A NICE Way to Test OpenFlow Applications
EPFL Technical Report EPFL-REPORT-169211

Marco Canini*, Daniele Venzano*, Peter Peresini*, Dejan Kosti¢*, and Jennifer Rexford!

*EPFL

Abstract

The emergence of OpenFlow-capable switches enables
exciting new network functionality, at the risk of pro-
gramming errors that make communication less reliable.
The centralized programming model, where a single con-
troller program manages the network, seems to reduce
the likelihood of bugs. However, the system is inherently
distributed and asynchronous, with events happening at
different switches and end hosts, and inevitable delays
affecting communication with the controller. In this pa-
per, we present efficient, systematic techniques for test-
ing unmodified controller programs. Our NICE tool ap-
plies model checking to explore the state space of the en-
tire system—the controller, the switches, and the hosts.
Scalability is the main challenge, given the diversity of
data packets, the large system state, and the many possi-
ble event orderings. To address this, we propose a novel
way to augment model checking with symbolic execu-
tion of event handlers (to identify representative pack-
ets that exercise code paths on the controller). We also
present a simplified OpenFlow switch model (to reduce
the state space), and effective strategies for generating
event interleavings likely to uncover bugs. Our proto-
type tests Python applications on the popular NOX plat-
form. In testing three real applications—a MAC-learning
switch, in-network server load balancing, and energy-
efficient traffic engineering—we uncover eleven bugs.

1 Introduction

While lowering the barrier for introducing new func-
tionality into the network, Software Defined Networking
(SDN) also raises the risks of software faults (or bugs).
Even today’s networking software—written and exten-
sively tested by equipment vendors, and constrained
(at least somewhat) by the protocol standardization
process—can have bugs that trigger Internet-wide out-
ages [1,2]. In contrast, programmable networks will of-
fer a much wider range of functionality, through software

T Princeton University

created by a diverse collection of network operators and
third-party developers. The ultimate success of SDN,
and enabling technologies like OpenFlow [3], depends
on having effective ways to test applications in pursuit
of achieving high reliability. In this paper, we present
NICE, a tool that efficiently uncovers bugs in OpenFlow
programs, through a combination of model checking and
symbolic execution. Building on our position paper [4]
that argues for automating the testing of OpenFlow ap-
plications, we introduce several new contributions sum-
marized in Section 1.3.

1.1 Bugs in OpenFlow Applications

An OpenFlow network consists of a distributed collec-
tion of switches managed by a program running on a
logically-centralized controller, as illustrated in Figure 1.
Each switch has a flow table that stores a list of rules
for processing packets. Each rule consists of a pattern
(matching on packet header fields) and actions (such as
forwarding, dropping, flooding, or modifying the pack-
ets, or sending them to the controller). A pattern can re-
quire an “exact match” on all relevant header fields (i.e.,
a microflow rule), or have “don’t care” bits in some fields
(i.e., a wildcard rule). For each rule, the switch main-
tains traffic counters that measure the bytes and packets
processed so far. When a packet arrives, a switch selects
the highest-priority matching rule, updates the counters,
and performs the specified action(s). If no rule matches,
the switch sends the packet header to the controller and
awaits a response on what actions to take. Switches also
send event messages, such as a “join” upon joining the
network, or “port change” when links go up or down.
The OpenFlow controller (un)installs rules in the
switches, reads traffic statistics, and responds to events.
For each event, the controller program defines a han-
dler, which may install rules or issue requests for traf-
fic statistics. Many OpenFlow applications' are writ-

!n this paper, we use the terms “OpenFlow application” and “con-

Controller

OpenFlow
A program »

Install
rule
(delayed) \

B Packet

Switch 1 Switch 2

Figure 1: An example of OpenFlow network traversed by
a packet. In a plausible scenario, due to delays between
controller and switches, the packet does not encounter an
installed rule in the second switch.

ten on the NOX controller platform [5], which offers an
OpenFlow API for Python and C++ applications. These
general-purpose programs can perform arbitrary compu-
tation and maintain arbitrary state. A growing collection
of controller applications support new network function-
ality [6-11], over OpenFlow switches available from sev-
eral different vendors. Our goal is to create an efficient
tool for systematically testing these applications.

On the surface, the centralized programming model
should reduce the likelihood of bugs. Yet, the system
is inherently distributed and asynchronous, with events
happening at multiple switches and inevitable delays af-
fecting communication with the controller. To reduce
overhead and delay, applications push as much packet-
handling functionality to the switches as possible. A
common programming idiom is to respond to a packet
arrival by installing a rule for handling subsequent pack-
ets in the data plane. Yet, a race condition can arise if
additional packets arrive while installing the rule. A pro-
gram that implicitly expects to see just one packet may
behave incorrectly when multiple arrive [4]. In addition,
many applications install rules at multiple switches along
a path. Since rules are not installed atomically, some
switches may apply new rules before others install theirs.
Figure 1 shows an example where a packet reaches an
intermediate switch before the relevant rule is installed.
This can lead to unexpected behavior, where an interme-
diate switch directs a packet to the controller. As a re-
sult, an OpenFlow application that works correctly most
of the time can misbehave under certain event orderings.

1.2 Challenges of Testing OpenFlow Apps

Testing OpenFlow applications is challenging because
the behavior of a program depends on the larger envi-
ronment. The end-host applications sending and receiv-
ing traffic—and the switches handling packets, installing
rules, and generating events—all affect the program run-
ning on the controller. The need to consider the larger en-

troller program” interchangeably.

vironment leads to an extremely large state space, which
“explodes” along three dimensions:

Large space of switch state: Switches run their own
programs that maintain state, including the many packet-
processing rules and associated counters and timers. Fur-
ther, the set of packets that match a rule depends on the
presence or absence of other rules, due to the “match the
highest-priority rule” semantics. As such, testing Open-
Flow applications requires an effective way to capture
the large state space of the switch.

Large space of input packets: Applications are data-
plane driven, i.e., programs must react to a huge space
of possible packets. The OpenFlow specification al-
lows switches to match on source and destination MAC
addresses, IP addresses, and TCP/UDP port numbers,
as well as the switch input port; future generations of
switches will match on even more fields. The controller
can perform arbitrary processing based on other fields,
such as TCP flags or sequence numbers. As such, test-
ing OpenFlow applications requires effective techniques
to deal with large space of inputs.

Large space of event orderings: Network events,
such as packet arrivals and topology changes, can happen
at any switch at any time. Due to communication delays,
the controller may not receive events in order, and rules
may not be installed in order across multiple switches.
Serializing rule installation, while possible, would sig-
nificantly reduce application performance. As such, test-
ing OpenFlow applications requires efficient strategies to
explore a large space of event orderings.

To simplify the problem, we could require program-
mers to use domain-specific languages that prevent cer-
tain classes of bugs. However, the adoption of new lan-
guages is difficult in practice. Not surprisingly, most
OpenFlow applications are written in general-purpose
languages, like Python, Java, and C++. Alternatively,
programmers could create abstract models of their ap-
plications, and use formal-methods techniques to prove
properties about the system. However, these models
are time-consuming to create and easily become out-
of-sync with the real implementation. In addition, ex-
isting model-checking tools like SPIN [12] and Java
PathFinder (JPF) [13] cannot be directly applied be-
cause they require explicit developer inputs to resolve the
data-dependency issues and sophisticated modeling tech-
niques to leverage domain-specific information. They
also suffer state-space explosion, as we show in Sec-
tion 7. Instead, we argue that testing tools should oper-
ate directly on unmodified OpenFlow applications writ-
ten in general-purpose languages, and leverage domain-
specific knowledge to improve scalability.

Input Output
OpenFlow Mode!
controller | Chec::k?m |
program 75 Traces of
property
Notwork <z violations
topolo Symbolic
['opoogy | Execution
Correctness State-space
properties search

Figure 2: Given an OpenFlow program, a network topol-
ogy, and correctness properties, NICE performs a state-
space search and outputs traces of property violations.

1.3 NICE Research Contributions

To address these scalability challenges, we present NICE
(No bugs In Controller Execution)—a tool that tests un-
modified controller programs by automatically generat-
ing carefully-crafted streams of packets under many pos-
sible event interleavings. To use NICE, the programmer
supplies the controller program, and the specification of
a topology with switches and hosts. The programmer can
instruct NICE to check for generic correctness properties
such as no forwarding loops or no black holes, and op-
tionally write additional, application-specific correctness
properties (i.e., Python code snippets that make asser-
tions about the global system state). By default, NICE
systematically explores the space of possible system be-
haviors, and checks them against the desired correctness
properties. The programmer can also configure the de-
sired search strategy. In the end, NICE outputs property
violations along with the traces to deterministically re-
produce them. The programmer can also use NICE as a
simulator to perform manually-driven, step-by-step sys-
tem executions or random walks on system states.

Our design uses explicit state, software model check-
ing [13-16] to explore the state space of the en-
tire system—the controller program, the OpenFlow
switches, and the end hosts—as discussed in Section 2.
However, applying model checking “out of the box” does
not scale. While simplified models of the switches and
hosts help, the main challenge is the event handlers in
the controller program. These handlers are data depen-
dent, forcing model checking to explore all possible in-
puts (which doesn’t scale) or a set of “important” in-
puts provided by the developer (which is undesirable).
Instead, we extend model checking to symbolically ex-
ecute [17, 18] the handlers, as discussed in Section 3.
By symbolically executing the packet-arrival handler,
NICE identifies equivalence classes of packets—ranges
of header fields that determine unique paths through the
code. NICE feeds the network a representative packet
from each class by adding a state transition that inject the
packet. To reduce the space of event orderings, we pro-

pose several domain-specific search strategies that gen-
erate event interleavings that are likely to uncover bugs
in the controller program, as discussed in Section 4.
Bringing these ideas together, NICE combines model
checking (to explore system execution paths), symbolic
execution (to reduce the space of inputs), and search
strategies (to reduce the space of event orderings). The
programmer can specify correctness properties as snip-
pets of Python code that operate on system state, or se-
lect from a library of common properties, as discussed in
Section 5. Our NICE prototype tests unmodified appli-
cations written in Python for the popular NOX platform,
as discussed in Section 6. Our performance evaluation in
Section 7 shows that: (i) even on small examples, NICE
is five times faster than approaches that apply state-of-
the-art tools (i) our OpenFlow-specific search strategies
reduce the state space by up to 20 times, and (ii7) the
simplified switch model brings a 7-fold reduction on its
own. In Section 8, we apply NICE to three real Open-
Flow applications and uncover /7 bugs. Most of the bugs
we found are design flaws, which are inherently less nu-
merous than simple implementation bugs. In addition,
at least one of these applications was tested using unit
tests. Section 9 discusses the trade-off between testing
coverage and the overhead of symbolic execution. Sec-
tion 10 discusses related work, and Section 11 concludes
the paper with a discussion of future research directions.

2 Model Checking OpenFlow Applications

The execution of a controller program depends on the un-
derlying switches and end hosts; the controller, in turn,
affects the behavior of these components. As such, test-
ing is not just a simple matter of exercising every path
through the controller program—we must consider the
state of the larger system. The need to systematically ex-
plore the space of system states, and check correctness in
each state, naturally leads us to consider model checking
techniques. To apply model checking, we need to iden-
tify the system states and the transitions from one state
to another. After a brief review of model checking, we
present a strawman approach for applying model check-
ing to OpenFlow applications, and proceed by describing
changes that make it more tractable.

2.1 Background on Model Checking

Modeling the state space. A distributed system con-
sists of multiple components that communicate asyn-
chronously over message channels, i.e., first-in, first-out
buffers (e.g., see Chapter 2 of [19]). Each component has
a set of variables, and the component state is an assign-
ment of values to these variables. The system state is the
composition of the component states. To capture in-flight

1 state_stack = []; explored_states = []; errors = []
2 initial_state = create_initial _state()

s for t in initial_state.enabled_transitions:

4 state_stack.push([initial state, t])

s while len(state_stack) > 0:

6 state, transition = choose(state_stack)

7 try:

8 next_state = run(state, transition)

9 check_properties(next_state)

10 if next_state not in explored_states:
1" explored_states.add(next_state)

12 for t in state.enabled_transitions:
13 state_stack.push([next_state, t])
14 except PropertyViolation as e:

15 errors.append([e, trace])

Figure 3: Pseudo-code of the basic model-checking loop.

messages, the system state also includes the contents of
the channels. A transition represents a change from one
state to another (e.g., due to sending a message). At any
given state, each component maintains a set of enabled
transitions, i.e., the state’s possible transitions. For each
state, the enabled system transitions are the union of en-
abled transitions at all components. A system execution
corresponds to a sequence of these transitions, and thus
specifies a possible behavior of the system.

Model-checking process. Given a model of the state
space, performing a search is conceptually straightfor-
ward. Figure 3 shows the pseudo-code of the model-
checking loop. First, the model checker initializes a stack
of states with the initial state of the system. At each step,
the checker chooses one state from the stack and one of
its enabled transitions. After executing that transition,
the checker tests the correctness properties on the newly
reached state. If the new state violates a correctness prop-
erty, the checker saves the error and the execution trace.
Otherwise, the checker adds the new state to the set of
explored states (unless the state was added earlier) and
schedules the execution of all transitions enabled in this
state (if any). The model checker can run until the stack
of states is empty, or until detecting the first error.

2.2 Transition Model for OpenFlow Apps

Model checking relies on having a model of the system,
i.e., a description of the state space. This requires us to
identify the states and transitions for each component—
the controller program, the OpenFlow switches, and the
end hosts. However, we argue that applying existing
model-checking techniques imposes too much work on
the developer and leads to an explosion in the state space.

1 ctrl_state = {} # State of the controller is a global variable (a hashtable)

> def packet_in(sw_id, inport, pkt, bufid): # Handles packet arrivals

5 mactable = ctrl_state[sw_id]

4 is_bcast_src = pkt.src[0] & 1

s is_bcast_dst = pkt.dst[0] & 1

¢ if not is_bcast_src:

7 mactable[pkt.src] = inport

s if (not is_bcast_dst) and (mactable.has_key(pkt.dst)):

9 outport = mactable[pkt.dst]

10 if outport != inport:

1 match = {DL_SRC: pkt.src, DL_DST: pkt.dst, «
DL_TYPE: pkt.type, IN_.PORT: inport}

12 actions = [OUTPUT, outport]

13 install_rule(sw_id, match, actions, soft_timer=5,
hard_timer=PERMANENT) # 2 lines optionally

14 send_packet_out(sw_id, pkt, bufid) # combined in 1 API

15 return

16 flood_packet(sw_id, pkt, bufid)

17 def SWitCh_jOin(SW_id, stats): # Handles when a switch joins
15 if not ctrl_state.has_key(sw_id):
19 ctrl_state[sw_id] = {}

20 def switch_leave(sw_id): # Handles when a switch leaves
a if ctrl_state.has_key(sw_id):
» del ctrl_state[sw_id]

Figure 4: Pseudo-code of a MAC-learning switch, based
on the pyswitch application. The packet_in handler
learns the input port associated with each non-broadcast
source MAC address; if the destination MAC address is
known, the handler installs a forwarding rule and instructs
the switch to send the packet according to that rule; and
otherwise floods the packet. The switch join/leave events
initialize/delete a table mapping addresses to switch ports.
Note that another API (not shown) wraps an OpenFlow
protocol optimization that combines into a single one the
two operations: modifying the flow table and processing the
packet that caused the modification.

2.2.1 Controller Program

Modeling the controller as a transition system seems rel-
atively straightforward. A controller program is struc-
tured as a set of event handlers (e.g., packet arrival and
switch join/leave for the MAC-learning application in
Figure 4), that interact with the switches using a stan-
dard interface, and these handlers execute atomically. As
such, we can model the state of the program as the values
of its global variables (e.g., ctrl_state in Figure 4),
and treat each event handler as a transition. To execute a
transition, the model checker can simply invoke the asso-
ciated event handler. For example, receiving a packet-in
message from a switch enables the packet_in transi-
tion, and the model checker can execute the transition by
invoking the corresponding event handler.

However, the behavior of event handlers is often data-
dependent. In line 7 of Figure 4, for instance, the
packet_in handler assigns mactable only for uni-
cast source MAC addresses, and either installs a forward-

ing rule or floods a packet depending on whether or not
the destination MAC address is known. This leads to dif-
ferent system executions. Unfortunately, model check-
ing does not cope well with data-dependent applications
(e.g., see Chapter 1 of [19]). Since enumerating all pos-
sible inputs is intractable, a brute-force solution would
require developers to specify a set of “relevant” inputs
based on their knowledge of the application. Hence, a
controller transition would be modeled as a pair con-
sisting of an event handler and a concrete input. This
is clearly undesirable. NICE overcomes this limitation
by using symbolic execution to automatically identify the
relevant inputs, as discussed in Section 3.

2.2.2 OpenFlow Switches

To test the controller program, the system model must
include the underlying switches. Yet, switches run com-
plex software, and this is not the code we intend to test.
A strawman approach for modeling the switch is to start
with an existing reference OpenFlow switch implemen-
tation (e.g., [20]), define the switch state as the values
of all variables, and identify transitions as the portions
of the code that process packets or exchange messages
with the controller. However, the reference switch soft-
ware has a large amount of state (e.g., several hundred
KB), not including the buffers containing packets and
OpenFlow messages awaiting service; this aggravates the
state-space explosion problem. Importantly, such a large
program has many sources of nondeterminism and it is
difficult to identify them automatically [16].

Instead, we create a switch model that omits inessen-
tial details. Indeed, creating models of some parts of the
system is common to many standard approaches for ap-
plying model checking. Further, in our case, this is a one-
time effort that does not add burden on the user. Follow-
ing the OpenFlow specification [21], we view a switch as
a set of communication channels, transitions that handle
data packets and OpenFlow messages, and a flow table.
Simple communication channels: Each channel is
a first-in, first-out buffer. Packet channels have an
optionally-enabled fault model that can drop, duplicate,
or reorder packets, or fail the link. The channel with the
controller offers reliable, in-order delivery of OpenFlow
messages, except for optional switch failures. We do not
run the OpenFlow protocol over SSL on top of TCP/IP,
allowing us to avoid intermediate protocol encoding/de-
coding and the substantial state in the network stack.
Two simple transitions: The switch model supports
process_pkt and process_of transitions—for pro-
cessing data packets and OpenFlow messages, respec-
tively. We enable these transitions if at least one packet
channel or the OpenFlow channel is non empty, respec-
tively. To match the controller program’s expecta-

tions about the environment, our switch model includes
buffers that temporarily store packets awaiting further in-
struction from the controller. However, to improve scala-
bility, we do not include these buffers in our definition of
the state space. A final simplification we make is in the
process._pkt transition. Here, the switch dequeues
the first packet from each packet channel, and processes
all these packets according to the flow table. So, multi-
ple packets at different channels are processed as a single
transition. This optimization is safe because the model
checker already systematically explores the possible or-
derings of packet arrivals at the switch.

Merging equivalent flow tables: A flow table can eas-
ily have two states that appear different but are seman-
tically equivalent, leading to a larger search space than
necessary. For example, consider a switch with two mi-
croflow rules. These rules do not overlap—no packet
would ever match both rules. As such, the order of these
two rules is not important. Yet, simply storing the rules
as a list would cause the model checker to treat two dif-
ferent orderings of the rules as two distinct states. In-
stead, as often done in model checking (e.g., [22]), we
construct a canonical representation of the flow table that
derives a unique order of rules with overlapping pat-
terns.

2.2.3 End Hosts

Modeling the end hosts is tricky, because hosts run ar-
bitrary applications and protocols, have large state, and
have behavior that depends on incoming packets. We
could require the developer to provide the host pro-
grams, with a clear indication of the transitions between
states. Instead, NICE provides simple programs that act
as clients or servers for a variety of protocols including
Ethernet, ARP, IP, and TCP. These models have explicit
transitions and relatively little state. For instance, the de-
fault client has two basic transitions—send (initially en-
abled; can execute C' times, where C' is configurable) and
receive—and a counter of sent packets. The default
server has the receive and the send_reply transi-
tions; the latter is enabled by the former. A more real-
istic refinement of this model is the mobile host that in-
cludes the move transition that moves the host to a new
<switch, port> location. The programmer can also cus-
tomize the models we provide, or create new models.

3 Symbolic Execution of Event Handlers

To systematically test the controller program, we must
explore all of its possible transitions. Yet, the behavior
of an event handler depends on the inputs (e.g., the MAC
addresses of packets in Figure 4). Rather than explore all

possible inputs, NICE identifies which inputs would ex-
ercise different execution paths through an event handler.
Systematically exploring all code paths naturally leads us
to consider symbolic execution (SE) techniques. After a
brief review of symbolic execution, we describe how we
apply symbolic execution to controller programs. Then,
we explain how NICE combines model checking and
symbolic execution to explore the state space effectively.

3.1 Background on Symbolic Execution

Symbolic execution runs a program with symbolic vari-
ables as inputs (i.e., any values). The symbolic ex-
ecution engine tracks the use of symbolic variables
and records the constraints on their possible values.
For example, the engine does not learn the value of
is_bcast_src in line 4 of Figure 4, but instead learns
that is bcast_srcis “pkt.src[0] & 17. Atany
branch, the engine queries a solver for two assignments
of symbolic inputs—one that satisfies the branch pred-
icate and one that satisfies its negation (i.e., takes the
“else” branch)— and logically forks the execution to fol-
low the feasible paths. For example, the engine deter-
mines that to reach line 7 of Figure 4, the source MAC
address must have its eighth bit set to zero. The engine
then updates the path constraint, i.e., the conjunction of
all constraints on symbolic variables that led execution
down that path. The values of symbolic variables that
are sufficient for execution to take a path derive from that
path constraint.

Unfortunately, symbolic execution does not scale well
because the number of code paths can grow exponen-
tially with the number of branches and the size of the in-
puts. Also, symbolic execution does not explicitly model
the state space, which can cause repeated exploration
of the same system state. In addition, despite explor-
ing all code paths, symbolic execution does not explore
all system execution paths, such as different event inter-
leavings. Techniques exist that can add artificial branch-
ing points to a program to inject faults or explore dif-
ferent event orderings [18, 23], but at the expense of
extra complexity. As such, symbolic execution is not
a sufficient solution for testing OpenFlow applications.
Instead, NICE uses model checking to explore system
execution paths (and detect repeated visits to the same
state [24]), and symbolic execution to determine which
inputs would exercise a particular state transition.

3.2 Symbolic Execution of OpenFlow Apps

Applying symbolic execution to the controller event han-
dlers is relatively straightforward, with two exceptions.
First, to handle the diverse inputs to the packet_in
handler, we construct symbolic packets. Second, to min-

imize the size of the state space, we choose a concrete
(rather than symbolic) representation of controller state.
Symbolic packets. The main input to the packet_in
handler is the incoming packet. To perform symbolic
execution, NICE must identify which (ranges of) packet
header fields determine the path through the handler.
Rather than view a packet as a generic array of sym-
bolic bytes, we introduce symbolic packets as our sym-
bolic data type. A symbolic packet is a group of symbolic
integer variables that each represents a header field. To
reduce the overhead for the constraint solver, we main-
tain each header field as an individual symbolic variable
(e.g., a MAC address is a 6-byte variable), which reduces
the number of variables. Yet, we still allow byte- and bit-
level accesses to the fields. We also apply domain knowl-
edge to further constrain the possible values of header
fields (e.g., the MAC and IP addresses used by the hosts
and switches in the system model, as specified by the in-
put topology). Finally, the fields are lazily-initialized so
that we reduce the overhead for the constraint solver by
omitting the unused fields. This also tells us whether
the program is agnostic to particular protocols (e.g., ig-
noring transport header fields), allowing us to select a
simpler host model for generating the input packets.
Concrete controller state. The execution of the event
handlers also depends on the controller state. For ex-
ample, the code in Figure 4 reaches line 9 only for uni-
cast destination MAC addresses stored in mactable.
Starting with an empty mactable, symbolic execution
cannot find an input packet that forces the execution of
line 9; yet, with a non-empty table, certain packets could
trigger line 9 to run, while others would not. As such,
we must incorporate the global variables into the sym-
bolic execution. We choose to represent the global vari-
ables in a concrete form. We apply symbolic execution
by using these concrete variables as the initial state and
by marking as symbolic the packets and statistics argu-
ments to the handlers. The alternative of treating the con-
troller state as symbolic would require a sophisticated
type-sensitive analysis of complex data structures (e.g.,
[24]), which is computationally expensive and difficult
for an untyped language like Python. In addition, hav-
ing purely symbolic controller state could cause NICE to
test spurious states that are not reachable in practice due
to the constraints imposed by the larger environment.

3.3 Combining SE With Model Checking

With all of NICE’s parts in place, we now describe
how we combine model checking (to explore system ex-
ecution paths) and symbolic execution (to reduce the
space of inputs). Figure 5 shows the unfolding of con-
troller’s state-space graph. At any given controller state,
we want to identify the packets that each client should

Symbolic Enable new ||
execution ISR transitions:
of packet_in [pkt,, pkts] client, send(pkt,)
handler client, send(pkt,) |

Figure 5: Example of how NICE identifies relevant packets
and uses them as new enabled send packet transitions of
client:. For clarity, the circled states refer to the controller
state only.

send—specifically, the set of packets that exercise all
feasible code paths on the controller in that state. To
do so, we create a special end-host transition called
discover_packets that is initially enabled. When
executed, this transition invokes the symbolic-execution
engine to symbolically execute the packet _in handler.

NICE executes the handler symbolically starting from
the initial state defined by (i) the concrete controller
state (State O in Figure 5) and (i) a concrete “con-
text” (i.e., the switch and input port that identify the
host’s location). For every feasible code path in the
handler, the symbolic-execution engine finds an equiv-
alence class of packets that exercise it. For each equiva-
lence class, we instantiate one concrete packet (referred
to as the relevant packet) and enable a corresponding
send transition for the client. While this example fo-
cuses on the packet_in handler, we apply similar tech-
niques to deal with traffic statistics, by introducing a spe-
cial discover_stats transition that symbolically ex-
ecutes the statistics handler with symbolic integers as ar-
guments. Other handlers, related to topology changes,
operate on concrete inputs (e.g., the switch and port ids).

Figure 6 shows the pseudo-code of our search-space
algorithm, which extends extends the basic model-
checking loop of Figure 3 in two main ways.

Initialization (lines 3-5): For each host (or “client”),
the algorithm (i) creates an empty map for storing the
relevant packets for a given controller state and (4i) en-
ables the discover_packets transition.

Checking process (lines 12-18): Upon reaching a
new state, the algorithm checks for each client (line
15) whether a set of relevant packets already exists.
If not, it enables the discover_packets transi-
tion. In addition, it checks (line 17) if the controller
has a process_stat transition enabled in the newly-
reached state, meaning that the controller is awaiting a

1 state_stack = []; explored_states = []; errors = []
» initial_state = create_initial _state()

s for client in initial_state.clients
4+ client.packets = {}
s client.enable_transition(discover_packets)

¢ for t in initial_state.enabled_transitions:
7 state_stack.push([initial state, t])

s while len(state_stack) > 0:

v state, transition = choose(state_stack)
0 try:

1 next_state = run(state, transition)

12 ctrl = next_state.ctrl # Reference to controller in next_state
13 ctrl_state = state(ctrl) # Stringified controller state in next_state
14 for client in state.clients:

15 if not client.packets.has_key(ctrl_state):

16 client.enable_transition(discover_packets, ctrl)
17 if process_stats in ctrl.enabled_transitions:

18 ctrl.enable_transition(discover_stats, state, sw_id)
19 check_properties(next_state)

20 if next_state not in explored_states:

21 explored_states.add(next_state)

2 for t in state.enabled_transitions:

23 state_stack.push([next_state, t])

2 except PropertyViolation as e:

25 errors.append([e, trace])

2 def discover_packets_transition(client, ctrl):

27 sw.id, inport = switch_location_of(client)

23 new_packets = SymbolicExecution(ctrl, packet_in, «
context=[sw_id, inport])

» client.packets[state(ctr]l)] = new_packets

s for packet in client.packets[state(ctrl)]:

31 client.enable_transition(send, packet)

3 def discover_stats_transition(ctrl, state, sw_id):

33 new._stats = SymbolicExecution(ctrl, process_stats, «
context=[sw_id])

s for stats in new_stats:

35 ctrl.enable_transition(process_stats, stats)

Figure 6: Pseudo-code of the state-space search algorithm
used in NICE for finding errors. The highlighted parts, in-
cluding the special “discover” transitions, are our additions
to the basic model-checking loop of Figure 3.

response to a previous query for statistics. If so, the al-
gorithm enables the discover_stats transition.

Invoking the discover_packets (lines 26-31) and
discover_stats (lines 32-35) transitions allows the
system to evolve to a state where new transitions be-
come possible—one for each path in the packet-arrival
or statistics handler. This allows the model checker to
reach new controller states, allowing symbolic execution
to again uncover new classes of inputs that enable addi-
tional transitions, and so on.

By symbolically executing the controller event han-
dlers, NICE can automatically infer the test inputs for
enabling model checking without developer input, at the
expense of some limitations in coverage of the system

Figure 7: Illustration of the state space explored by our
search strategies in relation to the entire state space.

state space which we discuss later in Section 9.

4 OpenFlow-Specific Search Strategies

Even with our optimizations from the last two sections,
the model checker cannot typically explore the entire
state space, since events can occur in so many different
orders. Thus, we propose domain-specific heuristics that
substantially reduce the space of event orderings while
focusing on scenarios that are likely to uncover bugs.
Figure 7 graphically summarizes the state space explored
by the proposed search strategies in relation to the entire
state space. Most of the strategies operate on the event
interleavings produced by model checking, except for
PKT-SEQ which reduces the state-space explosion due
to the transitions uncovered by symbolic execution.
PKT-SEQ: Relevant packet sequences. The effect of
discovering new relevant packets and using them as new
enabled send transitions is that each end-host gener-
ates a potentially-unbounded tree of packet sequences.
To make the state space finite and smaller, this heuris-
tic reduces the search space by bounding the possible
end host transitions (indirectly, bounding the tree) along
two dimensions, each of which can be fine tuned by the
user. The first is merely the maximum length of the se-
quence, or in other words, the depth of the tree. Ef-
fectively, this places a hard limit to the issue of infinite
execution trees due to symbolic execution. The second
is the maximum number of outstanding packets, or in
other words, the length of a packet burst. For example,
if client; in Figure 5 is allowed only a 1-packet burst,
this heuristic would disallow both send (pkts) in State
2 and send (pkty) in State 3. Effectively, this limits
the level of “packet concurrency” within the state space.
To introduce this limit, we conceive each end host has a
counter ¢, and when ¢ = 0, the end host cannot send any
more packet until the counter is replenished. As we are
dealing with multiple communicating end hosts, we find
it natural to use as the default behavior increasing ¢ by
one unit for every received packet. However, this behav-
ior can be modified in more complex end host models,
e.g., to mimic the TCP flow and congestion controls.

NO-DELAY: Instantaneous rule updates. When us-
ing this simple heuristic, NICE treats each communi-
cation between a switch and the controller as a single
atomic action (i.e., not interleaved with any other transi-
tions). In other words, the global system runs in “lock
step.” This heuristic is useful during the early stages of
development to find basic design errors, rather than race
conditions or other concurrency-related problems. For
instance, this heuristic would allow the developer to re-
alize that installing a rule prevents the controller from
seeing other packets that are important for program cor-
rectness. For example, a MAC-learning application that
installs forwarding rules based only on the destination
MAC address would prevent the controller from seeing
some packets with new source MAC addresses.
UNUSUAL: Uncommon delays and reorderings.
With this heuristic, NICE only explores event orderings
with unusual and unexpected delays, with the goal of un-
covering race conditions. For example, if an event han-
dler in the controller installs rules in switches 1, 2, and
3, the heuristic explores transitions that reverse the order
by allowing switch 3 to install its rule first, followed by
switch 2 and then switch 1. This heuristic uncovers bugs
like the example in Figure 1.

FLOW-IR: Flow independence reduction. = Many
OpenFlow applications treat different groups of packets
independently; that is, the handling of one group is not
affected by the presence or absence of another. In this
case, NICE can reduce the search space by exploring
only one relative ordering between the events affecting
each group. To use this heuristic, the programmer pro-
vides isSameFlow, a Python function that takes two
packets (and the switch and input port) as arguments and
returns whether the packets belong to the same group.
For example, in some scenarios different microflows are
independent, whereas other programs may treat packets
with different destination MAC addresses independently.
Summary. PKT-SEQ is complementary to other strate-
gies in that it only reduces the number of send tran-
sitions rather than the possible kind of event orderings.
PKT-SEQ is enabled by default and used in our experi-
ments (unless otherwise noted). The other heuristics can
be selectively enabled and arbitrarily combined.

5 Specifying Application Correctness

Correctness is not an intrinsic property of a system—a
specification of correctness states what the system should
(or should not) do, whereas the implementation deter-
mines what it actually does. NICE allows programmers
to specify correctness properties as Python code snippets,
and provides a library of common properties (e.g., no for-
warding loops or blackholes).

5.1 Customizable Correctness Properties

Testing correctness involves asserting safety properties
(“something bad never happens”) and liveness prop-
erties (“eventually something good happens”), defined
more formally in Chapter 3 of [19]. Checking for safety
properties is relatively easy, though sometimes writing
an appropriate predicate over all state variables is te-
dious. As a simple example, a predicate could check
that the collection of flow rules does not form a forward-
ing loop or a black hole. Checking for liveness proper-
ties is typically harder because of the need to consider
a possibly infinite system execution. In NICE, we make
the inputs finite (e.g., a finite number of packets, each
with a finite set of possible header values), allowing us
to check some liveness properties. For example, NICE
could check that, once two hosts exchange at least one
packet in each direction, no further packets go to the con-
troller (a property we call “StrictDirectPaths”). Checking
this liveness property requires knowledge not only of the
system state, but also which transitions have executed.

To check both safety and liveness properties, NICE al-
lows correctness properties to (i) access the system state,
(i) register callbacks invoked by NICE to observe im-
portant transitions in system execution, and (7i¢) main-
tain local state. In our experience, these features offer
enough expressiveness for specifying correctness prop-
erties. For ease of implementation, these properties are
represented as snippets of Python code that make as-
sertions about global system state. NICE invokes these
snippets after each transition. For example, to check the
StrictDirectPaths property, the code snippet would have
local state variables that keep track of whether a pair of
hosts has exchanged at least one packet in each direc-
tion, and would flag a violation if a subsequent packet
triggers a packet_in event at the controller. When a
correctness check signals a violation, the tool records the
execution trace that recreates the problem.

5.2 Library of Correctness Properties

NICE provides a library of correctness properties appli-
cable to a wide range of OpenFlow applications. A pro-
grammer can select properties from a list, as appropriate
for the application. Writing these correctness modules
can be challenging because the definitions must be ro-
bust to communication delays between the switches and
the controller. Many of the definitions must intentionally
wait until a “safe” time to test the property to prevent
natural delays from erroneously triggering a violation of
the property. Providing these modules as part NICE can
relieve the developers from the challenges of specifying
correctness properties precisely, though creating any cus-
tom modules would require similar care.

e NoForwardingLoops: This property checks that each
packet goes through any given <switch, input port> pair
at most once.

e NoBlackHoles: This property states that no packets
should be dropped in the network, and is implemented
by checking that every packet that enters the network ul-
timately leaves the network or is consumed by the con-
troller itself (for simplicity, we disable optional packet
drops and duplication on the channels). To account for
flooding, the property enforces a zero balance between
the packet copies and packets consumed.

e DirectPaths: This property checks that, once a packet
has successfully reached its destination, future packets
of the same flow do not go to the controller. Effectively,
this checks that the controller successfully establishes a
direct path to the destination as part of handling the first
packet of a flow. This property is useful for many Open-
Flow applications, though it does not apply to the MAC-
learning switch, which requires the controller to learn
how to reach both hosts before it can construct unicast
forwarding paths in either direction.

e StrictDirectPaths: This property checks that, after two
hosts have successfully delivered at least one packet of
a flow in each direction, no successive packets reach the
controller. This checks that the controller has established
a direct path in both directions between the two hosts.

e NoForgottenPackets: This property checks that all
switch buffers are empty at the end of system execution.
A program can easily violate this property by forgetting
to tell the switch how to handle a packet. This can even-
tually consume all the available buffer space for pack-
ets awaiting controller instruction; after a timeout, the
switch may discard these buffered packets. 2. A short-
running program may not run long enough for the queue
of awaiting-controller-response packets to fill, but the
NoForgottenPackets property easily detects these bugs.

6 Implementation Highlights

We have built a prototype implementation of NICE writ-
ten in Python so as to seamlessly support OpenFlow con-
troller programs for the popular NOX controller platform
(which provides an API for Python).

As a result of using Python, we face the challenge of
doing symbolic execution for a dynamic, untyped lan-
guage. This task turned out to be quite challenging from
an implementation perspective. To avoid modifying the
Python interpreter, we implement a derivative technique

2In our tests of the ProCurve 5406zl OpenFlow switch, we see that,
once the buffer becomes full, the switch starts sending the entire con-
tents of new incoming packets to the controller, rather than buffering
them. After a ten-second timeout, the switch deletes the packets that
are buffered awaiting instructions from the controller.

of symbolic execution called concolic execution [257%,
which executes the code with concrete instead of sym-
bolic inputs. Alike symbolic execution, it collects con-
straints along code paths and tries to explore all feasible
paths. Another consequence of using Python is that we
incur a significant performance overhead, which is the
price for favoring usability. We plan to improve perfor-
mance in a future release of the tool.

NICE consists of three parts: (i) a model checker,

(#i) a concolic-execution engine, and (ii7) a collection
of models including the simplified switch and several end
hosts. We now briefly highlight some of the implementa-
tion details of the first two parts: the model checker and
concolic engine, which run as different processes.
Model checker details. To checkpoint and restore
system state, NICE takes the approach of remembering
the sequence of transitions that created the state and re-
stores it by replaying such sequence, while leveraging
the fact that the system components execute deterministi-
cally. State-matching is doing by comparing and storing
hashes of the explored states. The main benefit of this
approach is that it reduces memory consumption and,
secondarily, it is simpler to implement. Trading com-
putation for memory is a common approach for other
model-checking tools (e.g., [15,16]). To create state
hashes, NICE serializes the state via the cPickle mod-
ule and applies the built-in hash function to the resulting
string. We surmise it would be possible to reduce NICE
running time by storing the serialized state itself, at the
cost of higher memory usage.
Concolic execution details. A key step in concolic ex-
ecution is tracking the constraints on symbolic variables
during code execution. To achieve this, we first imple-
ment a new “‘symbolic integer” data type that tracks as-
signments, changes and comparisons to its value while
behaving like a normal integer from the program point
of view. We also implement arrays (tuples in Python ter-
minology) of these symbolic integers. Second, we reuse
the Python modules that naturally serve for debugging
and disassembling the byte-code to trace the program ex-
ecution through the Python interpreter.

Further, before running the code symbolically, we nor-
malize and instrument it since, in Python, the execu-
tion can be traced at best with single code-line granu-
larity. Specifically, we convert the source code into its
abstract syntax tree (AST) representation and then ma-
nipulate this tree through several recursive passes that
perform the following transformations: (¢) we split com-
posite branch predicates into nested if statements to work
around shortcut evaluation, (i) we move function calls
before conditional expressions to ease the job for the STP
constraint solver [26], (ii7) we instrument branches to

3Concolic stands for concrete + symbolic.

10

inform the concolic engine on which branch is taken,
(iv) we substitute the built-in dictionary with a special
stub that exposes the constraints, and (v) we intercept
and remove sources of nondeterminism (e.g., seeding the
pseudo-random number generator). The AST tree is then
converted back to source code for execution.

7 Performance Evaluation

Here we present an evaluation of how effectively NICE
copes with the large state space in OpenFlow.

Experimental setup. We run the experiments on the
simple topology of Figure 1, where the end hosts behave
as follows: host A sends a “layer-2 ping” packet to host
B which replies with a packet to A. The controller runs
the MAC-learning switch program of Figure 4. We re-
port the numbers of transitions and unique states, and the
execution time as we increase the number of concurrent
pings (a pair of packets). We run all our experiments on a
machine set up with Linux 2.6.32 x86_64 that has 64 GB
of RAM and a clock speed of 2.6 GHz. Our prototype
implementation does not yet make use of multiple cores.
Benefits of simplified switch model. We first perform a
full search of the state space using NICE as a depth-first
search model checker (NICE-MC, without symbolic ex-
ecution) and compare to NO-SWITCH-REDUCTION:
doing model-checking without a canonical representa-
tion of the switch state. Effectively, this prevents the
model checker from recognizing that it is exploring se-
mantically equivalent states. These results, shown in
Table 1, are obtained without using any of our search
strategies. We compute p, a metric of state-space re-

duction due to using the simplified switch model, as
Unique(NO-SWITCH-REDUCTION) —Unique(NICE-MC)
Unique(NO-SWITCH-REDUCTION) :

We observe the following:

e In both samples, the number of transitions and of
unique states grow roughly exponentially (as expected).
However, using the simplified switch model, the unique
states explored in NICE-MC only grow with a rate
that is about half the one observed for NO-SWITCH-
REDUCTION.

e The efficiency in state-space reduction p scales with the
problem size (number of pings), and is substantial (factor
of seven for three pings).

Heuristic-based search strategies. Figure 8 illustrates
the contribution of NO-DELAY and FLOW-IR in reduc-
ing the search space relative to the metrics reported for
the full search (NICE-MC). We omit the results for UN-
USUAL as they are similar. The state space reduction is
again significant; about factor of four for three pings. In
summary, our switch model and these heuristics result in
a 28-fold state space reduction for three pings.
Comparison to other model checkers. Next, we con-

NICE-MC NO-SWITCH-REDUCTION
Pings Transitions | Unique states | CPU time Transitions | Unique states | CPU time 14
2 470 268 0.94 [s] 760 474 1.93 [s] 0.38
3 12,801 5,257 47.27 [s] 43,992 20,469 208.63 [s] 0.71
4 391,091 131,515 36 [m] 2,589,478 979,105 318 [m] 0.84
5 14,052,853 4,161,335 30 [h] - - - -

Table 1: Dimensions of exhaustive

search in NICE-MC vs. model-checking without a canonical representation of the

switch state, which prevents recognizing equivalent states. Symbolic execution is turned off in both cases. NO-SWITCH-

REDUCTION did not finish with five pings in four days.

=l | 0

I \O-DELAY transitions

1

Reduction [%]

0.5 I FLOW-IR transitions
"] NO-DELAY CPU time
[1 FLOW-IR CPUtime
0 T 1T W]

3 4
Number of pings

Figure 8: Relative state-space search reduction of our
heuristic-based search strategies vs. NICE-MC.

trast NICE-MC with two state-of-the-art model check-
ers, SPIN [12] and JPF [13]. We create system models in
PROMELA and Java that replicate as closely as possible
the system tested in NICE. For clarity, we present the
details of these modeling efforts in Appendix A and we
summarize the results here:

e As expected, by using an abstract model of the system,
SPIN performs a full search more efficiently than NICE.
Of course, state-space explosion still occurs: e.g., with
7 pings, SPIN runs of out memory. This validates our
decision to maintain hashes of system states instead of
keeping entire system states.

e SPIN’s partial-order reduction (POR)*, decreases the
grow rate of explored transitions by only 18%. This is
because POR is applied to the granularity level that can-
not be refined to distinguish between independent net-
work flows.

e Taken “as is”, JPF is already slower than NICE by a
factor of 290 with 3 pings. The reason is that JPF uses
Java threads to represent system concurrency. However,
JPF leads to too many possible thread interleavings to
explore even in our small example.

e Even with our extra effort in rewriting the Java model
to explicitly expose possible transitions, JPF is 5.5 times
slower than NICE using 4 pings.

These results suggest that NICE, in comparison to the
other model-checkers, strikes a good balance between (i)
capturing system concurrency at the right level of granu-
larity, (7¢) simplifying the state space and (7i¢) allowing
testing of unmodified controller programs.

4POR is a well-known technique for avoiding exploring unneces-
sary orderings of transitions (e.g., [27]).

11

8 Experiences With Real Applications

In this section, we report on our experiences apply-
ing NICE to three real applications—a MAC-learning
switch, a server load-balancer, and energy-aware traffic
engineering—and uncovering eleven bugs.

8.1 MAC-learning Switch (PySwitch)

Our first application is the py swit ch software included
in the NOX distribution. The application implements
MAC learning, coupled with flooding to unknown des-
tinations, common in Ethernet switches. Realizing this
functionality seems straightforward (e.g., the pseudo-
code in Figure 4), yet NICE automatically detects three
violations of correctness conditions.

BUG-I: Host unreachable after moving. This fairly
subtle bug is triggered when a host B moves from one lo-
cation to another. Before B moves, host A starts stream-
ing to B, which causes the controller to install a forward-
ing rule. When B moves, the rule stays in the switch as
long as A keeps sending traffic, because the soft timeout
does not expire. As such, the packets do not reach B’s
new location. This serious correctness bug violates the
NoBlackHoles condition. If the rule had a hard timeout,
the application would eventually flood packets and reach
B at its new location; then, B would send return traffic
that would trigger MAC learning, allowing future pack-
ets to follow a direct path to B. While this “bug fix” pre-
vents persistent packet loss, the network still experiences
transient loss until the hard timeout expires. Designing
a new NoBlackHoles condition that is robust to transient
loss is part of our ongoing work.

BUG-II: Delayed direct path. The pyswitch also vi-
olates the StrictDirectPaths condition, leading to subop-
timal performance. The violation arises after a host A
sends a packet to host B, and B sends a response packet
to A. This is because pyswitch installs a forwarding
rule in one direction—from the sender (B) to the desti-
nation (A), in line 13 of Figure 4. The controller does
not install a forwarding rule for the other direction until
seeing a subsequent packet from A to B. For a three-
way packet exchange (e.g., a TCP handshake), this per-
formance bug directs 50% more traffic than necessary to
the controller. Anecdotally, fixing this bug can easily

introduce another one. The naive fix is to add another
install_rule call, with the addresses and ports re-
versed, after line 14, for forwarding packets from A to B.
However, since the two rules are not installed atomically,
installing the rules in this order can allow the packet from
B to reach A before the switch installs the second rule.
This can cause a subsequent packet from A to reach the
controller. A correct fix would install the rule for traffic
from A first, before allowing the packet from B to A to
traverse the switch. With this “fix”, the resulting program
satisfies the StrictDirectPaths property.

BUG-III: Excess flooding. When we test pyswitch
on a topology that contains a cycle, the program violates
the NoForwardingLoops property. This is not surprising,
since pyswitch does not construct a spanning tree.

8.2 Web Server Load Balancer

Data centers rely on load balancers to spread incoming
requests over service replicas. Previous work created a
load-balancer application that uses wildcard rules to di-
vide traffic based on the client IP addresses to achieve
a target load distribution [9]. The application can dy-
namically adjust the load distribution by installing new
wildcard rules; during the transition, old transfers com-
plete at their existing servers while new requests are han-
dled according to the new distribution. We test this ap-
plication with one client and two servers connected to a
single switch. The client opens a TCP connection to a
virtual IP address corresponding to the two replicas. In
addition to the default correctness properties, we create
an application-specific condition FlowAffinity that veri-
fies that all packets of a single TCP connection go to the
same server replica. Here we report on the bugs NICE
found in the original code.

BUG-IV: Next TCP packet always dropped after re-
configuration. Having observed a violation of the No-
ForgottenPackets property, we identified a bug where the
application neglects to handle the “next” packet of each
flow—for both ongoing transfers and new requests—
after a change in the load-balancing policy. Despite cor-
rectly installing the forwarding rule for each flow, the
application does not instruct the switch to forward the
packet that triggered the packet_in handler. Since
the TCP sender ultimately retransmits the lost packet,
the program does successfully handle each Web request,
making it hard to notice the bug. The bug degrades per-
formance and, for a long execution trace, would ulti-
mately exhaust the switch’s space for buffering packets
awaiting controller action.

BUG-V: Some TCP packets dropped after reconfig-
uration. After fixing BUG-IV, NICE detected another
NoForgottenPackets violation, due to a race condition.
In switching from one load-balancing policy to another,

12

the application sends multiple updates to the switch for
each existing rule: (i) a command to remove the exist-
ing forwarding rule followed by (ii) commands to install
one or more rules (one for each group of affected client
IP addresses) that direct packets to the controller. Since
these commands are not executed atomically, packets ar-
riving between the first and second step do not match
either rule. The OpenFlow specification prescribes that
packets that do not match any rule should go to the con-
troller. Although the packets go to the controller either
way, these packets arrive with a different “reason code”
(i.e., NOMATCH). As written, the packet_in handler
ignores such (unexpected) packets, causing the switch to
hold them until the buffer fills. This appears as a packet
loss to the end hosts>. To fix this bug, the program should
reverse the two steps, installing the new rules (perhaps at
a lower priority) before deleting the existing ones.
BUG-VI: ARP packets forgotten during address res-
olution. Another NoForgottenPackets violation uncov-
ered two bugs that are similar in spirit to the previous
one. The controller program handles client ARP re-
quests. Despite sending the correct reply, the program
neglects to discard the ARP request packet. A similar
problem occurs for server-generated ARP messages.
BUG-VII: Duplicate SYN packets during transitions.
A FlowAffinity violation detected a subtle bug that arises
only when a connection experiences a duplicate (e.g., re-
transmitted) SYN packet while the controller changes
from one load-balancing policy to another. During the
transition, the controller inspects the “next” packet of
each flow, and assumes a SYN packet implies the flow
is new and should follow the new load-balancing policy.
Under duplicate SYN packets, some packets of a con-
nection (arriving before the duplicate SYN) may go to
one server, and the remaining packets to another, leading
to a broken connection. The authors of [9] acknowledge
this possibility (see footnote #2 in their paper), but only
realized this problem after careful consideration.

8.3 Energy-Efficient Traffic Engineering

OpenFlow enables a network to reduce energy consump-
tion [10,28] by selectively powering down links and redi-
recting traffic to alternate paths during periods of lighter
load. REsPoNse [28] precomputes several routing ta-
bles (the default is two), and makes an online selection
for each flow. The NOX implementation has an always-
on routing table (that can carry all traffic under low de-
mand) and an on-demand table (that serves additional
traffic under higher demand). Under high load, the flows

5To understand the impact, consider a switch with 1 Gb/s links,
850-byte frames, and a flow-table update rate of 257 rules/s (as widely
reported for the HP 5406z1). That would lead to 150 dropped packets
per switch port.

should probabilistically split evenly over the two classes
of paths. The application learns the link utilizations by
querying the switches for port statistics. Upon receiving
a packet of a new flow, the packet _in handler chooses
the routing table, looks up the list of switches in the path,
and installs a forwarding rule at each hop.

For testing with NICE, we install a network topology

with three switches in a triangle, one sender host at one
switch and two receivers at another switch. The third
switch lies on the on-demand path. We define the fol-
lowing application-specific correctness property:
e UseCorrectRoutingTable: This property checks that
the program, upon receiving a packet from an ingress
switch, issues the installation of rules to all and just the
switches on the appropriate path for that packet, as deter-
mined by the network load, It uses the source and desti-
nation addresses to determine the path (as does the appli-
cation code). Enforcing this is important, because if it is
violated, the network might be configured to carry more
traffic than it physically can, degrading the performance
of end-host applications running on top of the network.

NICE found several bugs in this application:
BUG-VIII: The first packet of a new flow is dropped.
A violation of NoForgottenPackets revealed a bug that is
almost identical to BUG-IV. The packet_in handler
installed a rule but neglected to instruct the switch to for-
ward the packet that triggered the event.

BUG-IX: The first few packets of a new flow can be
dropped. After fixing BUG-VIII, NICE detected an-
other violation of the NoForgottenPackets property at the
second switch in the path. Since the packet_in han-
dler installs an end-to-end path when the first packet of a
flow enters the network, the program implicitly assumes
that intermediate switches would never direct packets to
the controller. However, with communication delays in
installing the rules, the packet could reach the second
switch before the rule is installed. Although these pack-
ets trigger packet_in events, the handler implicitly ig-
nores them, causing the packets to buffer at the inter-
mediate switch. This bug is hard to detect because the
problem only arises under certain event orderings. Sim-
ply installing the rules in the reverse order, from the last
switch to the first, is not sufficient—differences in the de-
lays for installing the rules could still cause a packet to
encounter a switch that has not (yet) installed the rule. A
correct “fix” should either handle packets arriving at in-
termediate switches, or use “barriers” to ensure that rule
installation completes at all intermediate hops before al-
lowing the packet to depart the ingress switch.

BUG-X: Only on-demand routes used under high
load. NICE detects a CorrectRoutingTableUsed vio-
lation that prevents on-demand routes from being used
properly. The program updates an extra routing table in
the port-statistic handler (when the network’s perceived

13

BUG PKT-SEQ only NO-DELAY FLOW-IR UNUSUAL
I 23/0.02 23/0.02 23/0.02 23/0.02

11 18/0.01 18/0.01 187/0.01 18/70.01
111 1170.01 16/0.01 1170.01 1170.01
v 386/3.41 | 1661/9.66 321/1.1 64/0.19
v 22/0.05 Missed 21/70.02 60/0.18
VI 48/0.05 48/0.06 31/0.04 49/70.07
VIl 297k / 1h | 191k /39m Missed | 26.5k/5m
VIII 23/0.03 22/0.02 23/0.03 23/0.02
IX 21/0.03 1770.02 21/0.03 21/70.02
X 2893/35.2 Missed | 2893/35.2 | 2367/25.6
XI 98/0.67 Missed 98/0.67 25/0.03

Table 2: Comparison of the number of transitions / running
time to the first violation that uncovered each bug. Time is
in seconds unless otherwise noted.

energy state changes) to either always-on or on-demand,
in an effort to let the remainder of the code simply ref-
erence this extra table when deciding where to route a
flow. Unfortunately, this made it impossible to split flows
equally between always-on and on-demand routes, and
the code directed all new flows over on-demand routes
under high load. A “fix” was to abandon the extra table
and choose the routing table on per-flow basis.
BUG-XI: Packets can be dropped when the load re-
duces. After fixing BUG-IX, NICE detected another vi-
olation of the NoForgottenPackets. When the load re-
duces, the program recomputes the list of switches in
each always-on path. Under delays in installing rules,
a switch not on these paths may send a packet to the con-
troller, which ignores the packet because it fails to find
this switch in any of those lists.

8.4 Overhead of Running NICE

In Table 2, we summarize how many seconds NICE took
(and how many state transitions were explored) to dis-
cover the first property violation that uncovered each
bug, under four different search strategies. Note the num-
bers are generally small because NICE quickly produces
simple test cases that trigger the bugs. One exception,
BUG-VII, is found in 1 hour by doing a PKT-SEQ-only
search but UNUSUAL can detect it in just 5 minutes.
Our search strategies are also generally faster than PKT-
SEQ-only to trigger property violations, except in one
case (BUG-IV). NO-DELAY takes longer for BUG-IV
because the latter is faster to explore a sequence of tran-
sitions where the network reconfiguration event happens
at the right time for experiencing a NoForgottenPackets
violation. FLOW-IR does not produce benefits for the
last four bugs because these are uncovered by test cases
that do not involve using multiple flows. Also, note that
only in few cases (BUG-IV, BUG-X and BUG-XI) the
heuristic-based strategies experience false negatives. Ex-
pectedly, these race condition bugs are missed by NO-

DELAY, which does not consider rule installation delays.

Finally, the reader may find that some of the bugs
we found—Ilike persistently leaving some packets in the
switch buffer—are relatively simple and their manifesta-
tions could be detected with run-time checks performed
by the controller platform. However, the programmer
would not know what caused it. For example, a run-
time check that flags a “no forgotten packets” error due
to BUG-IV or BUG-V would not tell the programmer
what was special about this particular system execution
that triggered the error. Subtle race conditions are very
hard to diagnose, so having a (preferably small) example
trace—like NICE produces—is crucial.

9 Coverage vs. Overhead Trade-Offs

Testing is inherently incomplete, walking a fine line be-
tween good coverage and low overhead. As part of our
ongoing work, we want to explore further how to best
leverage symbolic execution in NICE. We here discuss
some limitations of our current approach.

Concrete execution on the switch: In identifying the
equivalence classes of packets, the algorithm in Fig-
ure 6 implicitly assumes the packets reach the controller.
However, depending on the rules already installed in the
switch, some packets in a class may reach the controller
while others do not. This leads to two limitations. First,
if no packets in an equivalence class would go to the
controller, generating a representative packet from this
class was unnecessary. This leads to some loss in ef-
ficiency. Second, if some (but not all) packets go to the
controller, we may miss an opportunity to test a code path
through the handler by inadvertently generating a packet
that stays in the “fast path” through the switches. This
leads to some loss in both efficiency and coverage. We
could overcome these limitations by extending symbolic
execution to include our simplified switch model and
performing “symbolic packet forwarding” across mul-
tiple switches. We chose not to pursue this approach
because (i) symbolic execution of the flow-table code
would lead to a path-explosion problem, (i7) including
these variables would increase the overhead of the con-
straint solver, and (7i7) rules that modify packet headers
would further complicate the symbolic analysis. Still, we
are exploring “symbolic forwarding” as future work, by
leveraging reachability-analysis techniques [29].
Concrete global controller variables: In symbolically
executing each event handler, NICE could miss com-
plex dependencies between handler invocations. This
is a byproduct of our decision to represent global con-
troller variables in a concrete form. In some cases, one
call to a handler could update the variables in a way that
affects the symbolic execution of a second call (to the
same handler, or a different one). Symbolic execution of

14

the second handler would start from the concrete global
variables, and may miss an opportunity to recognize ad-
ditional constraints on packet header fields. We could
overcome this limitation by running symbolic execution
across multiple handler invocations, at the expense of a
significant explosion in the number of code paths. Or, we
could revisit our decision to represent global variables
in a concrete form. As future work, we are consider-
ing ways to efficiently represent global variables sym-
bolically.

Infinite execution trees in symbolic execution: Sym-
bolically unrolling a “for loop” in a program can lead to
an arbitrarily large state space. In our context, such an
infinite execution tree [24] arises if each state has at least
one input that modifies the controller state. This is an in-
herent limitation of symbolic execution, whether applied
independently or in conjunction with model checking.
To address this limitation, we explicitly bound the state
space by limiting the size of the input (e.g., a limit on the
number of packets) and devise OpenFlow-specific search
strategies that explore the system state space efficiently.
These heuristics offer a tremendous improvement in effi-
ciency, at the expense of some loss in coverage.

10 Related Work

Bug finding. While model checking [12-16] and sym-
bolic execution [17, 18, 25] are automatic techniques,
a drawback is that they typically require a closed sys-
tem, i.e., a system (model) together with its environ-
ment. Typically, the creation of such environment is a
manual process (e.g., [23]). NICE re-uses the idea of
model checking—systematic state-space exploration—
and combines it with the idea of symbolic execution—
exhaustive path coverage—to avoid pushing the burden
of modeling the environment on the user. Also, NICE is
the first to demonstrate the applicability of these tech-
niques for testing the dynamic behavior of OpenFlow
networks. Finally, NICE makes a contribution in man-
aging state-space explosion for this specific domain.
Khurshid et al. [24] enable a model checker to per-
form symbolic execution. Both our and their work share
the spirit of using symbolic variables to represent data
from very large domains. Our approach differs in that it
uses state matching and symbolic execution in a selective
way for uncovering possible transitions given a certain
controller state. As a result, we (i) reduce state-space
explosion due to feasible code paths because not all code
is symbolically executed, and (i7) preserve system state
as a first-class notion that is used to further reduce the
search of the state-space.
OpenFlow and network testing. Frenetic [30] is a
domain-specific language for OpenFlow that aims to
eradicate a large class of programming faults. Using Fre-

netic requires the network programmer to learn exten-
sions to Python to support the higher-layer abstractions.

OFRewind [31] enables recording and replay of events
for troubleshooting problems in production networks due
to closed-source network devices. However, it does not
automate the testing of OpenFlow controller programs.

Mai et al. [32] use static analysis of network devices
forwarding information bases to uncover problems in the
data plane. FlowChecker [33] applies symbolic model
checking techniques on a manually-constructed network
model based on binary decision diagrams to detect mis-
configurations in OpenFlow forwarding tables. We view
these works as orthogonal to ours since they both aim to
analyze a snapshot of the data plane.

Bishop et al. [34] examine the problem of testing the
specification of end host protocols. NICE tests the net-
work itself, in a new domain of software defined net-
works. Kothari et al. [35] use symbolic execution and
developer input to identify protocol manipulation at-
tacks for network protocols. In contrast, NICE combines
model checking with symbolic execution to identify rel-
evant test inputs for injection into the model checker.

11 Conclusion

We built NICE, a tool for automating the testing of Open-
Flow applications that combines model checking and
concolic execution to quickly explore the state space of
unmodified controller programs written for the popular
NOX platform. Further, we devised a number of new,
domain-specific techniques for mitigating the state-space
explosion that plagues approaches such as ours. We con-
trast NICE with an approach that applies off-the-shelf
model checkers to the OpenFlow domain, and demon-
strate that NICE is five times faster even on small ex-
amples. We applied NICE to implementations of three
important applications, and found 11 bugs. A release of
NICE will be made publicly available.

We plan to use the simplified switch model as the ba-
sis for testing the OpenFlow controller program with real
switch implementations: run n-versions of OpenFlow
switches side-by-side with the switch model and auto-
matically detect deviant behaviors.

Acknowledgments.

We are grateful to Stefan Bucur, Olivier Crameri, Jo-
hannes Kinder, Viktor Kuncak, Darko Marinov and
Sharad Malik for useful discussions and comments on
earlier drafts of this work. The research leading to these
results has received funding from the European Research
Council under the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC grant agree-
ment 259110.

15

A Model-checking with Existing Tools

SPIN [12] is one of the most popular tools for verify-
ing the correctness of distributed software models. In
this case, these are written in a high-level modeling lan-
guage called PROMELA. This language exposes non-
determinism as a first-class concept, making it easier
to model the concurrency in OpenFlow. However, us-
ing this language proficiently is non-trivial and it took
several person-days to implement the model of the sim-
ple OpenFlow system (Figure 1). To capture the system
concurrency at the right level of granularity, we use the
atomic language feature to model each transition as
a single atomic computation that cannot be interleaved
to any other transition. In practice, this behavior can-
not be faithfully modeled due to the blocking nature of
channels in PROMELA. To enable SPIN’s POR be
most effective, we assign exclusive rights to the pro-
cesses involved in each communication channel.

Figure 9a shows the memory usage and elapsed time
for the exhaustive search with POR as we increase the
number of packets sent by host 1. As expected, we ob-
serve an exponential increase in computational resources
until SPIN reaches the memory limit when checking the
model with 8 pings (i.e., 16 packets).

To see how effective POR is, we compare in Figure 9b
the number of transitions explored with POR vs. without
POR (NOPOR) while we vary the number of pings. In
relative terms, POR’s efficiency increases, although with
diminishing returns, from 24% to 73% as we inject more
packets that are identical to each other. The benefits due
to POR on elapsed time follow a similar trend and POR
can finish 6 pings in 28% of time used by NOPOR. How-
ever, NOPOR hits the memory limit at 7 pings, so POR
only adds one extra ping.

Finally, we test if POR can reduce the search space by
taking advantage of one simple rule of independence for
the networking domain: i.e., packets involving disjoint
pairs of source and destination addresses are completely
independent. Unfortunately, we observe that there is no
reduction when we inject two packets with distinct ad-
dress pairs compared to the case with identical packets.
This is because SPIN uses the accesses to communica-
tion channels to derive the independence of events.

Java PathFinder (JPF) [13] is one among the first
modern model checkers which use the implementation in
place of the model. We follow two approaches to model
the system by porting our Python code to Java.

In the first approach, we naively use threads to cap-
ture nondeterminism, hoping that JPF’s automatic state-
space reduction techniques would cope with different
thread creation orders of independent transitions. How-
ever, in our case, the built-in POR is not very effi-
cient in removing unnecessary network event interleav-

Memory [MB]

06
0.4

6

.~ Hits memory limit
R of 65000 MB

1 - POR/NOPOR transitions

2

8 1 2

4 6 3 4
Number of pings Number of pings

(a) Memory usage and elapsed
time (log y-scales).

(b) Efficiency of POR.

Figure 9: SPIN: Exponential increase in computational re-
sources partially mitigated by POR.

Ping | Time [s] | Unique states | End states | Mem. [MB]

1 0 55 2 17

2 9 20638 134 140

3 13689 25470986 2094 1021
Table 3: JPF: Exhaustive search on thread-based model.
Ping | Time [s] | Unique states | End states | Mem. [MB]

1 0 1 1 17

2 1 691 194 33

3 16 29930 6066 108

4 11867 16392965 295756 576

Table 4: JPF: Exhaustive search on choice-based model.

ings because thread interleaving happens at finer gran-
ularity than event interleavings. To solve this problem,
we tune this model by using the beginAtomic () and
endAtomic () functions provided by JPF. As this still
produces too many possible interleavings, we further in-
troduced a global lock.

In a second approach to further refine the model,
we capture nondeterminism via JPF’s choice generator:
Verify.getInt (). This gives a significant improve-
ment over threads, mainly because we are able to specify
precisely the granularity of interleavings. However, this
second modeling effort is non trivial since we are man-
vally enumerating the state space and there are several
caveats in this case too. For example, explicit choice val-
ues should not be saved on the stack as the choice value
may became a part of the global state, thus preventing re-
duction. The vector of possible transitions must also be
sorted®.

Table 3 illustrates the state space explosion when us-
ing the thread-based model. Unfortunately, as show in
Table 4, the choice-based model improves only by 1 ping
the size of the model that we can explore within a com-
parable time period (= 4 hours).

®We order events by their states’ hash values.

16

References

(1]

(2]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

AfNOG Takes Byte Out of Internet.
goo.gl/HVJwS.

http://

Reckless Driving on the Internet. http://goo.
gl/otilX.

N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling Innovation in
Campus Networks. SIGCOMM Comput. Commun.
Rev., 38:69-74, March 2008.

M. Canini, D. Kosti¢, J. Rexford, and D. Venzano.
Automating the Testing of OpenFlow Applications.
In WRIPE, 2011.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an
Operating System for Networks. SIGCOMM Com-
put. Commun. Rev., 38:105-110, July 2008.

M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. Gude, N. McKeown, and S. Shenker. Rethinking
Enterprise Network Control. IEEE/ACM Transac-
tions on Networking, 17(4), August 2009.

A. Nayak, A. Reimers, N. Feamster, and R. Clark.
Resonance: Dynamic Access Control for Enter-
prise Networks. In WREN, 2009.

N. Handigol et al. Plug-n-Serve: Load-Balancing
Web Traffic using OpenFlow, August 2009. SIG-
COMM Demo.

R. Wang, D. Butnariu, and J. Rexford. OpenFlow-
Based Server Load Balancing Gone Wild. In Hot-
ICE, 2011.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yi-
akoumis, P. Sharma, S. Banerjee, and N. McKe-
own. ElasticTree: Saving Energy in Data Center
Networks. In NSDI, 2010.

D. Erickson et al. A Demonstration of Virtual Ma-
chine Mobility in an OpenFlow Network, August
2008. SIGCOMM Demo.

G. Holzmann. The Spin Model Checker - Primer
and Reference Manual. Addison-Wesley, Reading
Massachusetts, 2004.

W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model Checking Programs. Automated
Software Engineering, 10(2):203-232, 2003.

M. Musuvathi and D. R. Engler. Model Check-
ing Large Network Protocol Implementations. In
NSDI, 2004.

[15]

[18]

[24]

C. E. Killian, J. W. Anderson, R. Jhala, and A. Vah-
dat. Life, Death, and the Critical Transition: Find-
ing Liveness Bugs in Systems Code. In NSDI,
2007.

J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou.
MODIST: Transparent Model Checking of Unmod-
ified Distributed Systems. In NSDI, 2009.

C. Cadar, D. Dunbar, and D. R. Engler. KLEE:
Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In
OSDI, 2008.

S. Bucur, V. Ureche, C. Zamfir, and G. Candea.
Parallel Symbolic Execution for Automated Real-
World Software Testing. In EuroSys, 2011.

C. Baier and J.-P. Katoen. Principles of Model
Checking. The MIT Press, 2008.

Open vSwitch: An Open Virtual Switch. http:
//openvswitch.org.

OpenFlow Switch Specification.
//www.openflow.org/documents/
openflow-spec-v1l.1l.0.pdf.

http:

A. Sobeih, M. D’Amorim, M. Viswanathan,
D. Marinov, and J. C. Hou. Assertion Checking
in J-Sim Simulation Models of Network Protocols.
Simulation, 86, 2010.

R. Sasnauskas, O. Landsiedel, M. H. Alizai,
C. Weise, S. Kowalewski, and K. Wehrle. KleeNet:
Discovering Insidious Interaction Bugs in Wireless
Sensor Networks Before Deployment. In IPSN,
2010.

S. Khurshid, C. S. Pasareanu, and W. Visser. Gen-
eralized Symbolic Execution for Model Checking
and Testing. In TACAS, 2003.

P. Godefroid, N. Klarlund, and K. Sen. DART: Di-
rected Automated Random Testing. In PLDI, 2005.

V. Ganesh and D. L. Dill. A Decision Procedure for
Bit-Vectors and Arrays. In CAV, 2007.

C. Flanagan and P. Godefroid. Dynamic Partial-
Order Reduction for Model Checking Software. In
POPL, 2005.

N. Vasié¢, D. Novakovi¢, S. Shekhar, P. Bhurat,
M. Canini, and D. Kosti¢. Identifying and using
energy-critical paths. In CoNEXT, 2011.

17

[29]

(30]

(31]

(32]

(33]

[34]

(35]

G. Xie, J. Zhang, D. Maltz, H. Zhang, A. Green-
berg, G. Hjalmtysson, and J. Rexford. On Static
Reachability Analysis of IP Networks. In IEEE IN-
FoCoM, 2005.

N. Foster, R. Harrison, M. J. Freedman, C. Mon-
santo, J. Rexford, A. Story, and D. Walker. Fre-
netic: A Network Programming Language. In
ICFP, 2011.

A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: Enabling Record and
Replay Troubleshooting for Networks. In USENIX
ATC, 2011.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the Data Plane
with Anteater. In SIGCOMM, 2011.

E. Al-Shaer and S. Al-Haj. FlowChecker: Configu-
ration Analysis and Verification of Federated Open-
Flow Infrastructures. In SafeConfig, 2010.

S. Bishop, M. Fairbairn, M. Norrish, P. Sewell,
M. Smith, and K. Wansbrough. Rigorous Speci-
fication and Conformance Testing Techniques for
Network Protocols, as applied to TCP, UDP, and
Sockets. In SIGCOMM, 2005.

N. Kothari, R. Mahajan, T. Millstein, R. Govindan,
and M. Musuvathi. Finding Protocol Manipulation
Attacks. In SIGCOMM, 2011.

