating System for Networks. SIGCOMM Com-

put. Commun. Rev., 38:105–110, July 2008.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo,

N. Gude, N. McKeown, and S. Shenker. Rethinking

Enterprise Network Control. IEEE/ACM Transac-

tions on Networking, 17(4), August 2009.

[7] A. Nayak, A. Reimers, N. Feamster, and R. Clark.

Resonance: Dynamic Access Control for Enter-

prise Networks. In WREN, 2009.

[8] N. Handigol et al. Plug-n-Serve: Load-Balancing

Web Traffic using OpenFlow, August 2009. SIG-

COMM Demo.

[9] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-

Based Server Load Balancing Gone Wild. In Hot-

ICE, 2011.

[10] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yi-

akoumis, P. Sharma, S. Banerjee, and N. McKe-

own. ElasticTree: Saving Energy in Data Center

Networks. In NSDI, 2010.

[11] D. Erickson et al. A Demonstration of Virtual Ma-

chine Mobility in an OpenFlow Network, August

2008. SIGCOMM Demo.

[12] G. Holzmann. The Spin Model Checker - Primer

and Reference Manual. Addison-Wesley, Reading

Massachusetts, 2004.

[13] W. Visser, K. Havelund, G. Brat, S. Park, and

F. Lerda. Model Checking Programs. Automated

Software Engineering, 10(2):203–232, 2003.

[14] M. Musuvathi and D. R. Engler. Model Check-

ing Large Network Protocol Implementations. In

NSDI, 2004.

16



[15] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vah-

dat. Life, Death, and the Critical Transition: Find-

ing Liveness Bugs in Systems Code. In NSDI,

2007.

[16] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,

M. Yang, F. Long, L. Zhang, and L. Zhou.

MODIST: Transparent Model Checking of Unmod-

ified Distributed Systems. In NSDI, 2009.

[17] C. Cadar, D. Dunbar, and D. R. Engler. KLEE:

Unassisted and Automatic Generation of High-

Coverage Tests for Complex Systems Programs. In

OSDI, 2008.

[18] S. Bucur, V. Ureche, C. Zamfir, and G. Candea.

Parallel Symbolic Execution for Automated Real-

World Software Testing. In EuroSys, 2011.

[19] C. Baier and J.-P. Katoen. Principles of Model

Checking. The MIT Press, 2008.

[20] Open vSwitch: An Open Virtual Switch. http:

//openvswitch.org.

[21] OpenFlow Switch Specification. http:

//www.openflow.org/documents/

openflow-spec-v1.1.0.pdf.

[22] A. Sobeih, M. D’Amorim, M. Viswanathan,

D. Marinov, and J. C. Hou. Assertion Checking

in J-Sim Simulation Models of Network Protocols.

Simulation, 86, 2010.

[23] R. Sasnauskas, O. Landsiedel, M. H. Alizai,

C. Weise, S. Kowalewski, and K. Wehrle. KleeNet:

Discovering Insidious Interaction Bugs in Wireless

Sensor Networks Before Deployment. In IPSN,

2010.

[24] S. Khurshid, C. S. Păsăreanu, and W. Visser. Gen-

eralized Symbolic Execution for Model Checking

and Testing. In TACAS, 2003.

[25] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-

rected Automated Random Testing. In PLDI, 2005.

[26] V. Ganesh and D. L. Dill. A Decision Procedure for

Bit-Vectors and Arrays. In CAV, 2007.

[27] C. Flanagan and P. Godefroid. Dynamic Partial-

Order Reduction for Model Checking Software. In

POPL, 2005.

[28] N. Vasić, D. Novaković, S. Shekhar, P. Bhurat,

M. Canini, and D. Kostić. Identifying and using

energy-critical paths. In CoNEXT, 2011.

[29] G. Xie, J. Zhang, D. Maltz, H. Zhang, A. Green-

berg, G. Hjalmtysson, and J. Rexford. On Static

Reachability Analysis of IP Networks. In IEEE IN-

FOCOM, 2005.

[30] N. Foster, R. Harrison, M. J. Freedman, C. Mon-

santo, J. Rexford, A. Story, and D. Walker. Fre-

netic: A Network Programming Language. In

ICFP, 2011.

[31] A. Wundsam, D. Levin, S. Seetharaman, and

A. Feldmann. OFRewind: Enabling Record and

Replay Troubleshooting for Networks. In USENIX

ATC, 2011.

[32] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.

Godfrey, and S. T. King. Debugging the Data Plane

with Anteater. In SIGCOMM, 2011.

[33] E. Al-Shaer and S. Al-Haj. FlowChecker: Configu-

ration Analysis and Verification of Federated Open-

Flow Infrastructures. In SafeConfig, 2010.

[34] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell,

M. Smith, and K. Wansbrough. Rigorous Speci-

fication and Conformance Testing Techniques for

Network Protocols, as applied to TCP, UDP, and

Sockets. In SIGCOMM, 2005.

[35] N. Kothari, R. Mahajan, T. Millstein, R. Govindan,

and M. Musuvathi. Finding Protocol Manipulation

Attacks. In SIGCOMM, 2011.

17


